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Abstract

The process of transforming and integrating XML data involves resolving the

syntactic, semantic and schematic heterogeneities that the data sources present.

Moreover, there are a number of different application settings in which such a

process could take place, such as centralised or peer-to-peer settings, each of

which needs to be considered separately.

In this thesis, we investigate the problem of data transformation and integra-

tion for XML data sources. This data format presents a number of challenges

that require XML-specific solutions: a schema is not required for an XML data

source, and if one exists, it may be expressed in a number of different XML

schema types; also, resolving schematic heterogeneity is not straightforward due

to the hierarchical nature of XML data.

We propose a modular approach, based on schema transformations, that han-

dles the distinct problems of syntactic, semantic and schematic heterogeneity of

XML data. We handle the problem of syntactic heterogeneity of XML schema

types by introducing a new, automatically derivable schema type for XML data

sources, designed specifically for the purposes of XML data transformation and

integration. We show how semantic heterogeneity can be handled in our ap-

proach using existing methods, and we also propose a new semi-automatic method

for resolving semantic heterogeneity using mappings to ontologies as a ‘seman-

tic bridge’. We then present a new schema restructuring method that handles

schematic heterogeneity automatically, assuming that semantic heterogeneity is-

sues have been resolved.

The contribution of this thesis is the investigation of the problem of XML data
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transformation and integration for all types of heterogeneity and in a variety of

application settings. We propose a modular approach to overcome the challenges

encountered and provide a number of automatic and semi-automatic techniques.

We show how our approach can be applied in different application settings and

we discuss the effectiveness and performance of our techniques via a number of

synthetic and real XML data transformation and integration scenarios.

4



To my parents

5



Acknowledgements

I am deeply grateful to my supervisors, Alexandra Poulovassilis and Nigel Martin,

for their continued support, their patient guidance and their faith in my work

throughout these years.

Many thanks are due to my colleagues at Birkbeck, Imperial and UCL for their

input, collaboration and numerous stimulating discussions. I would particularly

like to thank Rajesh Pampapathi, Michael Zoumboulakis, George Papamarkos,

George Roussos and Helge Gillmeister for their help and friendship — as well as

for the pints of cider after work.

Special thanks are due to Athena Vakali, Nikos Lorentzos and Yannis Manolo-

poulos, without whose help and support I would not have started this Ph.D. in

the first place.

Finally, my warmest thanks go to my family and friends for their love and

encouragement throughout this period and every other period. I would have never

finished this work without their support, and so this thesis is dedicated to them.

6



Contents

Abstract 3

Acknowledgements 6

1 Introduction 18

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 Data Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2.1 Data Sharing Scenarios . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Data Sharing Processes . . . . . . . . . . . . . . . . . . . . 20

1.3 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . 21

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Review of Related Work on Data Transformation and Integra-

tion 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Heterogeneity Classification . . . . . . . . . . . . . . . . . . . . . 25

2.3 Data Transformation and Integration . . . . . . . . . . . . . . . . 27

2.3.1 Data Integration Approaches . . . . . . . . . . . . . . . . 27

2.3.2 Data Integration Strategies . . . . . . . . . . . . . . . . . 28

2.3.3 Schema Matching and Mapping . . . . . . . . . . . . . . . 29

2.3.4 Model Management . . . . . . . . . . . . . . . . . . . . . . 34

2.3.5 Peer-to-Peer Data Management . . . . . . . . . . . . . . . 36

2.4 XML Data Transformation and Integration . . . . . . . . . . . . . 37

2.4.1 XML and Related Technologies . . . . . . . . . . . . . . . 37

7



2.4.2 Schema Extraction . . . . . . . . . . . . . . . . . . . . . . 41

2.4.3 XML Schema Matching and Mapping . . . . . . . . . . . . 43

2.4.4 Publishing Relational Data as XML . . . . . . . . . . . . . 43

2.4.5 XML Schema and Data Integration . . . . . . . . . . . . . 44

2.4.6 XML Schema and Data Transformation . . . . . . . . . . . 49

2.4.7 Using Ontologies for Semantic Enrichment . . . . . . . . . 53

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Overview of AutoMed 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 The AutoMed Framework . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 The Both-As-View Data Integration Approach . . . . . . . 57

3.2.2 The HDM Data Model . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Representing a Simple Relational Model . . . . . . . . . . 61

3.2.4 The IQL Query Language . . . . . . . . . . . . . . . . . . 61

3.2.5 AutoMed Transformation Pathways . . . . . . . . . . . . . 64

3.2.6 Query Processing . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.7 The AutoMed Software Architecture . . . . . . . . . . . . 72

3.3 Using AutoMed for XML Data Sharing . . . . . . . . . . . . . . . 76

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 XML Schema and Data Transformation and Integration 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 A Schema Type for XML Data Sources . . . . . . . . . . . . . . . 80

4.2.1 Desirable XML Schema Characteristics in Transformation/

Integration Settings . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Existing Schema Types for XML Data Sources . . . . . . . 81

4.2.3 XML DataSource Schema (XMLDSS) . . . . . . . . . . . . 84

4.2.4 XMLDSS Generation . . . . . . . . . . . . . . . . . . . . . 89

4.3 Overview of our XML Data Transformation/ Integration Approach 99

4.3.1 Schema Transformation Phase . . . . . . . . . . . . . . . . 99

4.3.2 Schema Conformance Phase . . . . . . . . . . . . . . . . . 109

8



4.4 Querying and Materialisation . . . . . . . . . . . . . . . . . . . . 110

4.4.1 Querying an XMLDSS Schema . . . . . . . . . . . . . . . 111

4.4.2 Materialising an XMLDSS Schema Using AutoMed . . . . 115

4.4.3 Materialising an XMLDSS Schema Using XQuery . . . . . 118

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Schema and Data Transformation and Integration 122

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2 Running Example for this Chapter . . . . . . . . . . . . . . . . . 123

5.3 Schema Conformance Via Schema Matching . . . . . . . . . . . . 126

5.4 Schema Restructuring Algorithm . . . . . . . . . . . . . . . . . . 130

5.4.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4.2 Phase I - Handling Missing Elements . . . . . . . . . . . . 133

5.4.3 Phase II - Restructuring . . . . . . . . . . . . . . . . . . . 146

5.4.4 Correctness of the SRA . . . . . . . . . . . . . . . . . . . . 156

5.4.5 Complexity Analysis of the SRA . . . . . . . . . . . . . . . 158

5.5 Schema Integration Algorithms . . . . . . . . . . . . . . . . . . . 162

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6 Extending the Approach Using Subtyping Information 168

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.2 Running Example for this Chapter . . . . . . . . . . . . . . . . . 169

6.3 Representing Ontologies in AutoMed . . . . . . . . . . . . . . . . 171

6.4 Schema Conformance Using Ontologies . . . . . . . . . . . . . . . 174

6.4.1 XMLDSS-to-Ontology Correspondences . . . . . . . . . . . 174

6.4.2 XMLDSS-to-Ontology Conformance . . . . . . . . . . . . . 178

6.4.3 Schema Conformance Using Multiple Ontologies . . . . . . 183

6.5 Extended Schema Restructuring Algorithm . . . . . . . . . . . . . 185

6.5.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5.2 Subtyping Phase . . . . . . . . . . . . . . . . . . . . . . . 190

6.5.3 Applying the Subtyping Phase . . . . . . . . . . . . . . . . 197

6.5.4 Applying Phase I and Phase II . . . . . . . . . . . . . . . 199

9



6.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7 Transformation and Integration of Real-World Data 205

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.2 Integration of Heterogeneous Data Sources

Using an XML Layer . . . . . . . . . . . . . . . . . . . . . . . . . 207

7.2.1 The BioMap Setting . . . . . . . . . . . . . . . . . . . . . 207

7.2.2 The Integration Process . . . . . . . . . . . . . . . . . . . 209

7.2.3 Implementation and Results . . . . . . . . . . . . . . . . . 215

7.3 XML Data Transformation and Materialisation . . . . . . . . . . 216

7.3.1 The Crime Informatics Setting . . . . . . . . . . . . . . . . 216

7.3.2 XMLDSS Schema Extraction . . . . . . . . . . . . . . . . 217

7.3.3 Schema Conformance . . . . . . . . . . . . . . . . . . . . . 219

7.3.4 Schema Restructuring . . . . . . . . . . . . . . . . . . . . 220

7.3.5 Schema Materialisation . . . . . . . . . . . . . . . . . . . . 221

7.4 Service Reconciliation Using A Single Ontology . . . . . . . . . . 222

7.4.1 Bioinformatics Service Reconciliation . . . . . . . . . . . . 222

7.4.2 Related Work in Service Reconciliation . . . . . . . . . . . 224

7.4.3 Our Service Reconciliation Approach . . . . . . . . . . . . 225

7.4.4 Case Study Using A Single Ontology . . . . . . . . . . . . 228

7.5 Service Reconciliation Using Multiple Ontologies . . . . . . . . . . 234

7.5.1 e-Learning Service Reconciliation . . . . . . . . . . . . . . 234

7.5.2 Transforming Ontologies using AutoMed . . . . . . . . . . 236

7.5.3 XML Data Source Enrichment . . . . . . . . . . . . . . . . 239

7.5.4 Ontology-Assisted Schema and Data Transformation . . . 240

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

8 Conclusions and Future Work 245

A BAV Pathway Generation Using PathGen 251

A.1 PathGen Input XML Format . . . . . . . . . . . . . . . . . . . . 251

10



A.2 Using Correspondences with PathGen . . . . . . . . . . . . . . . . 253

A.2.1 Correspondences XML Format . . . . . . . . . . . . . . . . 253

A.2.2 Transformation of a Set of Correspondences to the PathGen

Input XML Format . . . . . . . . . . . . . . . . . . . . . . 256

A.2.3 Application of PathGen on the Converted Sets of Corre-

spondences . . . . . . . . . . . . . . . . . . . . . . . . . . 260

B Correctness of the Schema Restructuring Algorithm 264

B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

B.2 Correctness Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

B.2.1 Ancestor Case . . . . . . . . . . . . . . . . . . . . . . . . . 268

B.2.2 Descendant Case . . . . . . . . . . . . . . . . . . . . . . . 273

B.2.3 Different Branches Case . . . . . . . . . . . . . . . . . . . 281

B.2.4 Element-to-attribute transformation . . . . . . . . . . . . . 290

B.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

C Single Ontology Service Reconciliation Files 294

C.1 IPI Entry IPI00015171 (UniProt Flat-File Version) . . . . . . . . 295

C.2 IPI Entry IPI00015171 (XML Version) . . . . . . . . . . . . . . . 296

C.3 UniProt XMLDSS . . . . . . . . . . . . . . . . . . . . . . . . . . 298

C.4 UniProt XML Schema . . . . . . . . . . . . . . . . . . . . . . . . 303

C.5 InterPro Entry IPR003959 . . . . . . . . . . . . . . . . . . . . . . 322

C.6 InterPro DTD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

C.7 InterPro XMLDSS . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Bibliography 331

11



List of Algorithms

1 XMLDSS Extraction Algorithm (DOM-based) . . . . . . . . . . . . 92

2 XMLDSS Extraction Algorithm (SAX-based) . . . . . . . . . . . . 94

3 XML DataSource Schema Materialisation Algorithm . . . . . . . . 116

4 XQuery Query Generation Algorithm . . . . . . . . . . . . . . . . 119

5 Schema Restructuring Algorithm restructure(S,T) . . . . . . . . 131

6 Schema Restructuring Algorithm — Phase I . . . . . . . . . . . . . 137

7 Subroutines for Phase I of the Schema Restructuring Algorithm . . 138

8 Schema Restructuring Algorithm — Phase II . . . . . . . . . . . . 150

9 Subroutines for Phase II of Schema Restructuring Algorithm . . . . 151

10 Top-Down Integration Algorithm . . . . . . . . . . . . . . . . . . . 162

11 Bottom-Up Integration Algorithm . . . . . . . . . . . . . . . . . . 163

12 Bottom-Up Integration Algorithm — Growing Phase . . . . . . . . 164

13 Schema Restructuring Algorithm restructure(S,T) . . . . . . . . 186

14 ESRA — Subtyping Phase . . . . . . . . . . . . . . . . . . . . . . 192

15 ESRA — Procedures for the Subtyping Phase . . . . . . . . . . . . 193

16 XMLDSS Schema Generation from Relational Schema using Tree

Structure T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

17 Function getInvertedElementRelExtent(〈〈ep〉〉,〈〈ec〉〉) . . . . . . . . . 274

12



List of Figures

3.1 The AutoMed Global Query Processor. . . . . . . . . . . . . . . . 68

3.2 The AutoMed Software Architecture. . . . . . . . . . . . . . . . . 73

3.3 AutoMed Repository Schema . . . . . . . . . . . . . . . . . . . . 74

3.4 The AutoMed Wrapper Architecture. . . . . . . . . . . . . . . . . 75

4.1 Example XML Document (partial). . . . . . . . . . . . . . . . . . 90

4.2 XMLDSS for the XML Document of Figure 4.1. . . . . . . . . . . 90

4.3 XMLDSS Derived from the DTD of Table 4.3 or from the XML

Schema of Table 4.4. . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Peer-to-Peer Transformation Setting. . . . . . . . . . . . . . . . . 102

4.5 Top-Down Integration Setting. . . . . . . . . . . . . . . . . . . . . 105

4.6 Bottom-Up Integration Setting. . . . . . . . . . . . . . . . . . . . 106

4.7 The AutoMed XML Wrapper Architecture. . . . . . . . . . . . . . 112

4.8 Translation to and from XQuery in AutoMed. . . . . . . . . . . . 114

5.1 Example Source and Target XMLDSS Schemas S and T , and In-

termediate Schema Sconf , Produced by the Schema Conformance

Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.2 Running Example after the Application of the Schema Confor-

mance Phase (resulting in Pathway S ↔ Sconf) and the Schema

Transformation Phase (resulting in Pathway Sconf ↔ Sres ↔ Tres ↔

T ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.3 ElementRel 〈〈ep, ec〉〉 in S and the Possible Relationships between

〈〈ep〉〉 and 〈〈ec〉〉 in T . . . . . . . . . . . . . . . . . . . . . . . . . . 136

13



5.4 Schema Produced from the Application of Phase I on Sconf . . . . 141

5.5 Skolemisation Cases (iii)–(vi). . . . . . . . . . . . . . . . . . . . . 144

5.6 Identical Schemas Sres and Tres. . . . . . . . . . . . . . . . . . . . 154

5.7 Running Example after Application of the SRA. . . . . . . . . . . 154

5.8 Bottom-Up Integration with LS1 as the Initial Global Schema. . . 165

6.1 Example Source and Target XMLDSS schemas S and T . . . . . . 169

6.2 Example Ontology O. . . . . . . . . . . . . . . . . . . . . . . . . . 171

6.3 Running Example after the Schema Conformance Phase (Pathways

S ↔ Sconf and T ↔ Tconf) and the Schema Transformation Phase

(Pathway Sconf ↔ Stransf ↔ Ttransf ↔ Tconf). . . . . . . . . . . . 182

6.4 Conformed Source and Target XMLDSS schemas Sconf and Tconf . 183

6.5 Schema Ssub, Output of the Subtyping Phase for Schema Sconf . . . 200

6.6 Schema Tsub, Output of the Subtyping Phase for Schema Tconf . . . 200

6.7 Running Example after Application of the ESRA. . . . . . . . . . 201

6.8 Schema Sres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.9 Schema Tres. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

7.1 Architectural Overview of the Data Integration Framework . . . . 208

7.2 Top: part of the CLUSTER relational schema. Bottom: corre-

sponding part of the CLUSTER XMLDSS schema. . . . . . . . . 212

7.3 Left: Part of the Global Relational Schema. Right: Corresponding

Part of the XMLDSS Schema. . . . . . . . . . . . . . . . . . . . . 213

7.4 The Crime Data Transformation and Materialisation Setting. . . . 217

7.5 The XMLDSS Schema for the Exported XML Document. . . . . . 218

7.6 The Target XMLDSS Schema. . . . . . . . . . . . . . . . . . . . . 219

7.7 Reconciliation of services S1 and S2 using ontology O1. . . . . . . 227

7.8 Sample Workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.9 Left: Ontologies L4ALL, LLO and FOAF. Right: XMLDSS schemas

X1 and X2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

7.10 Reconciliation of Services S1 and S2. . . . . . . . . . . . . . . . . 237

7.11 Enriched XMLDSS schemas X ′

1 and X ′

2. . . . . . . . . . . . . . . 242

14



B.1 Setting for Studying the Correctness of the Schema Restructuring

Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

B.2 Correctness Study of the SRA: Ancestor Case. . . . . . . . . . . . 270

B.3 Correctness Study of the SRA: Descendant Case. . . . . . . . . . 276

B.4 Correctness Investigation of the SRA: Different Branches Case. . . 285

B.5 Correctness Study of the SRA: Element-to-Attribute and Attribute-

to-Element Cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

15



List of Tables

3.1 Representation of a Simple Relational Model in HDM . . . . . . . 62

4.1 XML DataSource Schema Representation in terms of HDM . . . . 87

4.2 XMLDSS Primitive Transformations. . . . . . . . . . . . . . . . . 89

4.3 Example DTD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Example XML Schema. . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Source XML Document D1 . . . . . . . . . . . . . . . . . . . . . . 124

5.2 Source XML Document D2 . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Source XML Document DS1 (Top) and Target XML Documents

DT1, DT2 and DT3 (Bottom) . . . . . . . . . . . . . . . . . . . . . 170

6.2 Correspondences Between XMLDSS Schema S and Ontology O . 179

6.3 Correspondences Between XMLDSS Schema T and Ontology O . 180

7.1 Transformation pathway XS → XSconf . . . . . . . . . . . . . . . 220

7.2 Correspondences between the XMLDSS schema of the output of

getIPIEntry and the myGrid ontology. . . . . . . . . . . . . . . . 231

7.3 Correspondences between the XMLDSS schema of the input of

getInterPro and the myGrid ontology. . . . . . . . . . . . . . . . 232

7.4 Fragment of the Transformation Pathway L4ALL→LLO. . . . . . 238

7.5 Fragment of the transformation pathway LLO→FOAF . . . . . . 239

7.6 Correspondences C1 between XMLDSS Schema X1 and the L4ALL

Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

16



7.7 Correspondences C ′

1 between XMLDSS Schema X1 and the FOAF

Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

A.1 XML Input File for PathGen Component . . . . . . . . . . . . . . 252

A.2 Correspondences for XMLDSS Schema S w.r.t. Ontology O. . . . 254

A.3 Correspondences for XMLDSS Schema S w.r.t. Ontology O (con-

tinued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

A.4 Correspondences for XMLDSS Schema T w.r.t. Ontology O. . . . 256

A.5 PathGen Input Derived from Correspondences of Table A.2. . . . 257

A.6 PathGen Input Derived from Correspondences of Table A.2. . . . 258

A.7 PathGen Input Derived from Correspondences of Table A.4. . . . 259

17



Chapter 1

Introduction

1.1 Introduction

Today’s web-based applications and services publish their data using XML, the

de facto standard for sharing data, since the use of XML as a common data

representation format helps interoperability with other applications and services.

However, since the same information can be published using XML in many differ-

ent ways in terms of structure and terminology, the exchange of XML data is not

yet fully automatic. This heterogeneity of XML data has led recently to research

in areas such as schema matching, schema transformation and schema integra-

tion in the context of XML data, in an attempt to enhance data sharing between

applications. The development of algorithms that automate these tasks, thereby

reducing the time and effort spent on creating and maintaining data sharing ap-

plications, is highly beneficial for many domains: examples range from generic

frameworks, such as for XML messaging and component-based development, to

applications and services in e-business, e-science and e-learning.

This thesis addresses the problem of sharing XML data between applications.

In particular, we have developed an approach to the transformation and integra-

tion of heterogenous XML data sources. Our approach is schema-based, meaning

that its output is a set of mappings between a source and a target schema, in a

data transformation scenario, or sets of mappings between several source and one

18



target integrated schema, in a data integration scenario. Our mappings specify

the relationships between data sources at the schema level, but also at the data

level, and they can be utilised for querying or materialising the target schema

using data from one or more data source(s).

The rest of this chapter is structured as follows. Section 1.2 introduces the

different scenarios and processes in the broad area of data sharing. Section 1.3

presents the motivation of the work described in this thesis. Section 1.4 presents

the thesis chapters.

1.2 Data Sharing

The sharing of data across applications and services may involve different scenar-

ios, including: schema and data transformation, schema and data translation or

schema and data integration, however all scenarios share some processes, such as

schema matching and schema mapping. We introduce here the major scenarios

and processes in schema and data transformation and integration. These will be

discussed in more detail in our review of related work in Chapter 2.

1.2.1 Data Sharing Scenarios

Schema and data transformation is a data sharing scenario in which one needs

to define rules for transforming a source schema S1 and its associated data DS1

to the structure of a target schema S2, defined in the same modelling language

as S1, for the purposes of query processing and/or materialisation of S2, using

the data DS1. Data exchange is a stricter form of data transformation, which

also respects the constraints defined within the target schema, and not just its

structure.

Schema and data translation is a data sharing scenario in which one needs to

define rules for translating a source schema S1, expressed in a modelling language

M1, and its associated data, DS1, to a target schema S2 expressed in a different
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modelling language M2, for the purposes of query processing and/or materialisa-

tion of S2, using the data DS1. The rules may be expressed directly between M1

and M2, or indirectly, via a third data model M .

Schema and data integration is a data sharing scenario in which data from

multiple data sources are combined in order to provide the user with a single view

of the underlying data sources. This view may retain all of the original logical

structure and terminology of the data source schemas, in which case it is termed

a union or federated schema, or it may provide an integrated or global schema,

which combines the data sources in more complex ways, e.g. a global schema

construct may be derived by joining constructs from different local schemas.

1.2.2 Data Sharing Processes

Schema matching is the automatic or semi-automatic process of identifying pos-

sible relationships between the constructs of a schema S1 and those of another

schema S2. The output of this process may be a set of matches of the form

(Ci, Cj, r, cs), where Ci is a construct of schema S1, Cj is a construct of schema S2,

r is a specification of the relationship between these constructs (e.g. equivalence,

subsumption, disjointness) and cs is a confidence score, i.e. a value in [0..1] that

specifies the confidence on r. More generally, a match may be of arbitrary cardi-

nality and complexity, depending on the sophistication of the matching process;

for example, it may be an expression of the form (Ci1 copi1 . . . copi(n−1) Cin) op

(Cj1 copj1 . . . copj(m−1) Cjm), where the copi are operators combining the values

of different schema constructs and op specifies the relationship between the two

expressions, similarly to r above.

Often, the schema matching process is not able to specify the precise expres-

sions (Ci1 copi1 . . . copi(n−1) Cin) and (Cj1 copj1 . . . copj(m−1) Cjm), and in par-

ticular the cop operators. Thus, a schema mapping process (see below) is also

required to precisely define these expressions. However, given that schemas are

large in many data sharing scenarios, and that schema mapping cannot be fully

automated, schema matching is valuable for reducing the search space for schema
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mappings and allowing the integrator or the schema mapping process to focus on

identifying and generating more likely mappings.

Schema mapping or query discovery is the manual or semi-automatic process

of deriving the precise mappings between the constructs of two schemas S1 and

S2. The mappings can then be used to transform a query posed on S2 to a query

on S1 (or vice versa), or to transform data from the data source of S2 to S1 (or

vice versa).

It is clear that schema matching and schema mapping are both overlapping

and complementary processes. The literature does not always distinguish between

the two and often either term is used to encompass actually both schema matching

and schema mapping. In this thesis, we will aim to distinguish between the two

processes.

1.3 Motivation and Contributions

From the above overview, a number of research questions arise regarding XML

data sharing, which form the motivation for our research:

• Different XML data sources may be accompanied by different schema types,

or may not have a schema type at all. Can we encompass all types of XML

data sources within a single data transformation and integration approach?

• Some tools for the semi-automatic transformation and integration of XML

data sources perform schema matching and schema mapping, but do so in

a single-step process. Is it possible to modularise this process and would a

modular approach be preferable to a single-step schema mapping process?

If so, in what ways? For example, would it allow existing schema matching

and schema mapping techniques to be reused, and if so, how?

• Which aspects of XML data transformation and integration can be auto-

mated? Are they clearly distinguishable from the manual aspects? Can we

minimise the manual aspects?
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• XML data sources may be structurally incompatible, which may lead to

loss of information when transforming or integrating them. Is it possible to

detect such cases and handle them automatically?

• Is schema matching the only semi-automatic way of deriving the semantics

needed to address semantic heterogeneity (e.g. the use of different termi-

nology) between schemas? Can ontologies be used as an alternative, and if

so, is the use of ontologies a realistic design choice in terms of scalability?

• Is it possible to develop an approach that addresses both transformation

and integration in a uniform way?

• Is it possible to develop an approach that addresses the transformation and

integration of data sources within different architectural paradigms, e.g.

centralised, peer-to-peer, service-oriented?

With these research questions as a starting point, this thesis proposes a

schema-based approach for the semi-automatic transformation and integration

of heterogeneous XML data sources and makes the following contributions. Our

approach can operate on any type of XML data source, regardless of the schema

type used — if one is used at all (note, however, that we only consider regular

XML languages and not context-free ones [HMU00]; so, for example, recursive

XML Schemas are not supported). We consider two different ways of addressing

semantic heterogeneity in our approach, via schema matching and via ontologies.

The latter is a scalable semi-automatic technique that can be viewed as an al-

ternative to schema matching. We present a schema transformation algorithm

that can avoid the loss of information that could occur due to structural incom-

patibility between different XML data sources and that can also use semantics,

e.g. derived from ontologies, to provide more comprehensive mappings. We in-

vestigate the correctness and complexity of this algorithm. We then demonstrate

the application of our approach in the transformation and integration of both

XML and non-XML data sources. We also illustrate the use of our approach for

the reconciliation of services (i.e. the transformation of the output of one or more
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services, so that they can be consumed by another service), thereby providing one

uniform framework for both data and service reconciliation. Finally, we identify

a number of open research problems that could be investigated in future work.

With respect to existing approaches to XML schema and data transforma-

tion and integration, our approach makes a number of contributions. A first

contribution is a discussion of the advantages of using structural summaries as

the schema type for data sources in the context of XML schema and data trans-

formation and integration, and of the disadvantages of using a grammar, such

as DTD or XML Schema, in this context. Our approach uses a structural sum-

mary as the schema type for XML data sources, in contrast with most existing

approaches1. A second contribution is that we present an approach separating

schema conformance, which is a manual or semi-automatic process, and schema

transformation/integration, which is fully automatic. Existing approaches ei-

ther consider schema matching and schema mapping as a single-step process,

and therefore require heavy user interaction, or they assume semantic confor-

mance has already been performed. The advantages of our (modular) approach

are increased automation and the ability to use different schema conformance

techniques, according to the application setting. A third contribution is a new

ontology-based schema conformance technique. This technique is an alternative

to schema matching and is preferable in settings where pairwise schema matching

is prohibitively costly, e.g. in a peer-to-peer setting. Our technique builds upon

existing work in this area and extends the types of mappings between XML data

sources and ontologies. Finally, our approach addresses the problem of infor-

mation loss due to structural incompatibilities between the XML data sources.

Our work is complementary to previous work that addresses information loss in

the presence of foreign key constraints (see the discussion on the Clio project in

Chapter 2).

1As discussed earlier, we do not consider context-free XML languages, and we note that (to
the best of our knowledge) no other approach does so either.
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1.4 Thesis Outline

The thesis is structured as follows. Chapter 2 reviews work on schema and data

transformation and integration, both in general and in an XML context.

Chapter 3 gives an overview of the AutoMed heterogeneous data integration

system, which has been used as the development platform for our approach. We

discuss AutoMed both from a theoretical and a technical viewpoint, focusing on

the aspects that are relevant to this thesis.

Chapter 4 describes our approach to XML schema and data transformation

and integration. We present the schema type that we developed for representing

XML data sources, give an overview of the components comprising our framework,

and then discuss how our approach supports schema transformation, schema in-

tegration and schema materialisation.

Chapter 5 presents our approach in further detail. We define the algorithms

used for transforming and integrating XML data sources, and illustrate these

by example, using schema matching as the means for providing the semantics

required for XML data transformation and integration. An analysis of the com-

plexity of the core algorithm is also provided.

Chapter 6 discusses the use of ontologies for providing semantics for XML

data transformation and integration, as an alternative to schema matching. We

describe the extensions made to the core algorithm of Chapter 5 for exploiting

the additional information provided by this method. We illustrate the extended

approach by example and discuss its complexity.

Chapter 7 demonstrates the practical application of our approach for the

transformation and integration of real-world data in four different application

settings. The first setting uses our approach as an XML middleware layer over

XML and relational data sources in order to integrate them. The second uses our

approach to transform and materialise XML documents. The third and fourth

settings illustrate the use of our approach for service reconciliation.

Chapter 8 discusses the contributions of the thesis and identifies areas of future

work.
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Chapter 2

Review of Related Work on Data

Transformation and Integration

2.1 Introduction

Chapter 1 presented the different aspects of data sharing and defined the focus and

the motivation of our research described in this thesis. This chapter begins with a

classification of the problems encountered when attempting to share data between

information systems in Section 2.2. Section 2.3 then gives a review of related work

on data transformation and integration in a general context, and Section 2.4

gives a review and critical analysis of work on XML data transformation and

integration.

2.2 Heterogeneity Classification

The use of data transformation and integration for addressing the problem of

interoperability between heterogeneous information systems has been studied ex-

tensively in the past, and a number of classifications of the issues that arise have

been produced, e.g. [Bis98, She99]. The consensus is that these issues can be

separated into two broad categories: system heterogeneity, which encompasses
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aspects such as the use of different hardware, operating systems etc., and in-

formation heterogeneity, which encompasses aspects such as different modelling

languages and different terminology. In this thesis, we focus on the latter type

of heterogeneity, as the former is addressed by using an appropriate data trans-

formation/integration system (Chapter 3 provides a detailed discussion of such a

system, namely AutoMed). Our own classification of information heterogeneity,

initially published in [ZMP07a], is as follows:

Syntactic or data model heterogeneity refers to schematic1 differences caused

by the use of different data models (e.g. XML and relational) or different schema

types (e.g. DTD and XML Schema for XML data sources). It may also be the

case that a data source does not have an accompanying schema.

Semantic heterogeneity refers to schematic differences caused by the use of

different terminology, or describing the same information at different levels of

granularity. In the former case, synonyms and homonyms2 contribute to the

effect of schemas referring to the same real-world concepts using different terms,

as does the use of different natural languages. In the latter case, even if the same

controlled vocabulary or ontology3 is used, the use of a certain class in one schema

and of one of its subclasses in another schema leads to semantic heterogeneity.

Schematic or structural heterogeneity refers to schematic differences caused

by modelling the same information in different ways, and is distinct from syn-

tactic and semantic heterogeneity. This type of heterogeneity can arise with all

modelling languages, but it is amplified in XML mainly due to the hierarchical

nature of XML, and also because XML allows the use of elements and attributes

interchangeably.

Data type heterogeneity refers to differences caused by the use of different

data types. Except for schematic data type differences, e.g. the use of int and

1Throughout this thesis, the term ‘schema’ refers to the description of the structure of a
data resource, such as a relational database or an XML file, using a standard modelling language
and possibly including constraint information. The data associated with a schema must always
conform to the structure (and constraints, if present) specified by the schema.

2Homonyms are words with different meanings, but which are written in the same way.
3An ontology is a model that specifies the concepts of a problem domain, as well as the

relationships between those concepts. See also Section 2.4.1.
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varchar for the same concept in two different schemas, concepts may be modelled

using different semantic data types in different schemas. For example, the use

of different types of units (e.g. miles instead of kilometres) used for the same

concepts in different schemas is termed scale difference in [LNE89].

2.3 Data Transformation and Integration

This section reviews some of the fundamental aspects of data transformation and

integration, namely the different approaches to data integration (Section 2.3.1),

the different strategies employed in data integration (Section 2.3.2) and schema

matching and mapping (Section 2.3.3), as well as some of the latest research in

the field, model management (Section 2.3.4) and peer-to-peer data management

(Section 2.3.5).

2.3.1 Data Integration Approaches

In data integration, the form of the mappings between the local (data source)

schemas and the global schema determines the data integration approach. In

particular, if the mappings define each construct of the global schema as a view4

over the constructs of the local schemas, then the approach is termed global-as-

view (GAV) [Len02]. Conversely, if the mappings define each construct of each

local schema as a view over the constructs of the global schema, then the approach

is termed local-as-view (LAV) [Len02]. The global-local-as-view (GLAV) approach

extends the LAV approach by allowing any local schema query in the head of the

view definition [MH03].

A more recent approach to data integration is the Both-As-View (BAV) ap-

proach adopted by the AutoMed system [MP03a]. Rather than following a view

definition approach, in which views specify the relationships between the con-

structs of the data source schemas and of the global schema, BAV follows a schema

transformation approach. In particular, BAV allows the application of primitive

4A view in a database system is a query over a schema, and the view may be virtual or
materialised.
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transformations to a schema. Each of these transformations adds, deletes or re-

names a single schema construct at a time, and results in a new schema. Each

transformation that adds or deletes a schema construct is supplied with a query

that defines the extent of the construct being added or deleted in terms of the

rest of the schema constructs, and so schema and data transformation occur to-

gether. These primitive transformations can be used to incrementally transform

a data source schema so as to match the global schema, or vice versa. The BAV

approach is discussed in more detail in Chapter 3.

An early example of the GAV approach for managing distributed, heteroge-

nous and autonomous databases is federated databases [SL90, BIG94, GS98].

Another approach for integrating distributed, heterogeneous and autonomous

databases is the middleware approach, which presents a unified programming

model to resolve heterogeneity, and which also facilitates the communication

and the coordination of distributed components, so as to build systems that

are distributed across a network [Emm00]. Such a system can use any of the

aforementioned approaches towards data integration. More recently, OGSA-

DAI [AAB+05] uses a service-oriented architecture (SOA) to achieve data access,

transformation and integration of resources available on a Grid. Researchers are

also focusing on data transformation and integration using a peer-to-peer ap-

proach, and this is discussed in Section 2.3.5.

2.3.2 Data Integration Strategies

One categorisation of a data integration setting is in terms of the existence or not

of the global schema prior to the integration process. In a top-down integration

setting the global schema already exists, and mappings need to be defined between

the data source schemas and this global schema [Len02]. On the other hand, in

a bottom-up integration setting the global schema does not exist at the outset,

and so the integration process involves both the definition of a global schema, as

well as defining the mappings between the data source schemas and the global

schema [BLN86].
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Regardless of whether the integration process is bottom-up or top-down, there

can be multiple different strategies to combine the data source schemas to create

the global schema or to map them to the global schema. [BLN86] provides a re-

view of these strategies, which can be characterised as binary or n-ary, depending

on the number of schemas involved in each step of the integration process. For ex-

ample, the one-shot strategy integrates all data source schemas in one step. The

ladder strategy, on the other hand, is a binary strategy where first two schemas

are integrated into an intermediate schema, I1, then a third schema is integrated

with I1, producing schema I2, and so on.

2.3.3 Schema Matching and Mapping

The processes of schema matching and mapping has been studied extensively in

the past decades, primarily for relational databases [LNE89] and, more recently,

for semi-structured data sources [RB01], as these processes have proven to be

time-consuming and error-prone. Automatic schema matching/mapping is hard

to accomplish, and so current approaches are semi-automatic, in that they require

some input from a domain expert; and partial, in that they are either not generic

enough to be applied to different settings, or they do not combine all possible

different schema matching techniques. However, semi-automatic approaches have

been successful in drastically reducing the amount of work required to perform

schema matching by rejecting incorrect matches and providing the domain expert

with a reduced search space.

The difficulty with schema matching and mapping stems from the fact that

data source semantics are embodied in the data source schemas, the conceptual

schemas, application programs, and the minds of the users [DKM+93], leading

to a series of complications. First, it is difficult even for the data source designer

to remember the full semantics of each data source schema construct. Second,

when the designer is not available, the only usable information comes from the

data source schema, the data contents and the conceptual schema — and when

trying to create an automatic schema matching or mapping process, only the
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data source schema and the data contents are useful. Furthermore, a data source

schema can provide some indication of the semantics of its schema constructs,

but this information is not certain or complete. This is because schemas are not

expressive enough to fully capture the semantics and context of the real world

problem, and even unambiguous schema information, such as constraints, are

often imprecise (e.g. a positive integer modelled as an integer) and incomplete

(e.g. lack of foreign keys), since they are not a necessity, but simply a convenience

used to enforce data integrity.

Classification of Matching and Mapping Techniques

A number of different techniques, or matchers, have been developed in order to

derive matches between schema constructs. Each matcher falls in one of two cate-

gories, schema-level or instance-level. Moreover, a matcher may work in isolation

or may combine more than one technique. We discuss these two categories here in

more detail, and refer the reader to [RB01] for a comprehensive survey of schema

matching techniques.

Schema-level matchers consider only schematic information to derive matches

between schema constructs, such as labels and data types, constraints and the

structure of schemas — the latter especially for hierarchical schemas. Schema-

level matchers can be further categorised to construct-level and structure-level

matchers:

Construct-level matchers provide matches between individual constructs of

different schemas. Some commonly used construct-level matchers employ linguis-

tic techniques, such as label comparison and description (comments) compari-

son [BS01]. Others employ constraint-based techniques, such as data type simi-

larity and uniqueness constraint information [LNE89]. Structure-level matchers

provide matches between structures of schemas and rely on graph matching to

identify similar structures between schemas. To do so, a structure-level matcher

may either rely on structural constraints [MBR01], as well as on construct-level

matchers, e.g. linguistic matchers, to provide an initial set of matchings.

Schema-level matchers may produce matches in which one or more constructs
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of a schema match one or more constructs of another schema. Thus, schema-

level matchers may produce matches of cardinalities 1–1, 1–n, n–1 and n–m. As

a result, it is possible for a schema construct to participate in more than one

matching.

As discussed in the review of schema matching and mapping systems below,

most research to date has addressed only 1–1 matchings, because of the difficulty

of automatically determining matchings of the other types: although it is possible

to automatically or semi-automatically derive the constructs that participate in

1–n, n–1 and n–m matchings, it is in general not possible to automate the process

of deriving the precise mapping expressions for these matchings.

Instance-level matchers consider the instances of schema constructs in order

to derive their properties and to identify other schema constructs with similar

properties. Such matchers usually employ data mining or machine-learning tech-

niques [LC94, DDH01], which are computationally more expensive than schema-

level techniques. The high cost of instance-level matchers means that they are

usually applied for 1–1 matchings between constructs in order to assist schema-

level matchers. Thus, most instance-level matchers are construct-level, rather

than structure-level.

Instance-level matchers for free-text constructs may use linguistic techniques,

such as keyword frequencies [XPPG08], whereas instance-level matchers for number-

and string-valued constructs may use constraint-based techniques, such as value

ranges, averages or character patterns [LC94].

Combined matchers use more than one matching techniques at once and are

likely to produce better results. Such matchers may be hybrid, i.e. matchers

that perform multiple matching techniques in a single step [LC94], or composite,

i.e. matchers that coordinate and compose the predictions of multiple match-

ers [DDH01]. Even though hybrid matchers usually provide better performance,

composite matchers provide a more flexible architecture.
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Schema Matching and Mapping Systems

Several schema matching systems [DDH01, LC94, DMD+03] employ machine

learning matchers. Such systems use a number of schema- or instance-level match-

ers, or learners, and a meta-learner to combine their individual predictions based

on the confidence of the system in each matcher. Even though machine learn-

ing matchers are able to utilise instance-level information, they usually require a

time-consuming supervised training stage in order to be accurate.

LSD [DDH01] is a composite schema matching system that focuses on deriv-

ing 1–1 matches for the leaf elements of source XML schemas. Evaluations of the

tool showed 72%-90% successful matches in a predetermined environment, i.e.

where the learning process was supervised. This was accomplished by extending

machine learning techniques to further improve matching accuracy by using do-

main constraints as an additional source of user-supplied knowledge and also a

learner that utilises the structural information in XML documents.

SEMINT [LC94] is a hybrid schema matching system that uses neural net-

works to discover 1–1 matches in a relational setting, but is able to do so using

unsupervised learning. A number of learners are used to extract different types

of schema- and data-level information from the data sources and a classifier is

used to discriminate attributes in a single database. The output of the classifier,

the cluster centres, is used to train a neural network to recognise categories, and

this is then able to determine similar attributes between databases.

GLUE [DMD+03] is a composite ontology matching system that follows a

machine learning approach. It is a hybrid system that exploits user-supplied,

rule-based domain constraints to support 1–1 and 1–n matches, the latter being

of the form O11 = O21 op1 . . . opn−1 O2n, where O11 is a concept in an ontology

O1, O2i are concepts in an ontology O2 and opj are predefined operators. The

accuracy for 1–1 matches is high, ranging from 66% to 97%, while for 1–n matches

the accuracy is in the range of 50% to 57%.

COMA [DR02] employs a number of different simple matchers, such as linguis-

tic and data type matchers, together with several hybrid matchers, all of which

operate on COMA’s generic data model (a rooted, directed, acyclic graph) - i.e.
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COMA operates purely at the schema level. COMA also employs matchers that

reuse previously obtained schema-level match results. The intuition behind these

matchers is transitivity of matches, e.g. given matches between schemas S1 and

S2 and schemas S2 and S3, it is possible to derive matches between schemas S1

and S3.

COMA++[ADMR05] offers improvements over COMA so as to enable it to

solve large real-world match problems. COMA++ also extends COMA with a

matcher that uses a taxonomy T to match two models (schemas or ontologies)

M1 and M2 by acting as an intermediary between the two, i.e. the problem of

matching M1 and M2 translates into the problem of matching M1 with T and M2

with T . Furthermore, COMA++ supports the approach of decomposing a large

match problem into smaller problems, as discussed in [RDM04]. Like COMA,

COMA++ allows the use of third-party matchers, and so can also be used as a

framework for evaluating the effectiveness of different matching algorithms and

strategies.

Cupid [MBR01] is a hybrid schema matching system that can operate on any

data model. Cupid operates purely at the schema level, employing linguistic,

structural and constraints matchers to produce 1–1 and 1–n matches.

SKAT [MWK00] is a hybrid ontology matching system within the ONION

[MWJ99] ontology integration system, that exploits user-supplied match and mis-

match rules expressed in first-order logic, together with is-a relationships defined

in the ontologies, to provide 1–1 and 1–n matches, which are then approved or

rejected by the user. ONION uses these matches to produce an integrated ontol-

ogy.

ARTEMIS [CA99] is a schema integration system that exploits name, data

type, cardinality and structural information in a hybrid manner to produce 1–1

matches between schema constructs. Like COMA and Cupid, it operates purely at

the schema level. ARTEMIS is used as a component within the MOMIS [BCVB01]

mediator system.

Clio [PVM+02] represents XML and relational data in its nested relational

internal representation format. It is able to produce n–m matches by following
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foreign key paths and by investigating the nested structure of the schema. The

whole process relies heavily on user interaction: mappings are presented to the

user in an ordered list, together with a data viewer, and the user accepts or rejects

mappings.

Some approaches are able to recognise the importance of reusing past match

results, e.g. [MBDH05] and COMA [DR02]. Others are able to perform n-ary

matching so as to increase the matching accuracy, e.g. [HC04] and Clio [PVM+02].

Finally, the recent approach of [BEFF06] makes a first attempt to provide

a schema matching system that suggests actual mappings between schema con-

structs. More specifically, [BEFF06] first employs a standard schema matching

system to identify an initial set of matches. As a second step, a contextual matcher

attempts to refine and improve matches by imposing simple conditions on each

match provided by the first step. For example, this matcher can identify that

a source relational table is split into two target tables based on a categorical

attribute of the source table, i.e. an attribute that defines the type of the rows

of the table. The matcher operates at the instance level, but can also take into

account schema information, such as the labels of schema constructs, making it

a mixed-level matcher.

2.3.4 Model Management

Model management refers to the management of metadata in data transformation

and integration, and encompasses processes such as model navigation, schema

matching and mapping, and composition of mappings.5

[BHP00] defines a number of model management operators, such as the Enu-

merate operator for traversing a model, the Match, Diff and Merge operators

for deriving the mapping between two models, the difference of two models

and the merge of two models respectively, and the Compose operator for deriv-

ing a new mapping based on two input mappings (references [MH03, FKPT05,

5In this context, a schema is referred to as a ‘model’, while a data model is a language for
defining models (a ‘meta-model’).
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NBM07] discuss work on mapping composition). [Ber03] proposes the Apply op-

erator for applying a given function to every object of a given model and the

Copy operator for producing a copy of a given model. [ACB05, ACG07] dis-

cuss the ModelGen operator for translating a given model of a certain meta-

model into a model of another given meta-model. The aim of model man-

agement is to enable complex high-level expressions on models, such as Com-

pose((Match(M1,M2)),Match((M3,Diff(M4,M5)))), where M1, . . .,M5 are models.

[MRB03] discusses a prototype model management system, Rondo.

As will be illustrated in Chapter 3, the BAV data integration approach read-

ily supports such model management operators. For example, the work on

data model translation reported in [BM05] can be regarded as an incarnation

of the ModelGen operator (more accurately, [BM05] is a development of [MP99b],

which describes model-independent data translation in BAV). Also, [Ton03] dis-

cusses the optimisation of BAV pathways, a necessary operation for the com-

position of mappings in BAV. The Compose operator itself is superfluous in

the BAV approach, since composition of pathways is inherent in BAV’s schema

transformation-based approach, unlike composition of mappings defined in sys-

tems based on view definitions. The work on schema matching reported in [Riz04]

can be regarded as an incarnation of the Match operator, and our own work, de-

scribed in this thesis, can be regarded as an XML-specific incarnation of this

operator. BAV also readily supports the evolution of both local and global

schemas [FP04, MP02], and this can also be characterised as a model management

operator.

Finally, due to the large size of real-world models, research has also focused on

performing some of the above model management operators, such as Match and

ModelGen, in an incremental fashion. References [BMM05] and [BMC06] discuss

an incremental approach to these two operators. We note that BAV is inherently

incremental, as any operation on a model or group of models is performed by a

series of primitive transformations.
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2.3.5 Peer-to-Peer Data Management

So far, our discussion of data integration has focused on data management in

centralised or distributed settings. The wide adoption of file-sharing peer-to-peer

(P2P) systems, however, has led to research on extending the focus of data in-

tegration to encompass P2P settings. A notable characteristic of a peer data

management system (PDMS) is that it (usually) follows the open world assump-

tion6. In the following, we present some of the research areas of PDMSs that are

related to data integration. The reader is referred to [BGK+02, CDLR04, Len04]

for further information on general PDMS research issues.

Different PDMSs use different approaches for defining mappings between

peers. Piazza [HIMT03] uses a mappings language that combines the benefits

of GAV and LAV (but is not GLAV), while coDB [FKLZ04] uses GLAV map-

pings. In [CDD+03] GLAV mappings are defined between a peer schema and a

set of other peer schemas, and so it is possible to write rules that specify the

mapping in both directions between peer schemas. [MP03b, MP06] use the BAV

approach for specifying mappings between peer schemas, since BAV subsumes

the GLAV approach [JTMP03, JTMP04] and because BAV is inherently bidirec-

tional. Apart from schema-level mappings, data-level mappings are also possible.

For example, in [BGK+02] and the Hyperion project [AKK+03], domain relations

or mapping tables are used to define translation rules between data items.

Apart from issues relating to mappings, research on PDMS has also focused

on efficient query processing. In particular, [TH04] focuses on the problem of

correctly and efficiently reformulating queries in a PDMS, given that there may

be more than one reformulation path between two peers. This relies on the

notion of transitive mappings between peers, and the ability to perform mapping

composition, as discussed in Section 2.3.4.

6Closed world assumption: the assumption that what cannot be proven to be true is false.
Open world assumption: the assumption that what cannot be proven to be true is not necessarily
false.
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2.4 XML Data Transformation and Integration

We now consider data transformation and integration specifically in an XML con-

text. Section 2.4.1 presents some prominent XML- and ontology-related technolo-

gies necessary for this thesis. Section 2.4.2 describes the process of schema extrac-

tion, which is often necessary given that semi-structured data may be schemaless

or accompanied by a different schema type than that required in a given setting.

Section 2.4.3 discusses XML-related issues in schema matching and mapping.

Section 2.4.4 discusses one of the first applications of XML, i.e. publishing of

relational data using XML. Section 2.4.5 discusses research efforts on different

aspects of XML data integration and Section 2.4.6 discusses the transformation

of XML data. Finally, Section 2.4.7 describes the use of ontologies in the context

of XML transformation and integration.

2.4.1 XML and Related Technologies

XML [W3Ca] (eXtensible Markup Language) is a W3C7 specification used to

create markup languages conforming to this specification. XML, a much less

complex but still powerful subset of SGML [ISO86], is the de facto standard for

sharing data between information systems and resources.

An XML document is said to be well-formed if it conforms to the XML spec-

ification. An XML document is said to be valid with respect to a particular

XML language if, in addition to being well-formed, it also conforms to a specified

instance of a schema type, such as DTD, XML Schema or RELAX NG, used to

define the XML language.

In the rest of this section, we provide a brief overview of the XML technologies

referred to in this thesis.

7World Wide Web Consortium — see http://www.w3.org
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XML schema types

We briefly discuss the most prominent schema types for XML data and refer

the reader to Chapter 4 for a detailed comparison of these schema types for the

purpose of XML data transformation and integration.

DTD (Document Type Definition) [W3Cb] is a schema type for XML data

that allows one to specify the content of elements and attributes. DTD was the

first schema type proposed for XML documents. This, along with the fact that

it is very simple and easy to use, explains why DTD is one of the most popular

schema types for XML documents. The simplicity, however, of DTD is at the

same time its biggest disadvantage, along with the fact that it does not have an

XML representation.

XML Schema [W3Cd] is a powerful schema type for XML documents. Some

of its advantages include XML Schemas being XML documents, full namespace

support, data type support and features enabling the specification of complex

constraints. This expressiveness of XML Schema, however, comes at the cost of

syntactic complexity, which drives a considerable number of developers to DTD.

RELAX NG (REgular LAnguage for XML Next Generation) [OAS01] is

another powerful schema type for XML documents and is an alternative to XML

Schema. It has similar features to XML Schema, and it is arguably more intuitive.

Parsing XML documents

DOM (Document Object Model) [W3C98] is a W3C specification that specifies

a platform- and language-independent, tree-based object model for XML docu-

ments. The DOM API allows XML documents to be accessed and manipulated

in a standard way.

SAX (Simple API for XML) [Meg98] is a streaming API for XML documents,

developed by David Megginson. SAX was originally developed for Java, but is

now supported in a multitude of programming languages.

DOM and SAX are examples of the two different types of APIs for XML

documents. DOM is a tree-based API, meaning that it parses the XML document
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into a tree structure and allows arbitrary navigation of this tree. SAX is an

event-based API, meaning that it allows the unidirectional parsing of an XML

document, reporting back events to the calling application, such as the start or

end of a document or element. Each type of API has its strengths and weaknesses:

event-based APIs can handle documents of any size in linear time and using

constant memory, while tree-based APIs are easier to use.

Processing XML documents

XSLT (eXtensible Stylesheet Language Transformations) [W3C99b] is an XML-

based declarative language used to transform XML documents into other XML

documents or other ad hoc formats.

XQuery [W3C07b] is a language used to query, construct and manipulate

XML documents, but does not currently support updates. XQuery operates on

a tree-structured data model.

XPath [W3C99a, W3C07a] is a path expression language (i.e. not a full query

language) used to address parts of XML documents. XPath operates on a tree-

structured data model, similar to that assumed by DOM. XPath 2.0 is used by

the latest XSLT and XQuery specifications.

Storing XML documents

There are three different types of databases used for storing XML data8:

An XML Enabled Database (XED) is a database system with an added XML

mapping layer, which manages the storage and retrieval of XML data. An XED

is not expected to preserve the ordering or the metadata of an XML document.

Native XML databases are database systems specifically developed for storing

XML documents. The fundamental difference between XEDs and NXDs is that

the latter adopt the XML data model for storing XML data. NXDs are able

to preserve the hierarchy of XML documents in a much more efficient manner

8For a stricter definition of the different types of XML databases, see the definition proposed
by the XML:DB initiative http://xmldb-org.sourceforge.net/.
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than XML-enabled databases, hence the considerable performance improvement

in handling large XML documents.

A hybrid XML database is a database system that can store both XML and

non-XML data, and can also allow the combined use of these two types of data

natively, e.g. for the purpose of query processing. They are usually relational

or object-oriented database systems that existed before the advent of XML and

Native XML Databases.

NXDs may organise documents within collections (possibly nested), similarly

to directories in a file system. This feature allows querying and manipulation of

the documents within a collection as a set. An NXD supporting collections may

not require a schema to be associated with a collection. In terms of querying, most

(if not all) XML databases support XPath 1.0 or 2.0. Some support proprietary

XML query languages, but it is expected that all will support the new XQuery

1.0 recommendation.

XML data models

Each XML technology defines its own data model for XML, because each one

focuses on a different aspect of XML. For example, all XML data models include

elements, attributes, text, and document order, but some also include other node

types, such as entity references and CDATA sections, while others do not.

DTD defines its own XML data model, while XML Schema uses the XML

InfoSet [W3C04c] data model; XPath and XQuery define their own common data

model for querying XML data; some XML databases use non-XML data models,

such as a relational or an object-oriented data model, to store XML data. This

plethora of data models makes it difficult for applications to combine different

features, for example schema validation together with querying. The W3C is

therefore in the process of merging these data models under the XML InfoSet,

which is to be replaced by the Post-Schema-Validation Infoset (PSVI).
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Ontologies

In computer science, an ontology is “an explicit specification of a conceptualisa-

tion” [Gru93], i.e. an ontology is a model that specifies the concepts of a problem

domain, as well as the relationships between those concepts. An ontology can be

used as an interface to one or more data sources, i.e. it can be used as a schema,

or it can also be used to reason about the problem domain.

RDF (Resource Description Format) [W3Cc] is a family of W3C specifications

used primarily for encoding metadata, that is information about a problem do-

main. RDF allows the definition of statements about the problem domain in the

form of subject-predicate-object triples. A set of RDF statements thus creates

a labelled, directed graph. RDF Schema, one of the W3C RDF specifications,

allows the definition of RDF vocabularies. Note that RDF can also be used as a

data format for the exchange and integration of data from different information

systems, as discussed in Section 2.4.

OWL (Web Ontology Language) [W3C04a], like RDF Schema, is used to

define ontologies. The driving force for OWL was the need to build a more

expressive ontology definition language. The two other factors considered by

the W3C OWL working group were efficient reasoning support and compatibility

with RDF/RDFS. OWL comes in three flavours, OWL-Lite, OWL-DL and OWL-

Full. OWL-Lite is a sublanguage of OWL-DL that only provides a classification

hierarchy and simple constraints, but has lower computational complexity than

the other two OWL flavours. OWL-DL is a sublanguage of OWL-Full that it is

not fully compatible with RDF/RDFS, and that is decidable (guarantees finite

time computations). OWL-Full subsumes RDFS and is superior than OWL-Lite

and OWL-DL in terms of expressiveness, but is undecidable (computations may

fail to terminate).

2.4.2 Schema Extraction

Structured data sources require their data to conform to a pre-specified schema.

In contrast, semi-structured data like XML can exist without an accompanying
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schema. This characteristic makes semi-structured data more flexible, but also

increases the difficulty for applications that manipulate data based on its schema,

e.g. query optimisers.

Structural summaries were developed as a means to overcome this problem.

These are still schemas, in the sense that they describe data, but not in the tradi-

tional sense, as structural summaries need to adhere to the data and not the other

way around. DataGuides [GW97] are a well-known type of structural summary

developed for the Lore semi-structured data management system [MAG+97].

Structural summaries based on DataGuides are also used within Native XML

Databases, e.g. [Fom04], for the purposes of storing and query processing.

A number of applications and algorithms depend on using a specific XML

schema type for XML data sources. For example, Section 2.4.6 discusses XML

schema transformation approaches that can only work with either DTD or XML

Schema. However, most of these approaches assume the existence of the schema

type of their choice, an assumption which can be very restrictive, since data

sources may be accompanied by a different schema type, or may not have an

accompanying schema at all.

For such applications, algorithms for automatically deriving a certain schema

type from other schema types or directly from an XML data source are impor-

tant. However, since standard schema types, such as XML Schema, are rich in

constraint information, and given that it is not possible to automatically derive

constraints from just the data, these algorithms do not produce precise schemas

in terms of constraints. The automatic inference of XML schema types has re-

cently been investigated and techniques using automata and regular expressions

to infer a DTD [BNST06] or an XML Schema [BNV07] from a sufficiently large

volume of XML documents have been proposed.

Chapter 4 provides a detailed discussion of the advantages and disadvantages

of the prominent XML schema types in terms of data transformation and inte-

gration and also discusses the specific structural summary developed in our own

work.
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2.4.3 XML Schema Matching and Mapping

The schema matching and mapping systems discussed in Section 2.3.3 are generic

in terms of the matchers they employ, but they usually target specific data models

to avoid the need for an internal data model that is generic enough for supporting

arbitrary data models. Indeed, in the survey of [RB01], only one system is in-

tended to be model-independent, Cupid [MBR01], and few can operate on more

than one data model, e.g. [MWJ99, CDD01].

As discussed in [RB01], there are only a few matchers and matching policies

that are XML-specific. First, namespaces can be used to match elements and

attributes that refer to the same concepts (or reject possible matches). Another

XML-specific technique exploits the hierarchical structure of XML in a bottom-

up approach: having matched leaf elements with data mining techniques, one

can assume that the parents of matched leaf elements are likely to match. The

same notion can be applied in a top-down fashion: after applying a label matcher

on non-leaf elements, one can assume that the child nodes of matched non-leaf

elements are likely to match.

Schema matching and mapping for XML is a different problem than that for

traditional database systems. This is because XML is frequently used in Web

and peer-to-peer applications, where schema matching and mapping must be

performed frequently and automatically — which means performance is an issue

and user interaction is to be avoided. We discuss schema matching and mapping

for the purposes of XML schema and data transformation and integration in

Sections 2.4.5 and 2.4.6.

2.4.4 Publishing Relational Data as XML

We now briefly discuss relational-to-XML publishing systems, since these repre-

sent a significant part of the data sources that XML data transformation and

integration systems operate on.

SilkRoute [FTS00] describes the publishing of relational data as arbitrary

XML views. Virtual XML views over relational data are defined using a custom

43



language, RXL. A user query Q, expressed in XML-QL [DFF+99], can be ex-

pressed on an RXL view V . SilkRoute then combines Q and V to produce a new

RXL query Q′, translates Q′ into one or more SQL queries and creates the XML

result from the SQL results.

XPERANTO [CFI+00] addresses the same problem but, unlike SilkRoute,

views are defined as XML documents, rather than via an extended SQL language.

XPERANTO also provides more efficient query processing than SilkRoute, since

it can translate not only conjunctive, but also disjunctive queries into SQL.

PRATA [BCF+02, BCF+03] discusses the publishing of relational data in an

XML format conforming to a given DTD D by embedding SQL queries in D,

while TREX [ZWG+03] publishes source XML data in a target XML format

conforming to a DTD by embedding Quilt [CRF00] queries in this DTD. The

focus of both PRATA and TREX is to provide typed views using DTDs.

2.4.5 XML Schema and Data Integration

We now discuss the integration of schemas and data in an XML context. We

recall that data integration settings may be categorised as top-down or bottom-

up, depending on whether the integrated schema already exists or is produced

during the integration process. With the advent of ontologies, some approaches

use an ontology as the integrated schema. Regardless of the integration method

or the data model used for the integrated schema, integrated data may contain

duplicates, which the user may want to detect and eliminate. Another important

issue for data integration is schema evolution and, given the document nature

of XML, versioning of XML documents. Our approach presented in this thesis

does not consider the problems of duplicate detection and elimination, schema

evolution or versioning, but we discuss these below for reasons of completeness.

Top-Down Integration

Nimble [DHW01] performs virtual integration of primarily XML and relational

data sources. The internal data model is slightly more structured than the XML
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data model, so as to support relational and hierarchical data more naturally.

BizQuery[AFG+03] is a system for the virtual integration of primarily XML and

relational data sources. First, the global schema is created manually as a DTD,

and then the data source DTDs are mapped to the global schema using XQuery

queries. Relational data sources are supported by first translating their schemas

into DTDs.

[PA05] also performs virtual integration using DTDs, but, in this case, the

global DTD contains primary and foreign key constraints. There are two types of

constraint violations that may arise: data may be incomplete and so violate con-

straints by not providing all of the required data, and data may be inconsistent,

e.g. key constraints may be violated. To address this issue, [PA05] uses Skolem

functions to either uniquely identify a given node in the XML tree, or to generate

values for the XML tree.

[KM05] also considers the integration of semi-structured data sources. It

introduces two normal form for semi-structured data sources that are comparable

to the first and second normal forms for the relational data model, and also a

pair of functions that associate data values of the data sources to data values of

the global schema and vice versa. Using these, [KM05] is able to avoid duplicate

data values in the global schema.

[YP04] performs virtual data integration within the Clio system (as discussed

in Section 2.4.6) in the presence of complex constraints in the global schema. The

constraints include XML Schema and other, more complex, constraints while the

data sources may be relational and XML, both represented internally using a

nested relational representation format.

Xyleme [RSV01] undertakes the virtual integration of DTDs under a pre-

defined global DTD, using path-to-path mappings. This type of mapping is

preferred to tag-to-tag mappings, which are imprecise (since tags may not be

unique), and DTD-to-DTD mappings, because, even though they are the most

precise, deriving such mappings is very hard [CVV01]. Path-to-path mappings

are automatically derived using either label similarity (enhanced with ontologies

and thesauri such as WordNet [Mil95]), or heuristics, based on the hypothesis
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that DTD terms are classified in two categories, objects and properties of ob-

jects. Further to this hypothesis, context is significant, and so one heuristic used

by Xyleme is that two different terms with the same label are semantically equiv-

alent if their parent nodes are semantically equivalent.

In contrast to these other XML data integration approaches, we support the

automatic construction of the global schema (i.e. bottom-up integration — see be-

low). Furthermore, our approach is modular and therefore can accommodate the

use of ontologies, schema matching, manual conformance or any other technique

for semantically conforming the XML data sources prior to their integration.

Also, while a number of the approaches discussed above are DTD-dependent,

our approach can be used to integrate any XML data source, even if it is not

accompanied by any schema.

With respect to structure generation, [PA05] and [YP04] are able to generate

structure and values for preventing foreign key constraint violations. Our ap-

proach does not consider constraints in the data source or integrated schemas.

However, we are able to generate structure to avoid loss of information due to

structural incompatibility of the data sources, and so our work in this respect is

complementary to that of [PA05] and [YP04]. As an example, consider the case

where a path <A><C/></A> in a data source schema needs to be transformed into

a path <A><B><C/></B></A> in the integrated schema. Even though there is no

foreign key constraint violation, we still need to generate structure for element B

to avoid the loss of element C (and its possible substructure).

Bottom-Up Integration

[MH05] and DIXSE [RM01] undertake the bottom-up integration of DTDs and

XML Schemas using a conceptual common data model. However, this approach

mixes manual and automatic processes together, significantly affecting the amount

of interaction needed between the system and the domain expert. DIXSE [RM01]

derives a conceptual schema from each data source DTD and then generates a

union (rather than an integrated) global conceptual schema.

DEEP [JH03] clusters together similar DTDs, creating a DTD for each cluster
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by inferring a set of tree grammar rules for each one, and finally minimises each

set of rules. Each derived DTD provides a view of its cluster, which is a union of

the underlying DTDs, giving the impression of integration due to the high degree

of similarity of the DTDs in each cluster.

[YLL03] uses its own ORA-SS data model to integrate XML data sources ex-

pressed via XML Schemas or DTDs. The creation of an ORA-SS schema from

an XML document, DTD or XML Schema is semi-automatic: first a structural

summary of the data source is created, and then it is manually refined by speci-

fying constraints and relationships [CLL02]. The global schema is automatically

produced by creating a graph containing all schema objects of the data source

schemas, and then by refining it based on certain rules, which remove redundant

schema objects and transform the graph into a tree. Note that the approach as-

sumes that semantic conformance has already been performed, e.g. two different

objects with the same label are considered equivalent across schemas. The global

schema can then be queried or materialised using the algorithm of [CLL03] which

discusses the generation of an XQuery query from an ORA-SS schema.

In contrast with all of the above approaches, our work also focuses on pre-

serving data, and generates synthetic structure to avoid loss of information that

may be caused due to structural incompatibilities of the data sources. Note also

that our approach does not assume the semantic conformance of the data sources

and in fact proposes a modular approach that can use the semantic conformance

technique more preferable to the user or more appropriate to the integration

scenario.

Integration using Ontologies

In [LS03], mappings from DTDs to RDF ontologies are used in order to reformu-

late path queries expressed over a global ontology to equivalent queries over XML

data sources. In [ABFS02], an ontology is used as a global virtual schema for

heterogeneous XML data sources using LAV mapping rules. SWIM [CKK+03]

performs virtual integration of XML and relational data sources into RDF us-

ing GLAV mappings, and focuses on query optimisation and minimisation in
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RQL [KMA+03], the RDF query language used in SWIM. Similarly to SWIM,

the work in [CX03, CXH04, XC06] undertakes data transformation and integra-

tion of XML and relational data into RDF. Unlike SWIM, however, mappings are

LAV and local schemas are first materialised into RDF local schemas. In [LF04],

XML Schema constructs are mapped to OWL constructs and evaluation of queries

on the virtual OWL global schema is supported.

In contrast to these approaches, our work presented in this thesis assumes that

the target/global schema is defined in XML. Ontologies in our approach are used

merely as a ‘semantic bridge’ for transforming and/or integrating XML data,

i.e. for the purpose of schema conformance. Moreover, when using ontologies

for semantic conformance, our approach is able to use GLAV mappings to some

extent, rather than just LAV mappings.

Duplicate Detection and Elimination

Since the data residing in the different data sources may be overlapping, the

integration of these resources under an integrated schema leads to redundant

information being presented to the user.

[PH05] describes data mining techniques to discover candidate keys in the

XML data sources, and use them to identify duplicates. A candidate key must

be both interesting, i.e. pertain to a large number of paths of the XML tree, and

accurate, i.e. the percentage of paths in the XML tree that violate the key must

be small (since the keys are discovered using data mining, they may not conform

to the normal definition of keys, that requires a key to be satisfied in every

case). [WN06] describes two algorithms, one focused on accuracy and the other

on efficiency, for detecting duplicates of a complex structure, given dependencies

between XML elements.

However, even when duplicate information is detected, one also needs to decide

how to merge this information. This is because each item in the set of duplicates

may contain some information that other items do not contain. [BH02] discusses

a number of techniques that can be used for conflict resolution among duplicates

in an XML data integration setting.
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Versioning and Evolution in XML

Versioning and evolution in the context of XML are conceptually similar, but

fundamentally different problems. Versioning focuses on the efficient storage and

retrieval of XML documents, in order to track changes across historical versions

of an XML document, for the purpose of archiving, exchanging and, possibly

but not necessarily, querying the XML document. On the other hand, evolution

focuses on the modelling changes at both the schema and the data level of an

XML data source (not necessarily of a single document), mainly for the purpose

of querying the most recent version.

As discussed in [CTZ02], versioning in the context of XML draws on princi-

ples from document versioning systems, the main difference being that such ap-

proaches provide poor support for structure-related changes and searches on XML

documents. [CTZ02] is based on traditional document versioning techniques and

proposes an algorithm that captures the deltas for small changes between versions

of XML documents, but stores the new version in its entirety for large changes.

References [MACM01, WL02] provide similar approaches. Change detection is

an area in its own right, necessary for versioning; [CA09] provides a comparative

analysis of change detection algorithms for XML.

Turning to evolution in XML, [SKC+01] describes a DTD-specific middleware

system for managing the evolution of XML documents, while [GMR05] investi-

gates the evolution of XML documents that are accompanied by an XML Schema.

Both works focus on the definition of schema- and data-level operators for sup-

porting evolution, while [GMR05] also discusses the efficient revalidation of the

underlying data against the XML Schema.

2.4.6 XML Schema and Data Transformation

[TC06] describes a rule-based approach for the translation of one data model to

another (the particular example is from UML to ER) using an XML layer (in the

example, UML is expressed in the XMI [OMG07] format and ER is expressed in

the WebML [RPSO08] format).
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In contrast with DTD, which only offers a structural description of an XML

data source, XML Schema arguably offers some form of semantics, such as type

hierarchies and substitution groups. [BVPK04] uses a number of rules to auto-

matically translate an XML Schema to a subset of UML and then allows the use

of schema matching techniques to semi-automatically transform one XML data

source to another via this conceptual layer, using a number of UML transforma-

tion operators, e.g. add, delete, merge and split.

[Erw03] discusses the automatic transformation of a source DTD to a target

DTD using information-preserving transformations. There are three problems

with this approach. First, since the approach assumes no semantic input, the

source and target DTDs need to be quite similar for the approach to work, given

its automatic nature. Second, since the approach does not allow for generating

new information, e.g. using Skolem functions, information may be lost. Consider

for example the case of transforming XML document <A><C/></A> to XML doc-

ument <A><B><C/></B></A>: the approach is not able to generate the required

structure, and as a result the <C> information is lost. Third, as [Erw03] discusses,

if few or no constraints at all are present, then the approach does not work well.

[SKR01] and [LPVL06] also address the transformation of one DTD to another,

considering DTD cardinality constraints. They do assume, however, that some

form of semantics is supplied and so, for example, two elements with the same

label in the source and target DTDs are semantically identical.

[KX05] is an XML Schema-specific XML data transformation approach that

handles only 1-1 and n-1 source to target mappings. The intuition behind this

approach is to split the target schema into subtrees and derive mappings for each

one. These subtrees are then joined using the (required) key constraints of the

target XML Schema.

We note that all these approaches are DTD- or XML Schema-specific and that

none of them addresses the problem of information loss.

Clio [AFF+02, HHH+05, HPV+02, JHPH07, PVM+02, FKMP05] addresses

the virtual integration and the materialised data exchange of relational and

XML data sources. The GLAV mappings employed for data integration are
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sound [Len02], whereas the GLAV mappings employed for data exchange are

exact, so as to enable materialisation of the target schema with source data in

the presence of target schema constraints.

Clio uses a nested relational representation to which all data source schemas

are mapped. At first, schema matching techniques and user input are used to

create a set of matches between the schemas. These are node-to-node correspon-

dences between the internal representations of the schemas. These correspon-

dences, together with the explicit source and target constraints, as well as with

the semantics derived from the structure of the internal schemas, are then used

to generate the set of all possible GLAV mapping rules between the two schemas.

Once the user reviews the mapping rules and confirms, rejects or refines them,

they are used to generate SQL, XQuery and/or XSLT scripts, depending on the

data model of the source and target schemas. Note that Clio is able to automat-

ically generate data values based on primary and foreign key constraints so as to

avoid loss of information (id-invention).

There are three differences between Clio and our work. First, Clio does not

consider schemaless data sources. Second, Clio relies on schema matching and

foreign key dependencies for resolving semantic incompatibilities between the

data sources, whereas our approach allows the use of other techniques as well,

such as semantic enrichment using ontologies. The automatic synthetic structure

generation used in our approach is complementary to Clio’s id-invention, as our

approach generates synthetic structure based solely on structure rather than on

primary/foreign key information.

Motivated by the work in Clio, [FKMP03] investigates the materialisation of

the target schema T in a data exchange setting using an instance I of the source

schema S. In particular, given a relational data exchange setting 〈S, T, ΣST , ΣT 〉,

where ΣST is the set of mappings between S and T and ΣT is the set of constraints

on T , the possible instances of T that can be produced using I are multiple or

possibly infinite if T contains constructs not present in S. Each such instance J is

called a solution to the data exchange problem. [FKMP03] shows that there is a

certain class of solutions, termed universal, which have homomorphisms to every
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possible solution. The core is arguably the “best” solution [FKP05], because it is

the smallest universal solution. The core can be computed in polynomial time if

the mappings are tuple-generating dependencies (TGDs) (which can be thought

of as GLAV rules [FKP05]) and the target dependencies are equality generating

dependencies (EGDs).

Query answering in a data exchange setting 〈S, T, ΣST , ΣT 〉 is the problem

of answering a query q on T with respect to an instance I of S. The result

is ambiguous, since such a setting may have multiple different solutions J , as

discussed above. [FKMP03] adopts the notion of certain answers as the ‘right’

answers to such a query q, i.e. those answers that are present for all possible

solutions J . Determining certain answers is clearly a hard problem, because of the

possibly infinite number of solutions J . [FKMP03] shows that computing union

conjunctive queries9 with at most one inequality can be performed in polynomial

time, but increasing the number of inequalities renders the problem co-NP hard.

For an XML setting, [AL05] investigates restructuring instances of a source

DTD DS to a target DTD DT in the presence of mappings ΣST . [AL05] shows

that, in contrast with the relational data exchange problem, it is possible for a

certain data exchange setting 〈DS, DT , ΣST 〉 to be inconsistent, meaning that

there is no source instance for which there is a solution to that particular data

exchange problem; determining the consistency of such a data exchange setting

is shown to be EXPTIME-complete. In terms of query answering, [AL05] shows

that, for a query language that allows conjunctive path queries and also allows

the descendant axis and unions of such queries, for mappings where each node

is defined as a path from the root to the node, and for a target DTD which is

nested-relational, then query answering is in PTIME. This is of particular interest

because non-relational data exchange handled by Clio falls into this category.

We now discuss approaches that employ XSLT for XML schema and/or data

9A conjunctive query is the fragment of first-order logic that only allows conjunction and
quantification, and corresponds to Select-Project-Join queries in terms of the relational algebra.
A union conjunctive query allows the union of conjunctive queries and corresponds to Select-
Project-Join-Union queries in terms of the relational algebra.
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transformation. [Fox02] describes a system that exploits correspondences to on-

tologies in order to transform one XML Schema to another. The transformations

supported by the system are, however, quite basic and may lead to significant

loss of information. [WB06] primarily focuses on generating XSLT stylesheets for

XML-to-HTML transformations, based on mappings at the data level. [ZD06]

discusses restructuring of XML data in a declarative manner using XQuery and

XPath, the latter extended with a new axis named closest. Given the (extended)

XPath expression A→ B, → is the symbol indicating the closest axis, and the

evaluation of the expression returns those nodes labelled B that are closest to

node A in terms of path distance. The intuition for this operator is that, when an

XML Schema contains multiple B elements, the one closest to element A is the

one actually related to A. Used in the RETURN clause of XQuery, the closest axis

can be used in certain cases of XML restructuring, but not always, since it can-

not guarantee the correctness of the transformation. In [GBBH06], a manually

defined XSLT stylesheet S defines a view X2 over an XML document X1. If Q

is an XPath expression or an XSLT stylesheet to be applied on X2, then instead

of transforming the whole of X1 using S to answer Q, [GBBH06] proposes an

approach that only transforms the data of X1 relevant to Q.

Finally, we note that transforming XML data in a streaming fashion may

be advantageous for certain settings where memory consumption matters. How-

ever, constructing a streaming XML transformation program is more tedious than

creating a non-streaming program — similarly to parsing XML using SAX and

DOM. One solution to this problem is provided by [Nak04], which allow for the

generation of a stream processor from a given XML transformation program.

2.4.7 Using Ontologies for Semantic Enrichment

Schema matching and schema mapping are necessary for XML schema and data

transformation and integration, since XML is simply a data representation format

and does not convey any semantics. However, settings that are by nature highly

flexible and dynamic, such as the Semantic Web and peer-to-peer and workflow
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scenarios, cannot scale using such semi-automatic processes. A different paradigm

is necessary for this purpose, one that enriches data sources with semantics, so

as to allow their semantic transformation and integration. For example, [LS03]

proposes the enrichment of data sources with declarations that expose their se-

mantics, using correspondences from the data sources to a common vocabulary

or ontology. It is only natural for such correspondences to be expressed as views

of the data sources in terms of the ontology, and so e.g. [ABFS02] uses LAV map-

pings in the form of 1-1 path correspondences for this purpose. Reference [BL04]

supports this paradigm, and so does our own work (as discussed in Chapters 6

and 7), although we argue that it is possible to provide richer correspondences

using 1-n and n-1 GLAV rules and still preserve the same degree of automation.

Our approach allows for each data source to expose its semantics through a

different ontology, provided that the ontologies required for the transformation or

integration are mapped to each other (as discussed in Chapter 6 and demonstrated

in Chapter 7). Just like schemas, ontologies need to be transformed or integrated

according to each setting, and this requires ontology matching and mapping.

Relevant surveys [Noy04, NS05, KS03] indicate that more research in this field

is needed, since many of these tools are based on schema matching and mapping

tools and/or techniques, and usually contain few ontology-specific extensions,

such as logical inference mechanisms.

One aspect of ontology transformation and integration is the representation

of mappings between ontologies. As discussed in [Noy04], there are multiple

different approaches for this purpose, e.g using rules expressed in first order logic,

using view definition approaches (GAV, LAV, etc.), or even defining mapping

ontologies, whose instances are used to define possibly complex mappings between

ontologies.

After discovering and expressing the mappings between ontologies, a num-

ber of application scenarios are possible [Noy04]: data transformation and in-

tegration [DMQ03, CM03, ZP06], query answering [CDL01], service composi-

tion [BL04, ZMP07b] and ontology extension generation10.

10Consider ontologies O1 and O2 and a mapping M between them. Assuming that ontology
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2.5 Discussion

In this chapter, we have presented a classification of the problems encountered

when attempting to share data between applications. We have discussed the

major issues in data transformation and integration, and we have reviewed re-

search on data transformation and integration in general, and in an XML-specific

context.

In our analysis of related work on XML-specific data transformation and in-

tegration, we have identified a number of issues that have not been addressed in

the literature, and that provide the motivation for our own work:

Apart from [YLL03] and Clio [PVM+02], which were developed in parallel with

our approach, all other approaches are DTD- or XML Schema-specific. XML data

sources that do not use the suggested schema type or that are not accompanied

by a schema type at all, are not considered. Recent research on DTD and XML

Schema inference from XML documents [BNST06, BNV07] may be a solution

to this problem. Nevertheless, as will be discussed in Chapter 4, neither DTD

or XML Schema are optimal schema types for XML data transformation and

integration.

Previous approaches provide a set of operations with which one can manually

transform or integrate XML documents, or semi-automatic solutions that require

user interaction. In the latter case, schema matching and schema mapping are

often considered a single-step process. This leads to the question of whether it is

possible to identify sub-processes within this single-step process, with the aim of

separating the fully automatic sub-processes from the manual and semi-automatic

ones.

The hierarchical nature of XML means that it is possible for information to

be lost when transforming/integrating XML documents, for example if the tar-

get/integrated schema contains constructs not present in the data source schema(s).

None of the other approaches addresses this problem, apart from Clio, which is

only able to generate values to preserve foreign key relationships.

O′

1 is an instance of O1, ontology extension generation is the process of deriving the instance
O′

2
of ontology O2 that corresponds to O′

1
.
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Schema matching is the technique most commonly referenced in the litera-

ture regarding the semantic reconciliation of schemas. However, in flexible and

dynamic settings such as the Web and P2P scenarios this method is not easily

scalable because it is semi-automatic. We have argued that the semantic enrich-

ment of schemas using ontologies may be preferable, because even though it offers

a possibly more laborious initial manual step, it is subsequently automatic and

therefore offers better scalability.

Finally, most approaches aim for either transformation or integration of XML

data, and only a small number discusses both transformation and integration.

This raises the question of whether there is an inherent difficulty in supporting

both transformation and integration in a single approach. A related question is

whether a given transformation/integration approach can address different archi-

tectural settings, e.g. centralised, peer-to-peer, service-oriented.

Chapters 4, 5 and 6 discuss in detail our approach for XML data transforma-

tion and integration, whose aim it is to address the issues identified above, while

Chapter 7 demonstrates the application of our approach in real-world settings.

Chapter 3 first discusses the AutoMed heterogeneous data transformation and

integration system, which has been used as a platform for the development of our

XML data transformation/integration approach.
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Chapter 3

Overview of AutoMed

3.1 Introduction

For ease of development and rapid prototyping, it is advantageous to develop an

XML data transformation and integration toolkit using an appropriate existing

data integration system, if possible. We have used the AutoMed data integration

system1 for this purpose. In this chapter, Section 3.2 describes AutoMed to the

level of detail necessary for the remainder of this thesis, and Section 3.3 discusses

the rationale for, and the advantages of, developing our XML data transformation

and integration toolkit using the AutoMed system.

3.2 The AutoMed Framework

3.2.1 The Both-As-View Data Integration Approach

The AutoMed heterogeneous data integration system supports a data integration

approach called both-as-view (BAV), which is based on the use of reversible se-

quences of primitive schema transformations [MP03a]. From these sequences, it

is possible to derive a definition of a global schema as a set of views over the

local schemas, and it is also possible to derive a definition of a local schema as a

1See http://www.doc.ic.ac.uk/automed/
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set of views over a global schema. BAV can capture all the semantic information

that is present in GAV, LAV and indeed GLAV derivation rules, as discussed

in [MP03a, JTMP04].

A key advantage of BAV over GAV, LAV and GLAV is that it readily sup-

ports the evolution of both local and global schemas, allowing transformation

sequences and schemas to be incrementally modified as opposed to having to be

regenerated [MP02, MP03a, FP04].

Another advantage of BAV is that it can support data transformation and

integration across multiple data models [MP99b]. This is because BAV supports a

low-level data model called the HDM (hypergraph data model) in terms of which

higher-level modelling languages are defined (we discuss this in Section 3.2.2).

Earlier work has shown how relational, ER, OO, XML and flat-file modelling

languages can be defined in terms of the HDM [MP99b, MP01, KM05]. Primitive

schema transformations are available for adding, deleting or renaming a modelling

construct of a modelling language with respect to a schema, producing a new

schema (thus, in general, a schema may contain constructs defined in multiple

modelling languages).

3.2.2 The HDM Data Model

The basis of the AutoMed data integration system is the low-level hypergraph

data model (HDM) [PM98, MP99b]. Facilities are provided for defining higher-

level modelling languages in terms of this lower-level HDM. An HDM schema

consists of a set of nodes, edges and constraints, and so each modelling construct

of a higher-level modelling language is specified as some combination of HDM

nodes, edges and constraints.

The HDM provides unifying semantics for higher-level modelling constructs

and hence a basis for automatically or semi-automatically generating the seman-

tic links between them — this is ongoing work also being undertaken by other

members of the AutoMed project (see for example [Riz04, RM05]) and this thesis

contributes to this direction of research.
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A schema in the HDM is a triple 〈Nodes, Edges, Constraints〉. Nodes and

Edges define a labelled, directed, nested hypergraph. It is nested in the sense that

edges can link any number of both nodes and other edges. It is directed because

edges link sequences of nodes or edges. A query over a schema is an expression

whose variables are members of Nodes∪Edges. In the BAV approach, the query

language is not constrained to a particular one. However, the AutoMed sys-

tem supports a functional query language as its intermediate query language

(IQL) — discussed in Section 3.2.4 below. Constraints is a set of boolean-valued

queries over the schema which are satisfied by all instances of the schema. Nodes

are uniquely identified by their names. Edges and constraints have an optional

name associated with them.

In AutoMed, constraints can be expressed as IQL queries and the AutoMed

Global Query Processor (discussed in Section 3.2.6) can be used to evaluate them

over specific instances of schemas. Alternatively, [BM05] defines six constraint

operators (inclusion, exclusion, union, mandatory, unique and reflexive), whose

combination provides a framework in which to express various types of constraints

found in high-level modelling languages. There is as yet no enforcement function-

ality associated with this alternative which moreover assumes that the data model

must have set-based semantics. In this thesis, we assume the former approach.

The constructs of any modelling language M defined in terms of HDM are

classified as either extensional constructs or constraint constructs, or both.

Extensional constructs represent collections of data values from some domain.

Each such construct inM is represented using a configuration of the extensional

constructs of the HDM i.e. of nodes and edges. There are three kinds of exten-

sional constructs:

• nodal constructs may exist independently of any other constructs in a

model. Such constructs are identified by a scheme consisting of the name

of the HDM node used to represent that construct. For example, in the ER

model, entities are nodal constructs since they may exist independently of

other constructs and an ER entity e is identified by a scheme 〈〈e〉〉.
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• link constructs associate other extensional constructs with each other and

can only exist when these other constructs exist. The extent of a link

construct is a subset of the cartesian product of the extents of the constructs

that it associates. A link construct is represented by an HDM edge. It is

identified by a scheme that includes the names (and/or other identifying

information) of the constructs that it associates. For example, in the ER

model, relationships are link constructs since they associate other entities;

an ER relationship r between two entities e1 and e2 is identified by a scheme

〈〈r, e1, e2〉〉.

• link-nodal constructs are extensional constructs that can only exist when

certain other extensional constructs exist, and that are linked to these con-

structs. A link-nodal construct is represented by a combination of an HDM

node and an HDM edge and is identified by a scheme including the name

(and/or other identifying information) of this node and edge. For example,

in the ER model, attributes are link-nodal constructs since they have an

extent, but each value of this extent must be associated with a value in

the extent of an entity; an ER attribute a of an entity e is identified by a

scheme 〈〈e, a〉〉.

Finally, a constraint construct has no associated extent but represents re-

strictions on extensional constructs. For example, in the ER model, generalisation

hierarchies are constraints since they have no extent but restrict the extent of each

subclass entity to be a subset of the extent of the superclass entity; similarly, ER

relationships and attributes have cardinality constraints associated with them.

After a modelling language M has been defined in terms of the HDM (via

the API of AutoMed’s Model Definition Repository — see Section 3.2.7 below),

a set of primitive transformations is automatically available for adding, deleting

or renaming constructs of M within a schema. Section 3.2.5 below discusses

AutoMed transformations.

60



3.2.3 Representing a Simple Relational Model

To illustrate usage of the HDM, we now show how a simple relational model

can be represented in the HDM (the encoding of a richer relational data model

is given in [MP99b]). In this simple relational model, illustrated in Table 3.1,

there are four kinds of schema constructs. A Rel construct is identified by

a scheme 〈〈R〉〉 where R is the relation name. The extent of a Rel construct

〈〈R〉〉 is the projection of a relation R(ka1, ..., kan, nka1, ..., nkam) onto its pri-

mary key attributes ka1, ..., kan, n ≥ 1 (nk1, ..., nkm, m ≥ 0 are the non-key

attributes of R). An Att construct is identified by a scheme 〈〈R, a〉〉 where a is

an attribute (key or non-key) of R. The extent of each Att construct 〈〈R, a〉〉

is the projection of R onto attributes ka1, ..., kan, a. A primary key construct

PK is identified by a scheme 〈〈R pk, R, 〈〈R, ka1〉〉, ...〈〈R, kan〉〉〉〉, where R pk is the

name of the constraint2. A foreign key construct FK is identified by a scheme

〈〈R fk i, R, 〈〈R, a1〉〉, ...〈〈R, ap〉〉, S, 〈〈S, b1〉〉, ...〈〈S, bp〉〉〉〉, p ≥ 1, where R fk i is the

name of the constraint, 〈〈R, a1〉〉,...〈〈R, ap〉〉 are the referencing attributes, and

〈〈S, b1〉〉,...〈〈S, bp〉〉 are the referenced attributes.

For example, a relation student(id,name,#tutorId), where #tutorId denotes

a reference to a foreign key attribute, would be modelled in the HDM by a

Rel construct 〈〈student〉〉, three Att constructs 〈〈student, id〉〉, 〈〈student, name〉〉 and

〈〈student, tutorId〉〉, a PK construct 〈〈student pk, student, 〈〈student, id〉〉〉〉, and an

FK construct 〈〈student fk 1, student, 〈〈student, tutorId〉〉, tutor, 〈〈tutor, id〉〉〉〉, assum-

ing there is another relation tutor(id,name) and that #tutorId of student references

id of tutor.

3.2.4 The IQL Query Language

AutoMed’s Intermediate Query Language (IQL) [Pou01] is a comprehensions-

based functional query language. Such languages subsume query languages such

as SQL-92 and OQL in expressiveness [BLS+94]. The purpose of IQL is to

2In Table 3.1, count and sub are IQL built-in functions. count returns the number of items
in the collection provided as its argument, and sub returns true if its first argument is a subset
of its second argument.
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Relational Construct HDM Representation
construct: Rel
class: nodal node: 〈〈R〉〉
scheme: 〈〈R〉〉
construct: Att node: 〈〈R : a〉〉
class: link-nodal edge: 〈〈 , R, R : a〉〉
scheme: 〈〈R, a〉〉
construct: PK constraint:
class: constraint count 〈〈R〉〉 = count
scheme: 〈〈R pk, R, 〈〈R, ka1〉〉, ...〈〈R, kan〉〉〉〉 [{v1, . . . , vn}|{k, v1} ← 〈〈R, ka1〉〉; . . . ;

{k, vn} ← 〈〈R, kan〉〉]
construct: FK constraint:
class: constraint sub [{v1, . . . , vn}|{k, v1} ← 〈〈R, a1〉〉; . . .
scheme: 〈〈R fk i, R, 〈〈R, a1〉〉, ...〈〈R, al〉〉, {k, vn} ← 〈〈R, al〉〉]

S, 〈〈S, b1〉〉, ...〈〈S, bl〉〉〉〉 [{v1, . . . , vn}|{k, v1} ← 〈〈S, b1〉〉; . . .
(R, S may be the same, n ≥ 1) {k, vn} ← 〈〈S, bl〉〉]

Table 3.1: Representation of a Simple Relational Model in HDM

provide a common query language that queries written in various high level

query languages (e.g. SQL, XQuery, OQL) can be translated into and out of

— more details of this process are discussed in Sections 3.2.6 and 3.2.7. Ref-

erences [JPZ+08, PZ08] give details of IQL and references to other work on

comprehensions-based functional query languages. Here, we give an overview

of IQL to the level of detail necessary for this thesis.

Data types, collections, variables and functions

IQL supports integer and float numbers (e.g. 5, 3.46), strings (enclosed in single

quotes, e.g. ‘AutoMed’), date-time objects (e.g. dt ‘2005-05-15 23:32:45’), boolean

values (True, False) and tuples (e.g. {1, 2, 3}). Variables and functions are repre-

sented by identifiers starting with a lowercase character.

IQL supports set, bag and list collection types and there are several polymor-

phic primitive operators for manipulating these. The operator ++ concatenates

two lists, and performs bag union and set union on bags and sets, respectively.

The operator flatmap applies a collection-valued function f to each element of
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a collection and applies ++ to the resulting collections. For lists, it is defined

recursively as follows, where [] denotes the empty list and (Cons x xs) denotes

a list containing an element x with xs being the rest of the list (which may be

empty):

flatmap f (Cons x xs) = (f x) + +(flatmap f xs)

flatmap f [] = []

Henceforth in this thesis, we confine our discussion to collections that are lists

(which is sufficient for our purposes of XML data modelling, transformation and

integration), unless otherwise stated.

IQL has built-in support for the common boolean, arithmetic, relational and

collection operators. The binary IQL built-in functions are by default infix oper-

ators. Such infix operators may be enclosed in brackets, e.g. (++), and used as

prefix functions of two arguments, or partially applied to 0 or 1 argument only.

Anonymous functions may be defined using lambda abstractions. For example,

the IQL function lambda {x, y, z} ((x + y) + z) adds the three components of its

argument triple together; {x, y, z} is the pattern, and ((x + y) + z) is the body of

the lambda abstraction. More information on lambda abstractions and functional

languages can be found in [PJ92].

Higher-level syntactic constructs

IQL also supports let expressions and list, bag and set comprehensions. These do

not provide additional expressiveness, but are ‘syntactic sugar’ allowing queries

that are easier to write and read. They also facilitate the translation between

IQL and various high-level query languages.

let expressions assign an expression to a variable and this variable can then be

used within other expressions. In particular, in (let v equal e1 in e2), expression

e1 is assigned to variable v, which appears within expression e2.

Comprehensions are of the form [h|q1; . . . qn] where h is an expression termed

the head and q1, . . . , qn are qualifiers, with n≥ 0. A qualifier may be either a filter

or a generator. Generators are of the form p ← e and iterate a pattern p over a

collection-valued expression e. A pattern may be either a variable or a tuple of
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patterns. Filters are boolean-valued expressions that act as filters on the variable

instantiations generated by the generators of the comprehension.

The translation of a list comprehension into the operators flatmap and if is

given below, where Q denotes a sequence of qualifiers, and [e] a singleton list:

[h|p← e; Q] ≡ flatmap (lambda p [h|Q]) e

[h|f; Q] ≡ if (f = True) then [h|Q] else []

[h|] ≡ [h]

The following is an example of a comprehension, which performs a Cartesian

product followed by a selection: [{x, y}|x ← [1, 2, 3]; y ← [′a′,′ b′]; x > 1]. The

result is [{2,′ a′}, {2,′ b′}, {3,′ a′}, {3,′ b′}]. IQL also supports unification of vari-

ables appearing in the patterns of generators within the same comprehension.

For example,

[{a, b, c}|{a, b} ← 〈〈R〉〉; {a, c} ← 〈〈S〉〉]

is equivalent to

[{a, b, c}|{a, b} ← 〈〈R〉〉; {a2, c} ← 〈〈S〉〉; a = a2]

3.2.5 AutoMed Transformation Pathways

As discussed in Section 3.2.2, each modelling construct of a higher-level modelling

language can be specified as some combination of HDM nodes, edges and con-

straints. For any modelling languageM specified in this way, AutoMed automat-

ically provides a set of primitive schema transformations that can be applied to

schema constructs expressed inM. In particular, for every extensional construct

of M there is an add and a delete primitive transformation which respectively

add and delete the construct to and from a schema. Such a transformation is

accompanied by an IQL query specifying the extent of the added or deleted con-

struct in terms of the rest of the constructs in the schema. For those constructs

ofM which have textual names, there is also a rename primitive transformation.

Also available are extend and contract transformations which behave in the same

way as add and delete except that they state that the extent of the new/removed
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construct cannot be precisely derived from the rest of the schema constructs. ex-

tend and contract transformations are accompanied by an IQL query of the form

Range ql qu, specifying a lower and an upper bound, ql and qu respectively, on

the extent of the construct. The lower bound may be Void and the upper bound

may be Any, which respectively indicate no known information about the lower

or upper bound of the extent of the new construct3.

The full set of primitive transformations for an extensional construct T of a

modelling languageM is as follows:

• addT(c,q) applied to a schema S produces a new schema S ′ that differs from

S in having a new T construct identified by the scheme c. The extent of c

is given by query q on schema S.

• extendT(c,Range ql qu) applied to a schema S produces a new schema S ′

that differs from S in having a new T construct identified scheme c. The

minimum4 extent of c is given by query ql, which may take the constant

value Void if no lower bound for this extent can be derived from S. The

maximum5 extent of c is given by query qu, which may take the constant

value Any if no upper bound for this extent can be derived from S.

• delT(c,q) applied to a schema S produces a new schema S ′ that differs from

S in not having a T construct identified by c. The extent of c can be

recovered by evaluating query q on schema S ′.

Note that delT(c,q) applied to a schema S producing schema S ′ is equivalent

to addT(c,q) applied to S ′ producing S.

3Syntactically, Range, Void and Any are all examples of IQL constructors, which in this case
respectively take 2, 0 and 0 arguments. Constructors in functional languages are analogous to
function symbols in logic languages.

4By minimum we mean that for all possible extents e of c, ql ≤ e, for some ordering ≤
on the domain of c. For example, if c is set-valued, then ≤ is the subset operator ⊆. If c
is list-valued, then ≤ can have list-containment or bag-containment semantics. Appendix B
discusses this further in the context of our approach.

5By maximum we mean that for all possible extents e of c, e ≤ qu, for some ordering ≤ on
the domain of c.
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• contractT(c,Range ql qu) applied to a schema S produces a new schema

S ′ that differs from S in not having a T construct identified by c. The

minimum extent of c is given by query ql, which may take the constant

value Void if no lower bound for this extent can be derived from S. The

maximum extent of c is given by query qu, which may take the constant

value Any if no upper bound for this extent can be derived from S.

Note that contractT(c,Range ql qu) applied to a schema S producing schema

S ′ is equivalent to extendT(c,Range ql qu) applied to S ′ producing S.

• renameT(c,c’) applied to a schema S produces a new schema S ′ that differs

from S in not having a T construct identified by scheme c and instead a T

construct identified by scheme c’ differing from c only in its name.

Note that renameT(c,c’) applied to a schema S producing schema S ′ is

equivalent to renameT(c’,c) applied to S ′ producing S.

For example, the set of primitive transformations for schemas expressed in

the relational data model defined in Section 3.2.3 is addRel, extendRel, delRel,

contractRel, renameRel, addAtt, extendAtt, delAtt, contractAtt, renameAtt, addPK,

deletePK, addFK and deleteFK. Note that it is not meaningful to have extend

and contract transformations on constraint-only constructs, such as primary and

foreign keys in the relational model.

A sequence of primitive transformations from one schema S1 to another schema

S2 is termed a transformation pathway from S1 to S2, denoted S1 → S2. All

source, intermediate and integrated schemas and the pathways between them are

stored in AutoMed’s Schemas & Transformations Repository (see Section 3.2.7).

The queries present within primitive transformations mean that each prim-

itive transformation t has an automatically derivable reverse transformation,

t [MP99a]. In particular, each add/extend transformation is reversed by a delete/

contract transformation with the same arguments, while each rename transfor-

mation is reversed by swapping its two arguments. Thus, AutoMed is a both-

as-view (BAV) data integration system. With the BAV approach, schemas are
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incrementally transformed by applying to them a sequence of primitive trans-

formations and each primitive transformation adds, deletes or renames just one

schema construct. As discussed in [MP03a], BAV subsumes the GAV and LAV

approaches [Len02], since it is possible to express GAV and LAV rules in terms

of BAV transformation pathways and, conversely, to extract GAV and LAV rules

from BAV pathways. As discussed in [JTMP04], BAV also subsumes the GLAV

approach [FLM99, MH03], since it is also possible to express GLAV rules us-

ing BAV pathways, and to extract GLAV rules from BAV pathways. We refer

the reader to [JTMP04] for details of AutoMed’s GAV, LAV and GLAV view

generation algorithms.

In addition to the transformations that add, delete and rename schema con-

structs, AutoMed supports one more primitive transformation, the id transfor-

mation, which asserts the equivalence of pairs of constructs from two different

schemas. In particular, when two schemas contain the same constructs, a series

of id transformations can be automatically generated by the AutoMed system, to

assert the equivalence of the two schemas.

Section 3.2.6 below discusses query processing in AutoMed and introduces

AutoMed’s Global Query Processor which uses the queries supplied with trans-

formations to evaluate an IQL query posed over a virtual schema against one or

more data sources.

3.2.6 Query Processing

Global Query Processor

The AutoMed Global Query Processor (GQP) is used to evaluate queries sub-

mitted to a virtual schema against a set of data sources. The QueryReformulator

uses the transformation pathways between the virtual schema and the data source

schemas to reformulate the user query to an equivalent query that only references

data source constructs. The QueryOptimiser component optimises the reformu-

lated query and the QueryAnnotator component inserts AutoMed wrapper objects

within the optimised query. The QueryEvaluator is then invoked to evaluate the
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resulting query. The rest of this section briefly discusses the major components

of the GQP, illustrated in Figure 3.1 (rectangles represent software components,

cylinders represent databases, and arrows show the flow of queries, data, and

metadata).

Query Processor
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IQL
result

Query
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Variable
Unification

XML
data source

...

IQL
query

relational
data source

Query
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MTR STR

Figure 3.1: The AutoMed Global Query Processor.

Query Reformulation

The QueryReformulator component is able to reformulate queries submitted to

a virtual schema against a set of data sources, employing either GAV, LAV or

BAV query reformulation (see below). The QueryReformulator allows the user to

specify the integration semantics, i.e. to specify the way that data from different

data sources are combined to form the extent of global schema constructs. For

example, given a set of data sources with schemas S1, S2 and S3, the integration

semantics can be as simple as ‘append’ semantics S1 + + S2 + + S3 (which is

the default behaviour for GQP), or arbitrarily complex, e.g. (S1 intersect S2) +

+ (S1 intersect S3). These integration semantics can be supplied by the user when

invoking the GQP via the AutoMed API; if not provided, the default “append”

semantics are used. In the future, it is envisaged that the default GQP behaviour

will be to derive the integration semantics via the id transformations that link

identical schemas, and to use this information if there is no explicit user-defined
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integration semantics.

All three query reformulation techniques discussed below (GAV, LAV or BAV)

produce a view ‘map’ that contains a view definition of each virtual schema

construct in terms of the data source schema constructs. This map can then be

used to replace any virtual schema constructs appearing in a user query by an

equivalent expression over data source schema constructs.

GAV Query Reformulation

When using GAV as the reformulation technique, the GQP uses only those por-

tions of BAV pathways that define virtual schema constructs in terms of data

source constructs6. The view definition for each construct of a virtual schema

is derivable from the BAV pathways using the GAV view generation algorithm

described in [JTMP04]. This algorithm first populates the view map with the

constructs of the virtual schema. It then traverses the transformation pathways

from the virtual schema to the data source schemas, and replaces any non-data

source schema constructs referenced in the map using the queries defined with

these constructs in the transformation pathways, until the map references only

data source schema constructs.

LAV Query Reformulation

When using LAV as the reformulation technique, the GQP uses only those por-

tions of BAV pathways that define data source constructs in terms of virtual

schema constructs7. The view definition for each construct of a virtual schema

is derivable from the BAV pathways using the LAV view generation algorithm

described in [MP06]. This algorithm traverses the transformation pathways from

the virtual schema to the data source schemas and, using the inverse rules tech-

nique [DG97], derives view definitions of the virtual schema constructs in terms

6I.e. delete, contract and rename transformations when traversing a BAV pathway from the
virtual schema to the data source schema.

7I.e. add, extend and rename transformations when traversing a BAV pathway from the
virtual schema to the data source schema.
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of the data source constructs by inverting the LAV view definitions appearing

within the transformation pathway.

BAV Query Reformulation

When using BAV as the reformulation technique, the GQP uses all the trans-

formations within the BAV pathways. The view definition for each construct

of a virtual schema is derivable from the BAV pathways using the view genera-

tion algorithm described in [MP06]. This algorithm traverses the transformation

pathways from the virtual schema to the data source schemas and, if a GAV view

definition is encountered, it is directly used in the view map. If a LAV view

definition is encountered, it is first inverted using the inverse rules technique. If

a view definition for a construct needs to be added to the view map, and the

map already contains an entry for that construct, the algorithm combines the

two view definitions into a single view definition, using a merge operator defined

as follows8:

merge (Range ql qu) (Range q′

l q′

u) = Range (union ql q′

l) (intersect qu q′

u)

We note that the algorithm described in [MP06] assumes set semantics, and

extending BAV reformulation to bag and list semantics is a matter of future work.

This does not affect our work on XML transformation and integration, since our

approach makes use of GAV reformulation only.

Query Optimisation

After the user query has been reformulated into a query containing only data

source schema constructs, the QueryOptimiser component performs various opti-

misations at both the logical and the physical level. The goal of this component

is twofold: first, to simplify the query by performing algebraic optimisations and

optimisations based on data source metadata, and, second, to build the largest

possible subqueries that can be pushed down to the data sources (details on

optimisation of IQL queries in AutoMed are given in [JPZ+08]).

8The arguments to the merge operator may not be Range queries. In such a case, the
following equivalence is used to convert an argument query q into a Range query: q = Range q q
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Query Annotation

After the user query has been reformulated and optimised, the QueryAnnotator

component traverses the abstract representation of the query and identifies the

largest possible subqueries that can be pushed down to the data sources. The

ability of the QueryAnnotator to identify these subqueries relies on each data

source wrapper being associated with a parser which defines the subset of IQL that

the wrapper is able to translate. The QueryAnnotator uses this parser to determine

whether a given wrapper can translate a given subquery. For each subquery

identified, the IQL function $wrapper, encapsulating an AutoMed Wrapper object

(see Section 3.2.7) and the subquery, is inserted into the overall query. These

$wrapper functions and the wrapper objects they encapsulate are responsible for

evaluating an IQL subquery on a data source during query evaluation.

Query Evaluation

Evaluating a query expressed in a functional language consists of ‘reducing’ ex-

pressions within the query until no more reductions can be performed9. It is then

said to be in normal form. The order in which these reductions are performed

makes no difference to the final result, provided the evaluation terminates; how-

ever, choices made about the order in which reductions are performed may impact

on the efficiency, or indeed the termination, of the evaluation [PJ92]. AutoMed’s

Evaluator component always reduces the leftmost, outermost reducible expression

— this is known as normal-order reduction and has the best possible termination

behaviour [PJ92].

9A reducible expression is either an application of a built-in function f to a full comple-
ment of arguments a1, . . . , an, or an application of a lambda abstraction (λp.e) to an argument
e′. In the former case, reducing f(a1, . . . , an) involves evaluating f using the input arguments
a1, . . . , an; the result then replaces the expression f(a1, . . . , an). In the latter case, reducing
(λp.e)e′ involves matching pattern p with e’ to obtain instantiations for the variables within
p, replacing any occurrences of these variables in e by their instantiations, and evaluating the
resulting expression, which then replaces the expression (λp.e)e′.
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Query Translation

Until now, we have assumed that queries submitted to the AutoMed system are

expressed in IQL. However, the purpose of IQL, as stated earlier, is to serve

as an intermediate language. For this reason, AutoMed’s Translator component

translates an input user query, expressed in some high-level query language, into

an IQL query, which can then be processed by the GQP; the IQL result is then

translated back into the high-level query language. In particular, Chapter 4

discusses the XQuery-to-IQL translator component we have developed as part of

the research reported in this thesis.

3.2.7 The AutoMed Software Architecture

Figure 3.2 illustrates the overall AutoMed software architecture (rectangles rep-

resent software components, cylinders represent databases, and arrows show the

flow of queries, data, and metadata). The GQP undertakes query processing as

described in the previous section. The schema matching tool may be used to

identify related objects in various data sources (accessing the GQP to retrieve

data from schema objects) [Riz04]. After a schema matching phase, the XML

schema transformation tool, described in this thesis, can be applied to gen-

erate transformation pathways from data source schemas to a virtual schema or

from one data source schema to another, provided that all data source schemas

are either expressed in the XML schema type supported by the tool, or are first

converted to this schema type. The GUI component interacts visually with

these three components, as well as with the MDR and STR components of the

AutoMed Metadata Repository (see below). It is possible for a user application

to be configured to run from this GUI. Alternatively, applications can use directly

the APIs of the various components.

In the rest of this section, we focus first on the AutoMed Metadata Repository,

used for storing model, schema and transformation pathway information, and

then on the AutoMed Wrapper architecture.

72



GUI
user

application

XML schema 
transformation

schema
matching

GQP

wrapper architecture

persistent
store data 

source
data 

source
...

AutoMed Metadata 
Repository

MTR STR

Figure 3.2: The AutoMed Software Architecture.

The AutoMed Metadata Repository

The AutoMed Metadata Repository forms a platform for other components of the

AutoMed Software Architecture to be implemented upon. When a data source

is wrapped, first a definition of its data model is added to the repository — if

one is not already present — then a definition of the schema of the data source

is added.

The repository has two logical components. The Model Definitions Repos-

itory (MDR) defines how each construct of a modelling language is represented

as a combination of nodes, edges and constraints of the HDM. The Schemas

and Transformations Repository (STR) defines schemas in terms of the

modelling languages defined in the MDR. The MDR and STR may be held in the

same or separate persistent storage. If the MDR and STR are stored in separate

storage, many AutoMed users can share a single MDR repository which, once

configured, need not be updated when integrating data sources that conform to

a known set of modelling languages.
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Figure 3.3: AutoMed Repository Schema

The API to the MDR and the STR uses JDBC to access an underlying rela-

tional database. Thus, these repositories can be implemented using any DBMS

supporting JDBC.

Figure 3.3 (taken from [BMT02]) gives an overview of the key objects in the

MDR and the STR. The STR contains a set of descriptions of Schemas, each

of which contains a set of SchemaObject instances, each of which must be based

on a Construct instance that exists in the MDR. This Construct describes how

the SchemaObject can be constructed in terms of strings and references to other

schema objects, and the relationship of the construct to the HDM. Schemas may

be related to each other using instances of Transformation.

The AutoMed repository API provides methods to create, retrieve, alter and

remove models, constructs, schemas, schema objects and transformations. The

repository API comprises of Java classes representing each of these entities and

the methods for manipulating them10.

10For details, see http://www.doc.ic.ac.uk/automed/resources/apidocs/index.html
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The AutoMed Wrapper Architecture

The AutoMed Wrapper architecture of Figure 3.2 consists of three levels, as illus-

trated in Figure 3.4 (rectangles represent software components, cylinders repre-

sent databases, black arrows show the flow of queries, data and metadata, white

arrows imply inheritance, and the third arrow type implies object instantiation).

The first level ensures a common interface for all AutoMedWrapper and AutoMed-

WrapperFactory objects, so that other AutoMed components using the Wrapper

architecture, such as the GQP, have a common way of accessing any type of

data source supported by AutoMed. It also implements the functionality that is

common for all types of data sources, such as Wrapper instantiation and commu-

nication with the AutoMed Metadata Repository. The architecture is designed so

as to separate between functionality related to setting up data sources, handled

by AutoMedWrapperFactory objects, and functionality related to querying data

sources, handled by AutoMedWrapper objects.
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Figure 3.4: The AutoMed Wrapper Architecture.
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The second level handles conversions between the AutoMed representation

and the standard representation for each class of data source. As an example, the

SQL92WrapperFactory class is responsible for defining the SQL92 data model in

the MDR and extracting schema information from the data source of its associated

SQL92Wrapper object(s), and the SQL92Wrapper class deals with query evaluation

on its associated data source.

The third level in this architecture deals with differences between the class

standard and a particular data source. As an example, the PostgresWrapper class

specifies the specific JDBC driver implementation used to access a specific version

of the PostgreSQL data source.

3.3 Using AutoMed for XML Data Sharing

The rationale for, and the advantages of, using AutoMed as the framework for

developing our XML data transformation and integration toolkit can be divided

into two categories, those relating to the BAV data integration approach and

those relating to the components offered by the AutoMed system itself.

Concerning the data integration approach, since GAV, LAV and GLAV view

definitions can be expressed within, and extracted from, BAV pathways, AutoMed

can simulate other GAV, LAV and GLAV data integration systems and was thus a

flexible choice for developing our toolkit. Moreover, BAV can readily support the

three different data integration scenarios that our XML data integration toolkit

needs to be able to handle — bottom-up, top-down and peer-to-peer — and we

will discuss this further in Chapter 4.

BAV supports a low-level data model, the HDM, as a metamodel which pro-

vides unifying semantics for higher-level modelling languages. This presents a

significant advantage, given that our XML data integration toolkit may need to

interact with RDFS and OWL ontologies (discussed in Chapters 6 and 7) and to

provide a semi-automatic integration layer over non-XML data sources (discussed

in Chapter 7).

BAV also readily supports the evolution of both data source and integrated

76



schemas [MP02, FP04]. Schema evolution was potentially an important aspect

when considering the most appropriate data integration approach to use for de-

veloping our toolkit. As discussed in Chapter 2, some approaches to XML data

sharing use structural summaries (e.g. DataGuides) rather than schemas to ex-

press the structure of XML data sources, in order to cater for XML data sources

that are not accompanied by a particular schema type. Since structural sum-

maries are derived from directly from data, changes in the contents of a data

source may result in the evolution of the corresponding structural summaries. As

we will discuss in Chapter 4, our own XML data sharing approach also uses a

structural summary as the schema type, and therefore the ability to support the

evolution of both data source and integrated schemas is significant.

Finally, the AutoMed system offered a robust implementation, comprising a

number of components that could be flexibly used and readily extended. At the

outset of our work, it provided:

• a global query processor supporting GAV query reformulation; this was

subsequently extended with LAV and BAV query reformulation; the new

query reformulator followed the theoretical foundations in [MP06] and was

designed and implemented by myself and Sandeep Mittal;

• an easily extensible Wrapper architecture supporting relational, flat-file and

HDM data sources; this was subsequently extended by myself and Jianing

Wang to support XML, RDFS and OWL data sources;

• a schema matching tool [Riz04], which could be used to provide input for

our XML data transformation and integration toolkit; and

• a schema evolution tool, supporting the evolution of data source and inte-

grated schemas.
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3.4 Summary

This chapter has provided an overview of the AutoMed heterogeneous data inte-

gration system, to the level of detail necessary for the rest of this thesis. We have

identified the key features of the BAV approach, together with its advantages over

other data integration approaches. We have presented the major components of

the AutoMed system, which implements the BAV approach, and outlined the

rationale for, and advantages of, using AutoMed as the basis for our own XML

data transformation and integration toolkit.

In Chapter 4 we will give an overview of our approach to XML data trans-

formation and integration. We will present the schema type used for XML data

sources, identify the main transformation and integration scenarios our approach

addresses, give an overview of the components developed for our approach, and

describe the extensions made to the AutoMed system in terms of the Wrapper

architecture and query language translation. Chapter 4 will also discuss our inte-

gration and materialisation algorithms, however our main schema restructuring

algorithm will be discussed in Chapters 5 and 6.

We finally note that, although developed using AutoMed, our techniques are

more generally applicable and could be adopted by other data integration systems.

We discuss this aspect in more detail in Chapter 4.
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Chapter 4

XML Schema and Data

Transformation and Integration

4.1 Introduction

The aim of our research into XML data transformation and integration is to

develop semi-automatic methods for generating schema transformation pathways

from one or more source XML schemas to a target XML schema. This aim may

be broken down into a number of distinct steps towards resolving heterogeneity

between the source schema(s) and the target schema, and indeed our approach

distinguishes between different types of heterogeneity, as discussed in Chapter 2.

More specifically, syntactic heterogeneity is handled by using a common XML

schema type that we developed in order to support all types of XML data sources.

Such XML data sources may be accompanied by an existing XML schema type,

such as DTD or XML Schema, or may not have an accompanying schema. It is

also possible to express schemas of non-XML data models in terms of our XML

schema type, and Chapter 7 illustrates the application of our approach for the

integration of relational data sources.

Semantic heterogeneity is handled by a schema conformance phase, which uses

manual or semi-automatically generated input in order to automatically produce

semantically conformed source and target schemas.
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Schematic heterogeneity is handled by a schema transformation phase, which

can be used to restructure a source schema into a target schema, or to integrate

a number of source schemas either in the presence or in the absence of a target

global schema.

Finally, querying a virtual target schema is supported using AutoMed’s GQP,

together with our XML-specific wrappers, while materialising the target schema

is supported through a materialisation algorithm that we have developed.

This chapter is structured as follows. Section 4.2 presents the schema type

used in our XML data transformation and integration approach. Section 4.3

gives an overview of the major components of our approach, briefly presenting

schema conformance and schema transformation, which are more fully addressed

in Chapters 5 and 6. Section 4.4 then covers querying and materialisation of the

target schema.

4.2 A Schema Type for XML Data Sources

This section first reviews the desirable characteristics that a common schema type

for XML data sources should possess in data transformation or data integration

settings. Then, several existing schema types for XML data sources are examined,

and the rationale for not adopting them is presented. The schema type used in

our approach is then formally introduced.

4.2.1 Desirable XML Schema Characteristics in Transfor-

mation/ Integration Settings

A fundamental requirement for a schema type for XML data sources is that

it should support all features of the XML data model [W3Ca]. Such features

include full namespace support and unrestricted support for unordered and mixed

content.

Considering specifically data transformation/integration settings, there are

two fundamental requirements. First, the schema type should be a structural
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summary of the data source it describes and, second, it should be possible to

automatically generate the schema of a data source.

The first requirement arises from the fact that, in a data transformation/

integration setting (as defined in Chapter 1), the main purpose of a schema is the

description of a data source, not its validation through a grammar. For example,

grammars that allow the definition of multiple different elements as the root node

of XML documents are not helpful in a data integration setting, nor are schema

types that merely specify paths that are not allowed in an XML data source. Also,

a schema type describing the actual structure of data sources not only simplifies

the process of discovering the structural differences between data sources, but

also simplifies the process of generating the mappings between them.

The second requirement stems from the fact that not all data sources are

necessarily accompanied by a schema. Furthermore, even if all data sources in a

data transformation/integration setting do reference a schema, it may be the case

that they use different schema types. Consequently, a necessary characteristic for

a generic XML data transformation/integration approach is to adopt a schema

type that can be automatically generated from a data source, and possibly from

existing referenced schemas too.

Finally, a desirable, but not necessary, characteristic is for the schema type

to provide a tree structure and, if possible, to be expressed in XML. The former

property is advantageous because it is easier to manipulate trees than graphs,

while the latter is advantageous because it allows the use of an existing XML

API for manipulating the XML schema type.

4.2.2 Existing Schema Types for XML Data Sources

We now review the main existing XML schema types against the above charac-

teristics, namely DTD, XML Schema, RELAX NG [OAS01], DataGuides [GW97,

GW99] and ORA-SS [CLL02] — the latter is not a frequently used schema type,

but it is used by a significant XML schema and data transformation and integra-

tion approach, as discussed in Chapter 2. Reference [LC00] provides a detailed
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review of XML schema types.

DTD was the first schema type proposed for XML documents and this, along

with the fact that it is very simple and easy to use, explains why DTD is one of the

most popular schema types for XML documents. However, the limited expressive

power of DTD, along with the fact that a DTD is not an XML document, created

the need for a more sophisticated schema type, such as XML Schema.

DTD seems to be a good candidate for a schema type in a data integration

setting and indeed Chapter 2 reviewed a number of approaches that do use it for

XML data transformation and integration. A DTD comes close to describing the

actual structure of a data source — it allows, however, the definition of more than

one root element and therefore multiple heterogeneous documents may conform

to the same DTD. Given the root element of the data source, the grammar rules

it defines can easily be converted into a tree representation. Moreover, there are

a number of algorithms that automatically produce a DTD from an XML data

source.

The main reason for not adopting DTD in our approach is the fact that

DTD does not provide direct namespace support for XML data sources. This

shortcoming renders any approach using DTD non-generic, especially since data

sharing often involves settings where multiple namespaces are used.

XML Schema is a more expressive schema type for XML documents. Some

of its advantages include XML Schemas being XML documents, full namespace

support, data type support and features enabling the specification of complex

constraints.

However, there are a number of reasons for not adopting this as the schema

type in our approach. First, even though XML Schema is an XML language

and therefore schemas do have a tree structure, this structure does not represent

the tree structure of the data sources which conform to the schema; rather, it

represents the grammar rules defining the constraints on the conforming XML

data sources.

Second, similarly to DTD, XML Schema allows the definition of more than one

root element and therefore multiple heterogeneous XML documents may conform
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to the same XML Schema type.

Third, methods that automatically generate an XML Schema schema from an

XML document do not always produce intuitive schemas and also may generate

multiple schemas for the same XML document. This is because not all the in-

formation XML Schema is designed to describe can be generated from an XML

data source, in combination with the fact that it is possible to achieve the same

effect using different aspects of XML Schema, e.g. global and local declarations.

This complexity of XML Schema makes it difficult to develop algorithms for

the transformation and integration of XML data sources using it as the common

schema type.

RELAX NG is another schema type for XML documents that is more ex-

pressive than DTD. It has similar features to XML Schema, and it is arguably

more intuitive. The reasons for not adopting RELAX NG as the schema type for

our XML data transformation/integration approach are the same as those for not

adopting XML Schema: it does not directly abstract the tree structure of a data

source, it is not possible to automatically generate a unique RELAX NG schema

from a data source, and its complexity makes it hard to develop algorithms for

data transformation/integration.

Schematron is a rule-based schema type that is fundamentally different from

other XML schema types. While it is easy to specify constraints in Schematron,

it is not easy to specify the structure of a document, and this is the main reason

for not adopting it in our approach.

DataGuides were developed within the Lore1 system. Lore supports a sim-

ple, graph-based data model called Object Exchange Model (OEM — see [PGMW95]).

A DataGuide is an accurate and concise summary of a data graph: accurate be-

cause every path in the data graph occurs in a DataGuide and vice versa, and

concise because every path in the DataGuide occurs exactly once. In other words,

a DataGuide is a structural summary of all paths in a data source. In this sense,

a DataGuide is not a conventional schema type, since it is constantly updated to

reflect the current contents of a data source.

1See http://www-db.stanford.edu/lore/
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Nonetheless, DataGuides satisfy many of the criteria for an XML data trans-

formation/integration setting that we discussed in Section 4.2.1. In particular,

DataGuides are by definition a structural summary of the data source they de-

scribe and, also by definition, can be automatically extracted from a data source.

On the other hand, DataGuides are OEM graphs, i.e. are not expressed

in XML and do not have a tree structure. Moreover, DataGuides reverse the

relationship between schemas and data, in the sense that a DataGuide conforms

to the data source it describes and not the other way around. In a data integration

setting this is a significant disadvantage, as the modification of the structure of

a DataGuide is equivalent to schema evolution, which is not a trivial problem.

Approximate DataGuides [GW99] drop the constraint for conciseness and may

contain paths that no longer exist in a data source. Approximate DataGuides

avoid the performance penalties associated with continuously updating a (possibly

cyclic) graph summary of a data source.

ORA-SS, or Object-Relationship-Attribute model for Semi-Structured Data,

is a data model similar to the object-oriented data model, designed to encom-

pass primarily semi-structured but also structured data sources. It is similar to

DataGuides but defines a number of other features, such as inheritance, con-

straints and references to cater for recursion.

ORA-SS is not the ideal choice for an XML data transformation/integration

setting because it is not expressed in XML and because it contains a number of

features which are not needed in such a setting. A result of the latter issue is

that, even though it seems possible to automatically generate an ORA-SS schema

from an XML document, it may be possible to generate multiple different ORA-

SS schemas from a single XML document.

4.2.3 XML DataSource Schema (XMLDSS)

The above discussion indicates that existing schema types for XML are not appro-

priate schema types for an XML data transformation/integration setting. Chap-

ter 2 reviewed a number of XML schema transformation approaches that do use
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DTD as the schema type, indicating that DTD displays desirable properties for

such a setting; these approaches, however, ignore namespaces. Also, while there

exist approaches that use XML Schema or RELAX NG as the schema type, these

do not support all the structural features of these schema types.

Conversely, the structural summary approach exhibits a number of desirable

features that do cover a significant portion of the criteria set out at the beginning

of this section.

We now present XML DataSource Schema (XMLDSS), the schema type used

in our XML data transformation/integration approach. In the definition given

below, a path is a sequence of element nodes that may end with an element, an

attribute, or a text node.

Definition 4.1. An XMLDSS schema S corresponding to an XML data source

D is an XML document such that every path starting from the root in D appears

exactly once in S; it is not necessary for every path in S to appear in D.

The above definition ensures that the criteria set in Section 4.2.1 are met. An

XMLDSS schema is a structural summary of the data source it describes, it is

expressed in XML (and therefore can handle namespaces by definition) and it has

a tree structure. Also, since it is a structural summary, it is possible to extract

an XMLDSS schema from an XML data source, and in Section 4.2.4 we describe

a method for doing so.

The definition of XMLDSS states that it is not necessary for every element

or attribute in S to be present in D and this is for two reasons. First, to avoid

schema evolution problems associated with a schema type that is too precise and,

second, to be able to have a single XMLDSS schema to which multiple XML

documents with small differences conform. This second reason is needed to cater

for homogeneous collections of XML documents, such as those occurring in native

XML databases.

The process of schema conformance and schema transformation in our ap-

proach (see Section 4.3 and Chapters 5 and 6) currently considers only 1-1 and
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1-n cardinality constraints on XML data during schema and data transformation.

Such constraints are input to the transformation phase manually and are not yet

part of the XMLDSS schema. The extension of XMLDSS schemas to include

this and other types of cardinality constraints, as well as key constraints and

co-occurrence constraints is an area of future work. Another area of future work

is the investigation of the implications that the latter types of constraints may

have in the process of schema transformation.

A final point to be made is in regard to the representation of our schema

type. An XMLDSS schema is expressed in XML and is therefore a tree. The

schema conformance and schema transformation methods of Section 4.3 use the

DOM representation of XMLDSS, while the AutoMed NXDBWrapper (discussed

in Section 4.4.1) may store the XMLDSS schema of a collection as an XML file.

Table 4.1 shows the representation of XMLDSS schema constructs in terms

of AutoMed’s HDM. We see that XMLDSS schemas consist of four types of

constructs:

1. An element e can exist by itself and is a nodal construct. It is identified by

the scheme 〈〈e〉〉 and is represented by a node in the HDM. The extent of

〈〈e〉〉 is a list of instances of e.

2. An attribute a belonging to an element e is a nodal-linking construct and is

identified by the scheme 〈〈e, a〉〉. In terms of the HDM, an attribute consists

of a node representing the attribute, an edge linking the attribute node to

its owner element, and a cardinality constraint that states that an instance

of e can have at most one instance of a associated with it, and an instance

of of a can be associated with precisely one instance of e. The extent of

〈〈e, a〉〉 is a list of tuples, each containing two items, an instance of e and an

instance of a.

3. The parent-child relationship between two elements ep and ec is repre-

sented by the ElementRel construct, which is a linking construct identified

by scheme 〈〈i, ep, ec〉〉, where i is the position of ec within the list of children

of ep. In terms of the HDM, this is represented by an edge between ep and
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Higher Level Construct Equivalent HDM Representation
construct: Element
class: nodal node: 〈〈e〉〉
scheme: 〈〈e〉〉
construct: Attribute node: 〈〈e : a〉〉
class: nodal-linking, constraint edge: 〈〈 , e, e : a〉〉
scheme: 〈〈e, a〉〉 links: 〈〈e : a〉〉

constraint: (〈〈 , e, e : a〉〉, {0, 1}, {1})
construct: ElementRel edge: 〈〈i, ep, ec〉〉
class: linking, constraint links: 〈〈ep〉〉, 〈〈ec〉〉
scheme: 〈〈i, ep, ec〉〉 constraint: (〈〈i, ep, ec〉〉, {0, N}, {1})
construct: Text
class: nodal node: 〈〈Text〉〉
scheme: 〈〈Text〉〉

Table 4.1: XML DataSource Schema Representation in terms of HDM

ec and a cardinality constraint that states that each instance of ep is associ-

ated with zero or more instances of ec, and each instance of ec is associated

with precisely one instance of ep. The extent of 〈〈i, ep, ec〉〉 is a list of tuples,

each containing two items, an instance of ep and an instance of ec.

4. Text in XMLDSS is represented by the Text construct, which is a nodal

construct with scheme 〈〈Text〉〉. In any XMLDSS schema, there is only one

Text construct. The extent of 〈〈Text〉〉 is a list containing all text instances

of the XML document(s) that conform to the XMLDSS schema. To link

this construct with an element ep, we treat it similarly to an element ec and

use the ElementRel construct.

We note that XMLDSS is a different XML schema language than the XML

modelling language for AutoMed defined in [MP01]. In XMLDSS, we make spe-

cific the ordering of children nodes under a common parent (the identifiers i in

ElementRel constructs) whereas this was not captured by the XML schema lan-

guage of [MP01]. Also, in that paper it was assumed that the extents of schema

constructs are sets and therefore an extra linking construct named ‘order’ was

required to represent the ordering of children elements under parent elements.
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Here, we make use of the fact that IQL can support lists, and thus we use only

one ElementRel construct. The nth child of a parent element can be obtained

by means of a query specifying the corresponding ElementRel, and the requested

element will be the nth item in the resulting list of elements.

In an XML document there may be elements with the same name occurring

at different positions in the tree, which will generate different elements with

the same name in the corresponding XMLDSS schema. To avoid ambiguity, in

XMLDSS schemas we use an identifier of the form elementName$count for each

element, where count is a counter incremented every time the same elementName

is encountered in a depth-first traversal of the schema. If the suffix $count is

omitted from an element name, then the suffix $1 is assumed. Attributes are

uniquely defined by their owner element, since elements are uniquely identified

by the above identifier and since attribute names are unique for each element.

However, this element disambiguation is not sufficient. Since an XMLDSS

schema in a data integration setting may be produced from the integration of mul-

tiple source XMLDSS schemas, we also need to distinguish between two elements

that belong to different schemas but have the same identifier elementName$count.

For this reason, we augment this identifier with a schema identifier, sid, automat-

ically generated by the AutoMed repository, so that the final schema-level unique

identifier for elements in XMLDSS schemas is elementName$count sid.

Figures 4.1 illustrates an XML document. Figure 4.2 illustrates the XMLDSS

schema extracted from this document, in both a DOM (left hand side) and an

HDM (right hand side) representation. The names of elements are depicted with

their unique identifiers in Figure 4.2. Note that XMLDSS schemas are trees in

DOM and graphs in the HDM (because there is only one text node in an AutoMed

XMLDSS schema).

As mentioned in Chapter 3, after a modelling languageM has been specified

in terms of the HDM, AutoMed automatically makes available a set of primitive

transformations for transforming schemas defined inM. For XMLDSS schemas,

the available primitive transformations are illustrated in Table 4.2. Note that

rename transformations only rename the label of a schema construct, but have
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no effect on the labels appearing within its extent.

Insert primitive transformations Remove primitive transformations

addEl(〈〈e〉〉,q) deleteEl(〈〈e〉〉,q)

addAtt(〈〈e, a〉〉,q) deleteAtt(〈〈e, a〉〉,q)

addNL(〈〈i, ep, ec〉〉,q) deleteNL(〈〈i, ep, ec〉〉,q)

extendEl(〈〈e〉〉,Range ql qu) contractEl(〈〈e〉〉,Range ql qu)

extendAtt(〈〈e, a〉〉,Range ql qu) contractAtt(〈〈e, a〉〉,Range ql qu)

extendNL(〈〈i, ep, ec〉〉,Range ql qu) contractNL(〈〈i, ep, ec〉〉,Range ql qu)

Rename primitive transformations

renameAtt(〈〈e, a〉〉, 〈〈e, a′〉〉) renameNL(〈〈i, ep, ec〉〉,〈〈i
′, ep, ec〉〉)

renameEl(〈〈e〉〉, 〈〈e′〉〉)

Table 4.2: XMLDSS Primitive Transformations.

4.2.4 XMLDSS Generation

We now describe the generation of an XMLDSS schema from an XML data source,

using either a tree-based or an event-based API for parsing the document. We

also discuss the extraction of an XMLDSS schema for an XML data source from

its accompanying DTD or XML Schema schema.

We note that the XMLDSS schemas created by the algorithms described in

the rest of this section are DOM documents that are stored in memory (see

Figure 4.2, left). If it needs to be made persistent, such a DOM representation

is converted into the equivalent HDM representation (see Figure 4.2, right) and

inserted into the AutoMed repository.

Automatic XMLDSS Extraction from an XML Document

A tree-based API for XML first parses an XML document into a tree structure that

is loaded into memory. The API then allows navigation of this tree structure.

DOM is one example of a tree structure to which an XML document can be

parsed. On the other hand, an event-based API parses an XML document and

during this process reports parsing events, such as the start and end of elements.

An application using an event-based API does not navigate a tree structure in the
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root
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sitenumber

account

function4411
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6976

56 Business
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name

John
Smith

number
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customer

Figure 4.1: Example XML Document (partial).
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root$1_5
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Text
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Text number$2_5

number$1_5
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      1
      1

      1

      1

root$1_5
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site$1_5

account$1_5

      2      1

      3      2

      1

name$1_5

function$1_5

    2

number$2_5
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      1

Text sitecode$1_5

      1

      1

Figure 4.2: XMLDSS for the XML Document of Figure 4.1.

90



same way an application using a tree-based API does, but it implements methods

to handle different types of parsing events. As tree-based APIs are more intuitive

to work with, we first developed a DOM-based XMLDSS extraction algorithm,

which is listed in Panel 1 below. We then developed a SAX-based algorithm,

which is listed in Panel 2.

The DOM-based algorithm first creates the root node RS of the XMLDSS

schema S by copying the root element RD of the XML document D along with

any attributes RD may have. The algorithm then traverses D in a depth-first

fashion, ensuring that:

• the list of children of an Element ep in S contains a single Element ec for

every set of elements with the label ec appearing in the list of children of

ep in D, and that

• the list of children of an Element ep in S contains a single Text node if the

list of children of ep in D contains one or more text nodes

We now discuss the correctness of the DOM-based XMLDSS generation algo-

rithm w.r.t. Definition 4.1. We need to show two properties: (P1) each path in

a document D is present in the XMLDSS schema S and (P2) S does not contain

any path starting from the root more than once (i.e. within S, any path that

starts from the root is unique). We note that the individual steps within a path

in S are element-element, element-attribute and element-text relationships.

To show (P1), we need to show that each element-element, element-attribute

and element-text relationship in D appears at least once in S. Assume otherwise

for element-element relationships. This would mean that there exists an element-

element relationship (e1, e2) in D that does not appear in S. This is possible

only if (a) e2 in D is not considered and therefore not inserted into S, (b) e2 is

considered but not added to S or (c) e2 is added erroneously to the list of children

of another element e3 in S. The first case cannot occur because of lines 2, 4 and

12 in Panel 1, which show that every element in D is considered. The second

case cannot occur because of lines 8-9, which show that every element in D is
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Panel 1: XMLDSS Extraction Algorithm (DOM-based)

Input: XML document D

Output: XMLDSS schema S in its DOM representation
/* *********************** main(D) *********************** */

Create the root element of S, RS by copying the root element of D, RD,1

along with any attributes RD may have.
Set element ED in D to be RD and element ES in S to be RS.2

extractXMLDSS(ED, ES);3

/* **************** extractXMLDSS(ED,ES) **************** */

for (every child node, CD, of ED in D) do4

if (CD is a text node) then5

if (ES does not already have a text node in its list of children)6

then append a text node to the list of children of ES in S.

else if (CD is an element node) then7

if (an element with the same name as CD does not appear in the8

list of children of ES) then
Copy CD and its attributes, and append this new element, CS,9

to the current list of children of ES in S.

else10

Copy any attributes of CD in D that do not appear as11

attributes of CS in S to CS.

Set ED in D to be CD and ES in S be CS.12

extractXMLDSS(ED, ES);13

added in S, unless it is already present in the list of children of a certain element.

The third case cannot occur because, at any stage of the algorithm, elements

ED and ES have the same label (lines 2 and 12) and so do elements CD and CS

(lines 7- 12), which means that when the current pointer in D is at an element

e, the current pointer in S is at the corresponding element e in S. A similar

argument can be used for element-text and element-attribute relationships.

To show (P2) we use structural induction, having as a starting point the fact

that D and S have the same root (line 2). As discussed above, an element e

cannot be added to the list of children of an element p in S if it is already present

(lines 8-9), and so the list of children of an element e in S cannot contain the

same element twice. Therefore, the root of S only contains elements with distinct
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labels. Lines 12 and 13 repeat the same process for each child element of the root,

and then for each one of their child elements, and so forth. As a result, the list

of children of each element in S only contains elements with distinct labels. It

follows that S does not contain more than once any path starting from the root

and ending at an element. A similar argument can be used for paths ending with

an attribute or a text node.

The SAX-based algorithm has three parts, based on whether the SAX parser

encounters the start of an element, the end of an element or a text node in the

XML document D. The variable d denotes the depth of the element currently

under consideration, starting from -1. When the start of an element is encoun-

tered, if the current depth d is -1, the algorithm creates the root node of the

XMLDSS schema S, otherwise it appends an element ec to the list of children of

ep in S, if ec does not already exist (ep being the rightmost element at depth d

in S — see below). At the same time, d is incremented and also any attributes

present in ec in D but not in ec in S are added to ec in S. When the end of an

element is encountered in D, the algorithm simply decrements d. When a text

node is encountered, the algorithm creates a text node in the list of children of

the rightmost element in S at the current depth d (see below), provided that it

does not already contain the text node.

Note that the algorithm requires knowledge of what is the rightmost element

of the tree of S at a given depth. This is because, during the depth-first traversal

of the instance document D, the element in S that corresponds to the parent of

the current element of D (for depth d) is the rightmost element of S at depth d.

We now discuss the correctness of the SAX-based XMLDSS generation algo-

rithm w.r.t. to Definition 4.1, using the same two properties (P1) and (P2) as

for the DOM-based algorithm.

To show (P1), we need to show that each element-element, element-attribute

and element-text relationship in D appears at least once in S. Assume otherwise

for element-element relationships. This would mean that there exists an element-

element relationship (e1, e2) in D that does not appear in S. This is possible only

if (a) e2 in D is not considered and therefore not inserted in S, (b) e2 is considered
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Panel 2: XMLDSS Extraction Algorithm (SAX-based)

Input: XML document D

Output: XMLDSS schema S in its DOM representation
d:=-114

if (encountered the start of an element named elem with attributes atts)15

then
if (d==-1) then16

Create Element r with label elem17

Set r to be the root of XMLDSS schema S.18

else19

Let ep be the rightmost element at depth d in S20

Let children be the list of children of ep in S21

if (children does not contain an element with label elem) then22

Create Element ec with label elem23

Append ec to children in S24

Increase d by 125

Set r or ec to be the rightmost element at depth d in S26

for (each attribute a in atts) do27

if a does not exist in ec then add to ec an Attribute with label a28

else if (encountered the end of an element named elem ) then29

Decrease d by 130

else if (encountered a text node) then31

Let ep be the rightmost Element of S at depth d32

Let children be the list of children of ep in S33

if (children does not contain any text nodes) then34

Append text node with content “Text” to the list of children of ep35
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but not added to S or (c) e2 is added erroneously to the list of children of another

element e3 in S. The first case cannot occur because of line 15 in Panel 2, which

shows that every element in D is considered. The second case cannot occur

because of lines 17-18 and 23-24, which show that every element in D is added

in S, unless it is already present in the list of children of a certain element. The

third case cannot occur because when the current pointer in D is at an element e,

the current pointer in S is at the corresponding element e in S. This is achieved

by maintaining the rightmost element of S for each individual depth value d:

when the current element in D at depth d is e2 and has parent element e1, the

rightmost element of S at that depth has the same label as e1 in D. A similar

argument can be used for element-text and element-attribute relationships.

To show (P2) we use structural induction, having as a starting point the fact

that D and S have the same root (lines 17-18). As discussed above, an element e

cannot be added to the list of children of an element p in S if it is already present

(lines 22-24), and so the list of children of an element e in S cannot contain

the same element twice. Therefore, the root of S only contains elements with

distinct labels. This process is repeated for each element encountered in D by

means of depth-first traversal using the event-based SAX API. As a result, the

list of children of each element in S only contains elements with distinct labels. It

follows that S does not contain twice any path starting from a root and ending at

an element. A similar argument can be used for paths ending with an attribute

or a text node.

Both algorithms have a complexity of O(E+A+T ), where E, A and T are the

numbers of elements, attributes and text nodes in D respectively. The SAX-based

algorithm has the advantage that, because it is event-based and therefore does

not need to load D into memory first in order to extract its XMLDSS schema, it

avoids a possible memory problem when dealing with large XML documents.

Automatic XMLDSS derivation from a referenced DTD

While it is possible to extract an XMLDSS schema from an XML document

itself, being able to derive it from the DTD or XML Schema accompanying the
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document could be beneficial for two reasons. First, if the XML document is

large, then deriving the XMLDSS schema from an existing DTD or XML Schema

is likely to be more efficient. Also, deriving an XMLDSS schema from an existing

DTD or XML Schema avoids possible XMLDSS schema evolution problems. This

is because the XMLDSS schema that is extracted from an XML document has

the characteristics of a structural summary, i.e. describes the current structure of

the XML document. An XMLDSS schema derived from a DTD or XML Schema

schema, however, describes not only the current structure of the XML document,

but could also contain structure not currently present in the XML document and

representing possible future evolutions of the document.

Another reason for developing algorithms for the derivation of an XMLDSS

schema from an existing DTD or XML Schema is to be able to support homoge-

neous collections of XML documents in native XML databases (NXDBs). If all

documents in a homogeneous collection in an NXDB conform to the same DTD

or XML Schema, then deriving an XMLDSS from this DTD or XML Schema

enables our approach to handle such a collection as a single data source.

Our algorithm for deriving an XMLDSS schema S for an XML document D

from a given DTD T first scans T and populates two auxiliary data structures:

T1 for storing element names and their content model2, and T2 for storing element

names and the attributes related to them. Since multiple XML documents with

different root nodes can conform to the same DTD, our algorithm first inspects

D to infer the appropriate element declaration ed in T . Using ed, we create the

corresponding element es in S, then retrieve from T2 the attribute declarations

relevant to ed and create the corresponding attributes for es in S. Then, the

content model of ed is retrieved from T1 and processed: for each item i in the

content model, if i is an element, the same process as for ed is applied; if it is a

PCDATA or a CDATA node declaration, the corresponding text node is created

in S.

To illustrate, Table 4.3 shows an example DTD and Figure 4.3 shows the

2The content model for an element e in a DTD defines the elements ei allowed in the list
of children e, their ordering within that list and the cardinality of each element ei.
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XMLDSS schema derived from this DTD.

Since declarations in a DTD can be listed in any order, we scan the whole

of T and populate data structures T1 and T2 first; otherwise multiple scans of T

would have to be performed. We currently do not consider entity and notation

declarations, and this is an area of future work.

<!ELEMENT author (name)>
<!ATTLIST author id ID #REQUIRED>
<!ELEMENT author-ref EMPTY>
<!ATTLIST author-ref id IDREF #REQUIRED>
<!ELEMENT book (isbn, title, author-ref*)>
<!ATTLIST book id ID #REQUIRED>
<!ELEMENT isbn (#PCDATA)>
<!ELEMENT library (book+,author*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT title (#PCDATA)>

Table 4.3: Example DTD.

XMLDSS
DOM

library$1_7

name$1_7

author$1_7

Text

book$1_7

Text

isbn$1_7 title$1_7

Text

author_ref$1_7 id

idid

Figure 4.3: XMLDSS Derived from the DTD of Table 4.3 or from the XML
Schema of Table 4.4.
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Automatic XMLDSS derivation from a referenced XML Schema

In contrast to DTD where all declarations have global scope, in XML Schema

it is possible to define both global and local declarations. A global declaration

is always named so that it can be referenced, and is a child element of the root

node of the XML Schema, whereas a local declaration is always unnamed and

is a child of the declaration to which it refers, e.g. a local attribute declaration

appears in the list of children of the element it refers to.

XML Schema allows more types of declarations than does DTD. Our algo-

rithm for deriving an XMLDSS schema S for an XML document D using a given

XML Schema T therefore uses five internal data structures, T1, . . . , T5, to respec-

tively store element declarations, attribute declarations, simple and complex type

declarations, model group declarations3 and attribute group declarations4.

We first retrieve the child elements of the root node of T (the global declara-

tions) and store them in T1, . . . , T5. Since multiple XML documents with different

root nodes can conform to the same XML Schema, we then inspect D to infer

the appropriate global element declaration et in T . We then retrieve the type of

et which may be defined using a globally declared simple or complex type, or via

referencing another globally declared element declaration.

Simple type declarations define data types, so if et in T references such a dec-

laration, we create a text node for es in S, if one does not already exist. The

same applies for complex type declarations that have simple content which also

only allows character content. The other option for a complex type is to contain

a complex content declaration. This may contain one or more attribute or at-

tribute group declarations, element declarations or model group declarations. An

attribute declaration is processed by adding the respective attribute to es, while

an attribute group declaration is processed by handling each attribute declara-

tion similarly. Element declarations are processed by appending an element to

the list of children of es, then processing the type of the element. As a result,

3Model groups are similar to complex type declarations, but do not allow inheritance and
therefore cannot be extended or restricted.

4An attribute group contains related attributes that are commonly used together.
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the XMLDSS schema S is created in a depth-first manner. Finally, model group

declarations in complex types are processed by handling each element declaration

as above.

Our algorithm ignores a number of XML Schema aspects, such as annotations

and key/keyref declarations, as these do not contribute to the content of an

XMLDSS schema. We also currently ignore a number of XML Schema features,

such as substitution groups, and this is an area of future work. Table 4.4 lists an

example XML Schema and Figure 4.3 illustrates the derived XMLDSS schema.

4.3 Overview of our XML Data Transformation/

Integration Approach

We have separated the process of transforming or integrating XML data sources

into two steps. First, a schema conformance phase conforms the source and

target schemas, overcoming the problems stemming from semantic heterogeneity.

Then, a schema transformation phase transforms the source schema into a target

schema, in the case of a data transformation setting, or integrates a set of source

schemas under a global schema, in the case of a data integration setting.

For clarity of presentation, we first present the different application settings

for the schema transformation phase, assuming that there is no semantic het-

erogeneity. We then drop this assumption and show how our approach handles

semantic heterogeneity within the schema conformance phase.

4.3.1 Schema Transformation Phase

The schema transformation phase can be applied in three distinct settings: in

a peer-to-peer data transformation setting, where two peers wish to allow the

exchange of data between them; in a top-down data integration setting, where the

global schema is predefined and the data source schemas need to be transformed

to match it, regardless of any loss of information that may occur; or in a bottom-

up data integration setting, where there is no predefined global schema and the
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<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.dcs.bbk.ac.uk/~lucas"

xmlns="http://www.dcs.bbk.ac.uk/~lucas" elementFormDefault="qualified">

<xs:attribute name="id" type="xs:string"/>

<xs:element name="library">

<xs:complexType>

<xs:element name="book" type="bookType" minOccurs="1" />

<xs:element name="author" type="authorType" minOccurs="0" />

<xs:key name="bookKey">

<xs:selector xpath="./book"/> <xs:field xpath="@id"/>

</xs:key>

<xs:key name="authorKey">

<xs:selector xpath="./author"/> <xs:field xpath="@id"/>

</xs:key>

<xs:keyref name="bookAuthorKeyRef" refer="bookKey">

<xs:selector xpath="//book/author-ref"/> <xs:field xpath="@id"/>

</xs:keyref>

</xs:complexType>

</xs:element>

<xs:complexType name="bookType">

<xs:all>

<xs:element name="isbn" type="xs:string" minOccurs="1"maxOccurs="1"/>

<xs:element name="title" type="xs:string"minOccurs="1"maxOccurs="1"/>

<xs:element name="author-ref" type="authorKeyRefType" minOccurs="1"/>

<xs:comlexType>

<xs:attribute name="id" use="required"/>

</xs:complexType>

</xs:element>

</xs:all>

<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="authorType">

<xs:all>

<xs:element name="name" type="xs:string" minOccurs="1"maxOccurs="1">

<xs:comlexType>

<xs:attribute name="id" use="required"/>

</xs:complexType>

</xs:element>

</xs:all>

<xs:attribute name="id" type="xs:string" use="required"/>

</xs:complexType>

</xs:schema>

Table 4.4: Example XML Schema.
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information from all the data sources needs to be preserved within the global

schema that is generated.

To support these three different settings, we have developed a schema restruc-

turing algorithm (SRA), which automatically restructures a source schema S to

a target schema T , eliminating schematic heterogeneity. The SRA restructures S

into T using the BAV approach, thus creating a transformation pathway S → T

— the inverse pathway S ← T can then be automatically derived due to the

reversibility of BAV transformations. We assume that S and T have been pre-

viously semantically conformed, i.e. that the earlier schema conformance phase

has addressed any 1–1, 1–n, n–1 and n–m semantic relationships between schema

constructs of S and T (see discussion on semantic heterogeneity in Chapter 2).

Therefore, we consider an element in S to be equivalent to an element in T if and

only if they have the same element identifier elementName$count.

We give a high-level description of the SRA below, where we discuss the appli-

cation of the schema transformation phase in the three transformation/integration

settings. The SRA is discussed in detail in Chapter 5, together with an evaluation

of its complexity. Chapter 6 then discusses an extension of the SRA, which is

able to use information that identifies an element/attribute in S to be equivalent

to, a superclass of, or a subclass of an element/attribute in T .

We now consider in turn each one of the three settings that our schema trans-

formation phase supports. We also discuss the correctness of the application of

the SRA in each setting.

Peer-to-peer data transformation

Figure 4.4 illustrates a peer-to-peer transformation setting, where schemas S1 and

S2 of peers P1 and P2 need to be mapped for the purpose of exchanging data be-

tween P1 and P2. In this setting, the schema transformation phase takes as input

schemas S1 and S2 and produces a transformation pathway that contains a grow-

ing phase followed by a shrinking phase. In the growing phase, constructs from

S2 not present in S1 are inserted into S1 and, in the shrinking phase, constructs

from S1 not present in S2 are removed from S1.

101



The schema transformation phase in this setting is supported by our schema

restructuring algorithm (SRA). Since BAV pathways are bidirectional, the shrink-

ing phase in pathway S1 → S2 is a growing phase in the reverse pathway, S1 ← S2.

For this reason, the SRA has been implemented so that it applies a growing phase

both on S1, producing intermediate schema IS1, and on S2, producing interme-

diate schema IS2. These intermediate schemas are identical and this is asserted

by automatically injecting a series of id transformations between them, using the

AutoMed API.

S1 IS1
data

source

id
data

source
IS2 S2

Figure 4.4: Peer-to-Peer Transformation Setting.

We note here that if a construct c in S2 is not present in S1, then the SRA adds

c in S1 with an extend transformation and the query Range Void Any, which implies

loss of information. However, as we will discuss in Chapter 5, if c is an Element

construct, the SRA could use an add transformation instead, by generating a

synthetic extent for c, and prevent the loss of information of descendant constructs

of c. The decision of whether or not the SRA should generate a synthetic extent

when possible is made by the user, before the application of the SRA.

After creating a BAV transformation pathway between schemas S1 and S2,

we can now translate data and queries between P1 and P2. For example, the

transformation pathway S1 ↔ S2 can be used to translate an IQL query expressed

on S2 to an IQL query expressed on S1, and the XML wrapper of S1 can be used to

retrieve the necessary data for answering the query. Or, it can be used to translate

an IQL query expressed on S1 to an IQL query on S2, and the XML wrapper

of S2 can be used to retrieve the necessary data for answering the query. Also,

using our materialisation algorithm that we discuss in Section 4.4.2, it is possible

to materialise S2 using the data source of S1, and vice versa. Our materialisation

algorithm follows a query-based approach, which means that retrieving the extent
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of each schema construct c of S2 is performed by issuing c as a query on S2, and

then reformulating and evaluating this query on S1.

In terms of the correctness of the application of the SRA in this setting, the

key requirement is that S1 is transformed into S2 in such a way that S1 and S2

are behaviourally consistent5: schemas S1 and S2 are behaviourally consistent if

for any query QS1 over an instance IS1 of S1 there exists a transformation of S1

to S2, of IS1 to an instance of S2, IS2, and of QS1 to a query over IS2, QS2, such

that the results of QS2 are contained in the results of QS1.

Given the bidirectional pathway S1 ↔ S2 produced by the SRA, a query QS1

over an instance IS1 of S1 is rewritten to QS2 on S2 using GAV reformulation

and the delete, contract and rename steps in pathway S1 → S2. In order to

compare the results of QS1 and QS2, we need to evaluate QS2 over the (virtual or

materialised) instance IS2 of S2 produced by applying the add, extend and rename

steps in S1 → S2 to IS1, e.g. by using a GAV-based XMLDSS materialisation

algorithm6. This is equivalent to rewriting QS2 to a query Q′

S1 on S1 using GAV

reformulation and the delete, contract and rename steps in the reverse pathway

S2 → S1 and evaluating Q′

S1 on IS1.
7 Therefore, in order to show that the SRA

transforms S1 into S2 in such a way that S1 and S2 are behaviourally consistent

we need to show that the results of Q′

S1 are contained in the results of QS1 for any

query QS1 on S1. We note that all the transformations in the pathway S ↔ T

are used in this setting, and that this transformation pathway does not contain

any additional information that could be further exploited by LAV reformulation

techniques.

5This is a generalisation of the concept of behavioural equivalence [AABN82, BR88] to two
schemas that may not, in general, have the same information capacity.

6Our XMLDSS materialisation algorithm, described in Section 4.4.2, cannot be used as-is
for this task. This is because, when materialising XMLDSS constructs, the algorithm does not
retain the instance-level identifiers of the source schema Element and Attribute constructs, but
instead renames them to match those of the constructs being materialised. A version of our
XMLDSS materialisation algorithm that retains the source instance-level identifiers is required
if it is to be used in the context of this correctness investigation.

7The two are equivalent because both GAV-based materialisation and GAV-based reformu-
lation of QS2 to Q′

S1
use the same primitive transformations and thus generate the same GAV

views.
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An example illustrating this discussion is given in Chapter 5, where the SRA

is discussed in detail. A detailed discussion of the correctness of the SRA is given

in Appendix B.

Top-down data integration

Figure 4.5 illustrates a top-down integration setting. In this setting, a global

schema GS is given and the schema transformation phase needs to generate a

transformation pathway between each data source schema LSi and GS, without

necessarily preserving the information capacity of the data source schemas.

The schema transformation phase in this setting is supported by the applica-

tion of the SRA for each pair of schemas (LSi, GS). For each such pair, the SRA

generates a pathway that transforms LSi into GS in the same way as in the peer-

to-peer setting. Thus, from the discussion on the correctness of the peer-to-peer

setting in Appendix B, it follows that each such pair of schemas is behaviourally

consistent.

After creating BAV transformation pathways between each pair of schemas

(LSi,GS), we can now use the AutoMed GQP to process an IQL query Q ex-

pressed on GS against all or some of the data sources. The transformation path-

ways LSi ↔ GS can be used to reformulate Q into an IQL query Qref suitable for

evaluation by the data sources, and the XML wrappers of the data sources can be

used to retrieve the necessary data for answering Qref . Also, the materialisation

algorithm we discuss in Section 4.4.2 can be used to materialise GS using all or

some of the data sources.

As discussed in Chapter 3, the integration semantics in AutoMed are user-

defined, with the default being ‘append’ semantics. In our XML data transfor-

mation and integration approach we use the default semantics. Note that if a

different integration logic were required, e.g. one that deals with the elimina-

tion of duplicates at a data level, schema GS could be transformed further, with

additional queries specifying the integration logic being supplied by the user.
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Figure 4.5: Top-Down Integration Setting.

Bottom-up data integration

Figure 4.6 illustrates a bottom-up integration setting. In this setting a global

schema does not exist, and the schema transformation phase needs to produce a

global schema GS that preserves all the information of the data sources LS1 . . . LSn,

but that does not contain duplicate Element or Attribute constructs, and also pro-

duce the transformation pathways from LS1 . . . LSn to GS.

An initial global schema may be provided by the user, which is used as a

starting point for producing the global schema. This can be either one of the

data source schemas, or a completely different schema. If the user does not

provide an initial global schema, one of the data source schemas is randomly

chosen for this purpose. In the following, we will assume that the initial global
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Figure 4.6: Bottom-Up Integration Setting.

schema is data source schema LS1.

The schema transformation phase in this setting is supported by a schema

integration algorithm and the SRA. Using LS1 as the initial global schema, GS1,

our schema integration algorithm (see below) is applied to LS2 and GS1, pro-

ducing a new global schema GS2 that preserves the information capacity of both

LS2 and GS1. LS2 is then restructured to match GS2 by applying the SRA to

LS2 as the source schema and GS2 as the target schema. Schemas LS3, . . . , LSn

are integrated similarly: for each LSi, we first apply the schema integration algo-

rithm to LSi and GSi−1, producing the new global schema GSi that preserves the

information capacity of both LSi and GSi−1; we then restructure LSi to match

GSi, by applying the SRA to LSi and GSi.
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Our schema integration algorithm applied to each pair LSi and GSi−1 pro-

duces a schema GSi that contains all constructs of GSi−1 and all concepts8 of

LSi. The algorithm consists only of a growing phase, which uses extend transfor-

mations to add to GSi−1 those Element and Attribute constructs that are present

in LSi but not in GSi−1.

Note that, if schema GSi−1 already contains ElementRel constructs 〈〈i, p, e〉〉

and 〈〈j, e, Text〉〉, we do not add to GSi−1 an Attribute construct 〈〈p, e〉〉, since

the SRA can derive the extent of 〈〈p, e〉〉 by joining the two latter constructs.

Similarly, we do not add to GSi−1 an Element 〈〈e〉〉 with parent 〈〈p〉〉 if GSi−1

already contains an Attribute 〈〈p, e〉〉, since the SRA can derive the extents of 〈〈e〉〉,

〈〈i, p, e〉〉 and 〈〈j, e, Text〉〉 using the extent of 〈〈p, e〉〉 (thus, there is no information

loss in terms of Element and Attribute constructs, since the application of the

SRA on LSi and GSi results in only add and delete transformations for such

constructs).

Also, we do not add any ElementRel constructs present in LSi but not in

GSi−1, because it is possible to derive their extents through the use of path

queries on GSi−1. When deleting these ElementRel constructs from LSi, the SRA

is able to use delete transformations, rather than contract ones, depending on

whether or not the user has opted for synthetic extent generation (as per our

discussion for the peer-to-peer setting). Similarly, ElementRel constructs present

in GSi but not in LSi are added to LSi using add transformations, if the user

has opted for synthetic extent generation, otherwise extend transformations may

also be used. Thus, when the SRA is applied to LSi and GSi, if the user opts

for synthetic extent generation, only add and delete transformations are used

regarding ElementRel constructs; otherwise, extend and contract transformations

may also be used.

We give more details of this algorithm in Chapter 5. We note that our schema

8Since the SRA is able to perform element-to-attribute and attribute-to-element transfor-
mations, adding to GSi−1 Element constructs of LSi that are present in GSi−1 as Attribute
constructs, and vice versa, will not add any information to GSi−1. Therefore, our schema inte-
gration algorithm does not add to GSi−1 such constructs of LSi., since the concepts they refer
to are already present in GSi−1
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integration approach follows the ladder strategy [BLN86], which was discussed in

Chapter 2.

Regarding the correctness of our bottom-up integration setting, we need to

show that the final global schema GSn preserves the information capacity of all

data sources LS1 . . . LSn. This amounts to showing that, given a pair of schemas

(LSi, GSi−1), the new global schema GSi preserves the information capacity of

both LSi and GSi−1. First, we note that GSi preserves the information capacity

of GSi−1, since it is produced by applying only extend transformations to GSi−1.

Therefore, any query QGSi−1 on GSi−1 will have the same results with query

Q′

GSi−1, produced by reformulating QGSi−1 first using pathway GSi−1 → GSi,

and then using pathway GSi → GSi−1. Second, we need to show that GSi

preserves the information capacity of LSi. As discussed above, if the user opts

for synthetic extent generation, the pathway LSi ↔ GSi does not contain any

extend or contract steps; otherwise, the pathway may also contain extend and

contract steps. Therefore, any pair of queries QLSi and Q′

LSi on LSi, where

Q′

LSi is produced by reformulating QLSi first using pathway LSi → GSi, and

then using pathway GSi → GSi, will have the same results if the user opts for

synthetic extent generation; otherwise the results of Q′

LSi will be contained in the

results of Q′

LSi.

The structure of the final global schema GSn clearly depends on the order

of integration of LS1, . . . , LSn, in that it will be identical to LS1, successively

augmented with missing constructs appearing in LS2, . . . , LSn. If a different

integration order is chosen, then the structure of the final global schema may be

different, although containing the same concepts (see Footnote 8).

After the integration of schemas LS1 . . . LSn and the generation of the global

schema GSn, we can use the AutoMed GQP to process queries expressed on GSn

against all or some of the data sources, and we can also materialise GSn using all

or some of the data sources. Global querying and materialisation are discussed

in Section 4.4.
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4.3.2 Schema Conformance Phase

The schema conformance phase handles problems originating from semantic and

data type heterogeneity between schemas. Chapter 2 provided a review of such

problems along with a number of techniques used for overcoming them.

Our XML data transformation and integration approach does not constrain

the method used to perform schema conformance. Here we briefly describe two

such methods: using schema matching [RB01] and using correspondences to on-

tologies [ABFS02]. Both methods can be used to generate fragments of AutoMed

transformation pathways semi-automatically. Different schema conformance tech-

niques could have different outputs in terms of the fragments of transformation

pathways generated. For example, in a peer-to-peer setting, it is most natural

for schema matching techniques to modify only one of the two schemas, e.g. S1,

producing a new schema S ′

1 and a pathway S1 ↔ S ′

1. Conversely, a technique

using correspondences to ontologies would most naturally modify both schemas

and produce two new schemas S ′

1 and S ′

2 and transformation pathways S1 ↔ S ′

1

and S2 ↔ S ′

2. We now discuss both approaches in more detail.

Schema conformance using schema matching

A schema matching tool (such as COMA++ [ADMR05]) can be used to au-

tomatically produce matches between two XMLDSS schemas S1 and S2, which

(possibly after manual refinement) can then be used to automatically transform

either schema S1 into an intermediate schema S ′

1 or schema S2 into an interme-

diate schema S ′

2.

As discussed in Chapter 2, the matches between schemas S1 and S2 would

be of four types, 1–1, n–1, 1–n and n–m. In our context, these matches can be

used to generate 1, 1, n or m add transformations, followed by 1, n, 1 or n delete

transformations, respectively. Chapter 5 explores the application of this schema

conformance technique.
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Schema conformance using ontologies

Consider a setting in which two XMLDSS schemas S1 and S2 are each semantically

linked to an ontology, O, by means of a set of correspondences. Assume that the

language in which O is defined is known to the AutoMed MDR and that O is

expressed as an AutoMed schema. The correspondences may be defined by a

domain expert or extracted by a process of schema matching from the XMLDSS

schemas and/or underlying XML data. Each correspondence maps an XMLDSS

element or attribute construct to an IQL query over the ontology schema, and

there may be more than one correspondences for the same XMLDSS construct

(so the correspondences are potentially GLAV mappings).

Then, these correspondences can be used to automatically generate trans-

formation pathways from S1 and S2 to intermediate schemas S ′

1 and S ′

2. The

schemas S ′

1 and S ′

2 will be conformed, in the sense that they will use the same

terms for the same ontology concepts.

It is also possible to cater for settings where schemas S1 and S2 are linked to

different ontologies O1 and O2, provided that there already exists an AutoMed

transformation pathway between O1 and O2, possibly via one or more interme-

diate ontologies. In such a setting, the initial set of correspondences C1 between

S1 and O1 can be automatically transformed into a new set of correspondences

C ′

1 between S1 and O2, and the original setting where two XMLDSS schemas S1

and S2 are linked to the same ontology will now apply. The application of this

schema conformance technique is discussed in more detail in Chapter 6.

4.4 Querying and Materialisation

After the schema conformance and schema transformation phases have removed

semantic and schematic heterogeneities between the source and the target or

global schemas, the target or global schema can be queried or materialised.

This section discusses XML-specific query processing and materialisation as-

pects of AutoMed. We first describe the XML Wrapper components that we

110



have developed for the AutoMed Wrapper architecture, introduce instance-level

unique identifiers for XML data sources and explain their usage, and present a

component for translating XQuery queries, submitted to an XMLDSS schema,

into IQL queries on the same schema. We then present two algorithms for mate-

rialising an XMLDSS schema, S, using data from one or more of the data sources

that S is linked to via AutoMed transformation pathways. The first algorithm

uses the AutoMed Query Processor to materialise S, and the second algorithm

generates an XQuery query for performing the same task, i.e. does not interact

with AutoMed when executed.

4.4.1 Querying an XMLDSS Schema

AutoMed XML Wrappers

The AutoMed XML Wrapper components and their relationship with the ab-

stract AutoMedWrapper and AutoMedWrapperFactory components are illustrated

in Figure 4.7.

The functionality of the XMLWrapperFactory component is twofold. First, to

define the XMLDSS modelling language in the MDR component of the AutoMed

Metadata Repository, if it does not already exist. Second, it contains a number

of XML-specific options which the XMLWrapper instances it produces take into

consideration. One of these options specifies whether an XML data source will

be validated against its accompanying DTD or XML Schema, if one exists. The

other options are in regard to handling of whitespace, i.e. whether whitespace

will be preserved or not when querying a data source.

The XMLWrapper component implements querying functionality common to

any type of XML Wrapper, such as translating an IQL scheme to an XPath query,

and also defines the functionality that its subclasses must implement. Currently,

the XML data integration toolkit supports DOM-based and SAX-based Wrappers

for XML documents, and also XML documents stored within the eXist9 native

XML database.

9See http://exist.sourceforge.net/
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Figure 4.7: The AutoMed XML Wrapper Architecture.

The DOMWrapper can accept simple node and edge queries and translates

these into XPath queries. The SAXWrapper supports the same types of queries

and is preferable for large XML documents which could create memory problems

for the DOM-based wrapper. The NXDBWrapper can currently translate only

IQL schemes into XPath expressions, but it is currently being extended to be

able to translate IQL queries representing select-project-join-union queries into

XQuery FLWR expressions. Finally, the EXISTWrapper interacts with an eXist

data source and evaluates the queries produced by the NXDBWrapper.

Instance-Level Unique Identifiers

As discussed in Section 4.2.3, each element in an XMLDSS schema is identified

by an identifier of the form elementName$count sid. While the element name,

the element counter and the schema identifier are sufficient for disambiguating

between elements in XMLDSS schemas, another counter is needed to uniquely
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identify between instances of an XMLDSS element within AutoMed. We therefore

use instance-level unique identifiers for element instances, which are of the form

elementName$count sid&instanceCount, where instanceCount is the instance

counter. Each XML Wrapper type is responsible for generating this identifier

on-the-fly when retrieving data from an XML data source.

Note that if a schema S has been transformed to a schema T , then the result

of a query submitted on T and evaluated over the data source of S may contain

Element instance-level identifiers that do not correspond to the schema-level iden-

tifier(s) of T specified in the query, due to the transformations in S → T . While

this is to be expected when querying T over the data source of S, Section 4.4.2

discusses how our materialisation algorithm does conform the instance-level iden-

tifiers of S to the schema-level identifiers of T when materialising T using the

data source of S.

XQuery Translation

As discussed in Chapter 3, AutoMed’s Translator component is used to translate

queries expressed in a high-level query language into IQL queries. This component

serves as an abstract class and gives no implementation for any specific query

language.

We have therefore developed the XQueryTranslator component, which can be

used to translate XQuery user queries submitted to an XMLDSS schema into

IQL queries and pass these on to the GQP for further processing and evaluation.

The component is also responsible for translating IQL results back into XQuery

to present to the user.

The XQueryTranslator is able to translate a subset of XQuery into IQL. In par-

ticular, it can translate IQL queries representing select-project-join-union queries

into XQuery FLWR expressions. Figure 4.8 illustrates the end-to-end support for

XQuery in the AutoMed system, assuming interaction with an eXist data source.

As an example, consider the following query submitted for evaluation against

the XML document of Figure 4.1 stored in an eXist database (its corresponding

XMLDSS schema is shown in Figure 4.2):
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for $x in /root/customer,

$y in $x/name/text(),

$z in $x/account/site/function/text()

where $z = "Business"

return $y

IQL
query

GQPXQuery
Translator

eXist
data sourceIQL

result

eXist
Wrapper

XQuery
query

XQuery
result

IQL
query

IQL
result

XQuery
query

XQuery
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Figure 4.8: Translation to and from XQuery in AutoMed.

The query is first translated by the XQueryTranslator into the following IQL query:

[$y|{$xroot1, $xcustomer1} ← 〈〈1, root$1, customer$1〉〉;

{$xcustomer1, $zaccount1} ← 〈〈2, customer$1, account$1〉〉;

{$zaccount1, $zsite1} ← 〈〈2, account$1, site$1〉〉;

{$zsite1, $zfunction1} ← 〈〈2, site$1, function$1〉〉;

{$zfunction1, $z} ← 〈〈1, function$1, text〉〉;

{$xcustomer1, $yname1} ← 〈〈1, customer$1, name$1〉〉;

{$yname1, $y} ← 〈〈2, name$1, text〉〉; (=) $z ′Business′]

The EXISTWrapper can currently handle only single-scheme queries, therefore

the GQP sends each of the above to the EXISTWrapper, which translates them to

equivalent XPath queries. The wrapper then submits these XPath queries to the

eXist database, receives the query results and formulates the IQL extents of the

schemes based on these results. The results are then passed back to the GQP,

to proceed with the evaluation of the query. The IQL result obtained from the

GQP is as follows:

[’John Smith’,. . .]

114



and is returned to the XQueryTranslator, which will then translate the IQL result

into a valid XQuery result.

4.4.2 Materialising an XMLDSS Schema Using AutoMed

This section describes the materialisation of an XMLDSS schema S using data

from one or more of the data sources that S is linked to via AutoMed transfor-

mation pathways. Our materialisation algorithm is listed in Panel 3. We see that

it first materialises the root node of S, RS, along with any attributes and text

nodes it may have, and then considers all ElementRel constructs in a depth-first

fashion to materialise all other schema constructs. It obtains the data needed

to populate a schema construct by invoking AutoMed’s Global Query Processor

(GQP) using the schema construct as the global query and employing GAV query

reformulation.

An issue that arises during the materialisation is to ensure the correct parent-

child relationships in S. For this purpose, we exploit the instance-level unique

identifiers of the ElementRel constructs to correctly identify the parent of each

element instance (line 42 of Panel 3).

As discussed in Section 4.4.1, when a query is submitted to S, the result may

contain instance-level Element identifiers that do not correspond to the schema-

level Element identifier of S specified in the query. Our materialisation algorithm

uses the schema-level identifier of S specified in the query together with the

size of the query result to create the correct labels for Element instances in the

materialised instance of S (line 43). This means that if we were to re-extract the

XMLDSS schema from the materialised instance, this would be identical to S.

Our materialisation algorithm assumes that the size of the extent of the root

node is exactly 1. However, it is possible that in an integration scenario, a target

or global schema may have a root element whose extent size is greater than 1.

Such cases can be handled in three different ways, according to the needs of the

integration setting.

The first solution is to introduce a generic root node Rgeneric in the materialised
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Panel 3: XML DataSource Schema Materialisation Algorithm

Input: XMLDSS schema S in its DOM representation; data source
schemas LSi and their associated data sources DSi; AutoMed
repository containing the transformation pathways LSi → S

Output: Doc — XML document which is an instance of S, both as DOM
document in memory and as file on disk

// Create the root node of DOM document

Create the root element, RDoc, of Doc, setting its name to be the name of36

the root element of S, RS.
Create the attributes of RDoc, setting their name to be the same as the37

attributes of RS (if any); populate the attributes by retrieving their
extents using the GQP.
// Create the rest of the DOM document:

for (every non-root element CS in S in a depth-first traversal of S) do38

Let PS be the parent of CS in S and PDoc be the (already materialised)39

instances of PS in Doc.
Retrieve the extent of 〈〈P, C〉〉 using the GQP.40

for (every pair (p, c) in the extent of 〈〈P, C〉〉) do41

Locate element p in PDoc.42

Append c to the list of children of p.43

Materialise the attributes of c in the same manner as the attributes44

of RDoc in step 37.

Serialise the DOM document to a file on disk.45

instance. The list of children of Rgeneric will contain the instances of the actual

root node of S. This solution violates the definition of XMLDSS in that Rgeneric

is not present in S, but this may not be problematic in the given setting.

The second solution resolves the problem by introducing a generic root node

Rgeneric into S prior to materialisation, thus forming a new schema S ′, then

materialising S ′ instead of S. This solution involves creating a synthetic extent

for Rgeneric and for the ElementRel from Rgeneric to the actual root node of S.

The third solution considers the fact that homogeneous collections in native

XML databases are designed to contain a number of documents with the same or

similar structure. In such a setting, the materialisation algorithm can materialise

S by producing n XML documents, where n is the size of the extent of the root
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node of S.

Our materialisation algorithm is tree-based: the instance of S is first created

in memory using DOM, then serialised in an XML document on disk using an

existing DOM-based serialisation engine. This means that the algorithm can

be significantly affected in terms of performance when materialising large XML

documents, due to large memory consumption.

The solution to this problem would be to provide an event-based material-

isation algorithm to avoid memory issues. There are many different strategies

that one can follow to develop such an algorithm. One strategy is to traverse

the XMLDSS schema in a depth-first or breadth-first fashion and materialise one

construct at a time, maintaining at the same time multiple pointers in the mate-

rialised document. These pointers are needed to be able to determine where to

insert the instances of the current construct without reparsing the materialised

document — this clearly has a greater impact on the breadth-first strategy.

Regardless of the type of the traversal, such an approach would have to update

the document pointers after materialising the instances of a construct. To avoid

the usage of pointers, another strategy would be to materialise the XMLDSS

schema in a document depth-first fashion, i.e. first materialise the root of the

document, then the first child instance of the root, then the first child instance

of that element etc. This strategy does not require document pointers, but has

two disadvantages. First, we would need to keep a record of which instances of

each construct have been materialised, and, second, we would need to query each

construct as many times as the number of instances of its extent — except, of

course, if it has no child instances.

It is evident from this discussion that developing an event-based materiali-

sation algorithm is not straightforward and we leave this as a matter of future

work.

117



4.4.3 Materialising an XMLDSS Schema Using XQuery

The previous section presented an algorithm that uses the AutoMed’s GQP to

materialise an XMLDSS schema S using data from one or more data sources

that S is linked to via AutoMed transformation pathways. We now describe an

algorithm that generates an XQuery query for performing the same task, so that

the materialisation of S does not interact with AutoMed when executed. This

XQuery approach is expected to ease the adoption of our approach by third-party

software tools, assuming they support XQuery. We note that the implementation

of the XQuery generation algorithm is an item of future work.

Our XQuery generation algorithm is listed in Panel 4. We first create the IQL

view v of each construct c of S using AutoMed’s GQP and GAV reformulation

(line 48), and then translate each v into an equivalent XQuery query vx (line 49).

Our IQL-to-XQuery translator currently supports a subset of the XQuery query

language, and in particular can translate select-project-join-union IQL queries

into XQuery FLWR expressions. We also note that the schema restructuring al-

gorithm described in Chapter 5 and the extended schema restructuring algorithm

described in Chapter 6 use custom IQL functions to generate synthetic extent and

avoid loss of information during data transformation. Therefore, part of the IQL-

to-XQuery translator’s functionality is to create the equivalent XQuery functions.

We then create a single XQuery query Q for materialising S by following

a bottom-up approach. In particular, we first create the XQuery queries for

materialising the leaf elements ei of S, together with their attributes and child text

nodes (line 53). We then use these queries to create the queries that materialise

the parent elements of ei, together with their attributes and text nodes (line 58-

62). We repeat this process for the parent elements of the parent elements of ei,

and so forth, until query Q is formulated (line 56-63).

In lines 53 and 60, the algorithm creates XQuery queries that are able to mate-

rialise Element constructs of S using data from the data sources of S1 . . . Sn. These

queries create Element instances whose labels are instance-level unique identifiers.

This is because, in order to preserve the correct parent-child relationships in the

materialised instance of S, the XQuery queries in line 60 perform equijoins, and
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Panel 4: XQuery Query Generation Algorithm
Input: XMLDSS source schemas S1 . . . Sn, XMLDSS target schema S
Output: XQuery query Q able to materialise S using data from S1 . . . Sn

/* Create an XQuery view for each construct c of S */

let views be an array with two columns;46

for (each construct c of S) do47

Create IQL view v of c;48

Translate v into an equivalent XQuery view, vx;49

Add (c, vx) to views;50

/* Create XQuery queries for leaf Element constructs ei */

let ei be the leaf Element constructs of S;51

for (each ei) do52

Create XQuery query qei
materialising ei, its Attributes and child text nodes;53

Replace (ei, vx) in views with (ei, qei
);54

/* Create XQuery query Q that materialises S */

let parentsList be a list containing the parent Element constructs of ei;55

while (parentsList does not contain a single Element, the root) do56

let elems be a list containing the Element constructs of parentsList;57

while (elems is not empty) do58

let p be the first item of elems;59

Create an XQuery query qp that uses views to materialise p, its60

Attributes and its child nodes;
Replace (p, vx) in views with (p, qp);61

Remove p from elems;62

let parentsList contain the parent Element constructs of the Element63

constructs in parentsList;

contain a WHERE clause that makes use of these identifiers.

4.5 Summary

In this chapter we have described the building blocks of our XML data trans-

formation and integration approach. In particular, we have illustrated how we

handle syntactic, semantic, schematic and data type heterogeneity and we have

discussed querying and materialising the target or integrated schema.

A number of contributions have been made in this chapter. Concerning syn-

tactic heterogeneity, we have identified the desirable characteristics of an XML
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schema type in a data integration setting and we have reviewed the most promi-

nent XML schema types against these characteristics. We then introduced a new

XML schema type, XML DataSource Schema (XMLDSS), as a more appropriate

XML schema type for a data transformation/integration setting. This XMLDSS

schema type is used in our approach and supports any regular XML language.

Apart from [YLL03] and Clio [PVM+02], which were developed in parallel with

our work, all other approaches are DTD- or XML Schema-specific.

Concerning application settings, we have defined a modular approach to XML

data transformation and integration which is able to resolve syntactic, schematic

semantic and data type heterogeneity in three distinct settings, namely peer-to-

peer data transformation, top-down data integration and bottom-up data inte-

gration, using a schema conformance and a schema transformation phase. Based

on our discussion of model management in Chapter 2, each of these two phases

could be considered as a model management operator, overloaded to cater for

each of the three settings. Also, each operator would need to provide a different

implementation depending on the approach used, e.g. schema matching or the

use of ontologies for the schema conformance phase. Compared to existing ap-

proaches, our approach distinguishes between schema conformance and schema

transformation as a means of separating the manual and semi-automatic aspects

from the automatic aspects of XML schema and data transformation/integration.

Furthermore, compared to other approaches, we have identified data type hetero-

geneity as a significant issue that needs to be addressed, and Chapter 6 and the

bioinformatics service reconciliation application setting of Chapter 7 discuss this

further.

Concerning querying support, we have developed components for accessing

XML data sources either using XQuery or via the DOM and SAX APIs and we

have also developed a component for translating XQuery into IQL. As a result,

the specifics of IQL query processing in AutoMed are transparent to users of our

XML data transformation and integration toolkit.

In addition to virtual transformation and integration, our approach also caters

for materialised data transformation and integration, as we have also developed
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two algorithms for materialising an XMLDSS target or global schema. Compared

to the work of [AL05] on materialising a target schema T in an XML data ex-

change setting (discussed in Chapter 2), our approach is focussed on producing

a single instance of T , based on inferring a single BAV pathway between S and

T from the naming and structural relationships between constructs of S and T

(details of this will be presented in Chapter 5, when we describe our SRA al-

gorithm in full). In contrast, the solutions to the XML data exchange problem

studied in [AL05] may be many, and possibly infinite. Our approach produces

a BAV pathway between S and T , and in particular produces GAV mappings

defining the extent of each schema construct of T in terms of those of S. Either

of our materialisation algorithms then use GAV query processing to produce a

single instance of T . In contrast, [AL05] considers the case of an arbitrary set of

given source-to-target dependencies between S and T (which can be thought of

as GLAV mappings), which may or may not be sufficiently informative to infer

a single extent for each schema construct of T . Also, [AL05] generates distin-

guished null values for elements and attributes of T for which data values cannot

be inferred, whereas our approach does not generate any null values.

121



Chapter 5

Schema and Data Transformation

and Integration

5.1 Introduction

In Chapter 4 we introduced our approach to XML data transformation and inte-

gration, and in particular we discussed how our approach handles different XML

data transformation and integration settings. This chapter describes in more de-

tail the schema conformance and schema transformation phases of our approach.

We first investigate a peer-to-peer data transformation setting. We then discuss

the integration of multiple XML data sources in a top-down and in a bottom-up

integration setting.

The chapter is structured as follows. Section 5.2 first presents a running

example for the chapter. Section 5.3 describes how schema matching can be used

as a schema conformance method in our approach. Section 5.4 gives a detailed

description of our schema restructuring algorithm, demonstrates its application

using the running example, and analyses its complexity. Section 5.5 discusses the

integration of multiple XML data sources under a global schema in a top-down or

bottom-up integration setting. Finally, Section 5.6 summarises the contributions

of this chapter.
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5.2 Running Example for this Chapter

Tables 5.1 and 5.2 illustrate two XML documents, D1 and D2 respectively, con-

taining data about books and their authors. Figure 5.1 illustrates the XMLDSS

schemas of these documents: schema S corresponds to document D1 and schema

T to document D2; schema Sconf relates to the schema conformance phase and will

be discussed in Section 5.3. We note that, for presentational purposes, throughout

this chapter Element constructs will be represented using only their name rather

than their complete schema-level identifiers (which we discussed in Chapter 4).

A first examination of schemas S and T shows that they are quite similar.

One difference is that schema S contains information about publishers, whereas

schema T does not. Further examination also reveals a number of semantic and

schematic differences between them. An example of semantic heterogeneity is

that element 〈〈topic〉〉 in schema S is termed 〈〈genre〉〉 in schema T . An example

of schematic heterogeneity is that while element 〈〈topic〉〉 in S is located under

element 〈〈root〉〉, the equivalent element 〈〈genre〉〉 is located under element 〈〈book〉〉

in T . Another example of schematic heterogeneity is that ISBN information

in S is contained within an element under element 〈〈book〉〉, whereas in T this

information is contained within an attribute attached to element 〈〈book〉〉.

The above examples of heterogeneity can be easily categorised as ‘semantic’

or ‘schematic’. However, it is not always straightforward to determine whether

a matching constitutes a semantic or a schematic heterogeneity problem, and

consequently whether it should be handled by the schema conformance or the

schema transformation phase. Our running example contains two examples of

such matchings. Attribute 〈〈author, dob〉〉 matches attributes 〈〈author, birthday〉〉,

〈〈author, birthmonth〉〉 and 〈〈author, birthyear〉〉 in T (so this is a 1–n matching), and

attributes 〈〈author, firstn〉〉 and 〈〈author, lastn〉〉 in S match element 〈〈name〉〉 and

its link to construct 〈〈Text〉〉 in T (so this is an n–m matching).

Resolving such matchings undoubtedly requires schema transformation. There-

fore, it can be argued that such matchings should be resolved within the schema
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<root>

<topic type="Sports and Hobbies">

<author firstn="P." lastn="Dawson" dob="1932 01 05">

<book>

<ISBN>J234532677</ISBN>

<title>Principles of Knot-Tying</title>

<publisher>Coles Publishers</publisher>

</book>

<book>

<ISBN>R654354414</ISBN>

<title>Paul Dawson’s Knot Craft</title>

<publisher>Kindersley Ltd</publisher>

</book>

...

</author>

...

</topic>

<topic type="Mathematics">

<author firstn="B.J." lastn="Whitehead" dob="1945 05 07">

<book>

<ISBN>A0B1C1D6E2</ISBN>

<title>Linear Algebra</title>

<publisher>Kindersley Ltd</publisher>

</book>

...

</author>

...

</topic>

...

</root>

Table 5.1: Source XML Document D1

transformation phase by providing the necessary information to that phase. How-

ever, any matching that is not 1–1 essentially addresses a difference in the gran-

ularity of information representation, and, as discussed in Chapter 2, this is a

semantic heterogeneity issue.

Our approach handles such matchings either in the schema conformance phase

or in the schema transformation phase, depending on the schema conformance

technique employed. In this chapter, we assume that schema matching is em-

ployed as the schema conformance technique. This technique is performed pair-

wise between schemas and is able to resolve 1–1, 1–n, n–1 and n–m semantic
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<root>

<author birthday="05" birthmonth="10" birthyear="1955">

<name>N.A. Buddy</name>

<item>

<book ISBN="0A7B21C6D2">

<title>Principles of Computing </title>

<year>1995</year>

<genre type="Computer Science"/>

</book>

</item>

...

</author>

<author birthday="24" birthmonth="11" birthyear="1951">

<name>K. Ashley</name>

<item>

<book ISBN="K568732253">

<title>Ultimate Book of Knots</title>

<year>2000</year>

<genre type="Sports and Hobbies"/>

</book>

</item>

...

</author>

...

</root>

Table 5.2: Source XML Document D2

heterogeneity. Thus, in this context, the schema restructuring phase just needs

to address 1–1 structural heterogeneity. Chapter 6 explores an alternative ap-

proach to schema conformance, namely using correspondences from each schema

to one or more ontologies. This technique is able to address all types of hetero-

geneity as well, but is performed pairwise between each schema and an ontology,

rather than between the two schemas directly. Thus, S and T are not conformed

with respect to each other, but with respect to one or more ontologies, and so

the schema restructuring phase will need to address other types of heterogeneity

as well, apart from 1–1 structural heterogeneity.

We note that a construct that does not produce a match during the schema

conformance phase is left as it is within a schema, to be handled later by the

schema transformation phase.
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Figure 5.1: Example Source and Target XMLDSS Schemas S and T , and Inter-
mediate Schema Sconf , Produced by the Schema Conformance Phase.

5.3 Schema Conformance Via Schema Matching

This section discusses the use of schema matching as the method to detect and

resolve semantic heterogeneity conflicts between two schemas, S and T , in order

to perform schema conformance in our approach. As discussed in Chapter 2,

schema matching may use schema-level and/or data-level information in order

to detect semantic differences between S and T and suggest possible matchings

between them. Regardless of the technique adopted, a schema matching tool

operating on schemas S and T generates a set of 1–1, 1–n, n–1 and n–m matchings

between S and T that may or may not be correct. The user confirms or rejects the

matchings generated. For each of the confirmed matchings, the user also provides

the queries that specify the specific relationship between the schema constructs

of S and T , i.e. mappings between constructs of S and T . These mappings

are then processed by a BAV pathway generation tool that we have developed,

PathGen, which generates a BAV transformation pathway S ↔ Sconf , such that

Sconf is schema S conformed with respect to T . Referring to our running example,

schema S, illustrated on the left of Figure 5.1, is transformed into schema Sconf ,

illustrated in the middle of Figure 5.1.
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We now describe how PathGen handles each type of matching (1–1, 1–n, n–1,

n–m), and illustrate this using our running example where possible. We note

that a conversion tool is in general required to convert from the output format of

the particular schema matching tool being used to the XML format accepted as

input by PathGen (Appendix A provides the instance of this format as related to

our running example).

When processing a 1–n matching, PathGen generates n add transformations,

each supplied with a user-specified query defining the extent of the new construct

in terms of the original construct, followed by a delete transformation to remove

the original construct (which is now redundant in the schema). In our running

example, suppose that the schema matching tool produces such a match, stating

that dob in S is related to Attribute constructs birthyear, birthmonth and birthday

in T , and that the user then specifies the exact relationship between these at-

tributes using the appropriate IQL queries. This mapping is used by PathGen to

generate the following sequence of transformations on S:

1 addAtt(〈〈author, birthday〉〉,[{x,substring y 8 10}|{x,y}←〈〈author, dob〉〉])

2 addAtt(〈〈author, birthmonth〉〉,[{x,substring y 5 7}|{x,y}←〈〈author, dob〉〉])

3 addAtt(〈〈author, birthyear〉〉,[{x,substring y 0 4}|{x,y}←〈〈author, dob〉〉])

4 deleteAtt(〈〈author, dob〉〉,[{x,concat [y3,’ ’,y2,’ ’,y1]}|{x,y1}←〈〈author, birthday〉〉;

{x,y2}←〈〈author, birthmonth〉〉;

{x,y3}←〈〈author, birthyear〉〉]

In the IQL queries within the transformations above, function concat is used

to concatenate the strings in its input list, while function substring s i1 i2 returns

the substring of s beginning from position i1 and ending at position i2 (inclusive

and non-inclusive respectively).

PathGen processes a 1–1 matching as a special case of a 1–n matching, and

therefore generates one add and one delete transformation in this case. If the

source schema construct has dependent constructs, these need to be handled also.

In our example, suppose that the schema matching tool produces a match stating

that element 〈〈topic〉〉 in S is related to element 〈〈genre〉〉 in T , and that the user
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specifies that they are equivalent. This information is used by PathGen to add El-

ement 〈〈genre〉〉 (transformation 5 below), associate the dependent constructs of

〈〈topic〉〉 with 〈〈genre〉〉 (transformations 6 - 8 ), then delete the dependent con-

structs of 〈〈topic〉〉 (transformations 9 - 11 ), and finally delete Element 〈〈topic〉〉

(transformation 12 ):

5 addEl(〈〈genre〉〉,〈〈topic〉〉)

6 addAtt(〈〈genre, type〉〉,〈〈topic, type〉〉)

7 addER(〈〈1, root, genre〉〉,〈〈1, root, topic〉〉)

8 addER(〈〈1, genre, author〉〉,〈〈1, topic, author〉〉)

9 deleteAtt(〈〈topic, type〉〉,〈〈genre, type〉〉)

10 deleteER(〈〈1, root, topic〉〉,〈〈1, root, genre〉〉)

11 deleteER(〈〈1, topic, author〉〉,〈〈1, genre, author〉〉)

12 deleteEl(〈〈topic〉〉,〈〈genre〉〉)

Another case of a 1–1 matching in our running example is between ElementRel

〈〈1, author, book〉〉 in S and ElementRel 〈〈2, author, book〉〉 in T . This results in the

following transformations on S:

13 addER(〈〈2, author, book〉〉,〈〈1, author, book〉〉)

14 deleteER(〈〈1, author, book〉〉,〈〈2, author, book〉〉)

When handling an n–1 matching, PathGen generates a single add transfor-

mation, which includes a user-specified query stating how the extents of the n

constructs are combined to create the extent of the new construct. This is fol-

lowed by n delete transformations to remove the n original (and now redundant)

constructs.

Finally, n–m matchings are a generalisation of n–1 and 1–n matchings in that

for these PathGen generates m add transformations to insert the necessary new

constructs, followed by n delete transformations to remove the original constructs.

In our example, the schema matching tool may produce an n–m matching stating

that attributes 〈〈author, firstn〉〉 and 〈〈author, lastn〉〉 in S relate to element 〈〈name〉〉

and its link to 〈〈Text〉〉 in T . After the user provides the appropriate IQL queries,
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PathGen generates a sequence of add and delete transformations that resolve the

n–m semantic heterogeneity:

15 addEl(〈〈name〉〉, [x|x←generateElement ‘name’ 〈〈author〉〉])

16 addER(〈〈1, author, name〉〉,[{x, y}|{x, y} ← generateElementRel 〈〈author〉〉 〈〈name〉〉]

17 addER(〈〈1, name,Text〉〉,

let q equal [{x,concat [z1,‘ ’,z2]}|{x,z1}←〈〈author, firstn〉〉;{x,z2}←〈〈author, lastn〉〉]

in [{y, z}|{x, y} ← 〈〈1, author, name〉〉; {x, z} ← q])

18 deleteAtt(〈〈author, firstn〉〉,

[{x,substring z 0 (indexOf z ‘ ’)}|{x,y}←〈〈1, author, name〉〉;{y,z}←〈〈1, name,Text〉〉])

19 deleteAtt(〈〈author, lastn〉〉,

[{x,substring z ((indexOf z ‘ ’)+1) ((length z)-1)}|{x,y}←〈〈1, author, name〉〉;

{y,z}←〈〈1, name,Text〉〉])

Transformations 15 – 17 above add Element 〈〈name〉〉, ElementRel 〈〈1, author, name〉〉

and ElementRel 〈〈1, name, Text〉〉, while transformations 18 and 19 remove at-

tributes 〈〈author, firstn〉〉 and 〈〈author, lastn〉〉 from S. The queries in these trans-

formations use IQL function length, which returns the number of characters of

its string argument, IQL function indexOf s1 s2, which returns the position of the

first occurrence of s2 within s1, and IQL function lastIndexOf, which is similar to

indexOf but returns the position of the last occurrence instead of the first. They

also use two XMLDSS-specific IQL functions, generateElement and generateEle-

mentRel. Function generateElement ‘e1’ 〈〈e2〉〉 generates (count 〈〈e2〉〉) instances

for the Element construct whose schema-level identifier is e1. Function genera-

teElementRel 〈〈a〉〉 〈〈b〉〉 produces a list of instances for an ElementRel construct

〈〈k, a, b〉〉, and the size of the extent produced is equal to that of 〈〈b〉〉. This func-

tion assumes that the size of the extent of 〈〈a〉〉 is either equal to that of 〈〈b〉〉, in

which case the ith instance of 〈〈a〉〉 will be associated with the ith instance of 〈〈b〉〉,

or equal to 1, in which case the single instance of 〈〈a〉〉 will be associated with

all instances of 〈〈b〉〉 (this caters for the case when 〈〈a〉〉 is the root node). In any

other case, the input to the generateElementRel function is considered invalid, as

the function would not able to unambiguously associate instances of 〈〈a〉〉 with

instances of 〈〈b〉〉.
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5.4 Schema Restructuring Algorithm

Section 5.3 has discussed the use of schema matching as the schema conformance

method in our approach and has illustrated the use of this method to conform

schemas S and T of our running example. The schema output by this process,

Sconf in Figure 5.1, together with the target schema, T , are now ready to be

processed by our schema restructuring algorithm (SRA), which implements the

schema transformation phase.

Given Sconf as the source schema and T as the target schema, the SRA trans-

forms Sconf into T . It does so by adding to Sconf all constructs present in T

but not in Sconf (“growing phase”), and then deletes from Sconf all constructs

present in Sconf but not in T (“shrinking phase”). To achieve this, the SRA ap-

plies a growing phase on both Sconf and T , producing new schemas Sres and Tres,

respectively (we recall that, due to the reversibility of AutoMed primitive trans-

formations, the growing phase on T , producing pathway T → Tres, is a “shrinking

phase” in the opposite direction, Tres → T ). Sres and Tres are identical, and this

is asserted by automatically injecting a series of id transformations between them.

Panel 5 presents the SRA. We discuss its three phases, Initialisation, Phase

I and Phase II, in Sections 5.4.1, 5.4.2 and 5.4.3, respectively. As discussed in

Chapter 4, the SRA is able to generate synthetic instances for Element and Ele-

mentRel constructs in order to avoid further loss of information from descendant

constructs. As shown in Panel 5, the user is given the option to permit or not

the generation of such synthetic extent. We discuss this further in the rest of this

section.

Figure 5.2 summarises the schemas and pathways produced by the schema

conformance and the schema transformation phases. Note that, in general, the

schema conformance phase produces two schemas, Sconf and Tconf , as discussed in

Chapter 4. However, schema matching transforms only one of the two schemas, in

this case S, and leaves T unchanged, resulting in the simpler scenario illustrated

in Figure 5.2.

We note that the SRA does not support elements with multiple text nodes,
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Panel 5: Schema Restructuring Algorithm restructure(S,T)

initialisation(S,T );64

if (synthetic extent generation is permitted) then65

S′=phaseI(S,T );66

S′′=phaseII(S′,T );67

T ′=phaseI(T ,S);68

T ′′=phaseII(T ′,S);69

injectIDTransformations(S′′,T ′′);70

else71

S′=phaseII(S,T );72

T ′=phaseII(T ,S);73

injectIDTransformations(S′,T ′);74

S Sconf
data

source

id
Sres Tres T data

source

Figure 5.2: Running Example after the Application of the Schema Conformance
Phase (resulting in Pathway S ↔ Sconf) and the Schema Transformation Phase
(resulting in Pathway Sconf ↔ Sres ↔ Tres ↔ T ).

either in T or S. This is because the restructuring of such elements would require

the ability to distinguish between different text nodes in order to correlate text

nodes in S and T — but this is not, in general, feasible.

Also, note that the SRA inspects the XMLDSS source and target schemas and

derives the transformations that need to be applied to them using their in-memory

DOM representation. The SRA issues the actual AutoMed transformations that

need to be applied to the source and target schemas using the AutoMed API,

which operates on the HDM representation of the XMLDSS source and target

schemas.

5.4.1 Initialisation

The first phase of the SRA traverses both source and target schemas and pop-

ulates six data structures, which will be used by Phase I and Phase II. The
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Initialisation Phase is not strictly necessary, but it improves the performance of

the SRA since it relieves Phase I and Phase II from two operations that occur

multiple times during the two phases: traversing a schema to identify a certain

construct, and traversing a schema to locate the path between two constructs.

The six data structures created during initialisation are described below:

SourceEl: For every source schema Element, this contains its schema-level iden-

tifier and a pointer to the corresponding DOM element.

TargetEl: For every target schema Element, this contains its schema-level iden-

tifier and a pointer to the corresponding DOM element.

SourceAtt: For every source schema Attribute, this contains its schema-level iden-

tifier and a pointer to the corresponding DOM attribute.

TargetAtt: For every target schema Attribute, this contains its schema-level iden-

tifier and a pointer to the corresponding DOM attribute.

SourceElementRel: For every source schema ElementRel 〈〈ep, ec〉〉
1, this contains

the ElementRel identifier, the path between 〈〈ep〉〉 and 〈〈ec〉〉 in the target

schema’s DOM representation, and the type of this path, i.e. whether 〈〈ep〉〉

is an ancestor of 〈〈ec〉〉, or a descendant of 〈〈ec〉〉, or whether 〈〈ep〉〉 and 〈〈ec〉〉

are located in different branches.

TargetElementRel: For every target schema ElementRel 〈〈ep, ec〉〉, this contains

the ElementRel identifier, the path between 〈〈ep〉〉 and 〈〈ec〉〉 in the source

schema’s DOM representation, and the type of this path, i.e. whether 〈〈ep〉〉

is an ancestor of 〈〈ec〉〉, or a descendant of 〈〈ec〉〉, or whether 〈〈ep〉〉 and 〈〈ec〉〉

are located in different branches.

The Initialisation Phase first performs a depth-first traversal of the DOM

representation of the source schema S, during which SourceEl and SourceAtt

1In this chapter, for ease of reading, we omit the first component of an ElementRel 〈〈i, ep, ec〉〉
and identify it by just the pair 〈〈ep, ec〉〉, unless the ordering i is significant to the functionality
under discussion.
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are populated. TargetEl and TargetAtt are populated similarly using the target

schema T . Then, S is traversed one more time, populating SourceElementRel.

Paths within T are identified with the help of TargetEl: the elements of T with

the same identifiers as 〈〈ep〉〉 and 〈〈ec〉〉 are retrieved, and then successive calls

to retrieve their parent elements are issued, until a common ancestor is found.

TargetElementRel is populated similarly, by traversing T one more time and

using SourceEl.

5.4.2 Phase I - Handling Missing Elements

After the Initialisation Phase, and assuming that synthetic extent generation is

permitted, Phase I is first applied to the source schema and then to the target

schema (Phase I is described in Panel 6, while Panel 7 provides details of the

procedures and functions invoked in Panel 6). For clarity of presentation, we use

the terms ‘source’ and ‘target’ throughout this section assuming that Phase I is

being applied to the source schema. When Phase I is applied to the target schema,

the terms ‘source’ and ‘target’ should be swapped. This includes references made

to the six data structures of Section 5.4.1.

Phase I deals with non-leaf Element constructs present in the target schema

but not in the source schema, i.e. target schema elements that, according to the

schema conformance phase, do not semantically correspond to any source schema

elements or attributes. Phase I adds such target schema Element constructs

(and their associated incoming and outgoing ElementRel constructs) to the source

schema, generating for each of them a synthetic extent. In particular, Phase I

considers each ElementRel 〈〈ep, ec〉〉 of the source schema in a depth-first order,

identifies its corresponding path in the target schema using SourceElementRel

(if such a path exists) and adds to the source schema all the internal Element and

ElementRel constructs of the target schema path.

There are four cases to consider for every ElementRel 〈〈ep, ec〉〉 in the source

schema S and its corresponding path p in the target schema T : 〈〈ep〉〉 may be

the parent of 〈〈ec〉〉 in T , 〈〈ep〉〉 may be an ancestor of 〈〈ec〉〉 in T , 〈〈ep〉〉 may be a
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descendant of 〈〈ec〉〉 in T , or 〈〈ep〉〉 and 〈〈ec〉〉 may be located in different branches

in T . Figure 5.3 illustrates an example of each of these four cases.

Note that, given an ElementRel 〈〈ep, ec〉〉 corresponding to a target schema path

p, Phase I will create p in the source schema only if all of the internal Element

constructs of p are missing from the source schema. For example, for source

schema ElementRel 〈〈ep, ec〉〉, corresponding to target schema path [ep, K, L, M, ec]

(see top right of Figure 5.3), Element constructs 〈〈K〉〉, 〈〈L〉〉 and 〈〈M〉〉 must not

exist in the source schema. Otherwise, e.g. if 〈〈L〉〉 exists in the source schema but

〈〈K〉〉 and 〈〈M〉〉 do not, then there is ambiguity about the relationships between

〈〈ep〉〉 and 〈〈L〉〉 and between 〈〈L〉〉 and 〈〈ec〉〉, that should have been handled during

the schema conformance phase. In such a case, Phase I leaves it to Phase II to

add to the source schema the missing Element and ElementRel constructs of p

with an undetermined extent, using the query Range Void Any.

The mechanism for our handling of paths whose internal nodes are all missing

from the source schema is skolemisation, i.e. the use of a Skolem function to

generate missing structure between elements that already exist in the source

schema (which are the arguments of the Skolem function). The intention is to

generate such structure automatically in order to avoid loss of information from

the source.

The algorithm of Phase I requires as input the cardinality types of the source

and target schema ElementRel constructs. These are specified in an XML file that

is loaded during Phase I. The cardinality types can either be manually defined by

the user, or can be automatically derived from an accompanying DTD or XML

Schema, or can be automatically derived from sample instances of the source and

target schemas. For example, referring to the example above, the cardinalities of

〈〈A, K〉〉, 〈〈K, L〉〉, 〈〈L, M〉〉 and 〈〈M, B〉〉 may be inferred to be either 1–1 or 1–n.

We note that if the source schema ElementRel has a 1–n cardinality, and the

target schema path does not contain an ElementRel with a 1–n cardinality, then

the setting is inconsistent, and Phase I leaves it to Phase II to add to the source

schema the constructs of the target schema path with an undetermined extent,

using the query Range Void Any. This condition, together with the condition that
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all internal Element constructs of the target schema path must be missing from

the source schema, is shown in lines 91-94 in Panel 7.

We also note that, if the source schema ElementRel has a 1–n cardinality and

the target schema path contains more than one ElementRel with a 1–n cardinality,

then we assume that just the first such ElementRel construct in the target schema

path has a 1–n cardinality, and that the rest have a 1–1 cardinality (line 98 in

Panel 7). This is further discussed at the end of this section, where we discuss

the effect of the different combinations between the cardinalities of the source

and target schema ElementRel constructs on the skolemisation process.

The process of transforming an ElementRel of the source schema into the cor-

responding target schema path is performed in as many iterations as there are

internal nodes in the path (line 96 in Panel 7). In the above example, where

ElementRel 〈〈A, B〉〉 is transformed into path [A, K, L, M, B], the first iteration per-

forms skolemisation on 〈〈A, B〉〉, creating constructs 〈〈K〉〉, 〈〈A, K〉〉 and 〈〈K, B〉〉.

The second iteration performs skolemisation on 〈〈K, B〉〉, creating constructs 〈〈L〉〉,

〈〈K, L〉〉 and 〈〈L, B〉〉. The third iteration performs skolemisation on 〈〈L, B〉〉, cre-

ating constructs 〈〈M〉〉, 〈〈L, M〉〉 and 〈〈M, B〉〉. Thus, if the target schema path

has more than one internal node, Phase I creates more ElementRel constructs

in the source schema than are required by the target schema (in this example,

ElementRel constructs 〈〈K, B〉〉 and 〈〈L, B〉〉). These ‘byproducts’ are necessary be-

cause, apart from the first iteration, all other iterations perform skolemisation

on an ElementRel produced by the previous iteration. The extraneous Elemen-

tRel constructs are deleted from the source schema after the whole path has been

handled.

We now discuss the way that Phase I handles each of the four different cases

described earlier (see Figure 5.3 for an example of each case):

(a) If 〈〈ep〉〉 is the parent of 〈〈ec〉〉 in T , then no action in necessary, since there

are no Element or ElementRel constructs between 〈〈ep〉〉 and 〈〈ec〉〉 in T that

are not present in S.

(b) If 〈〈ep〉〉 is an ancestor of 〈〈ec〉〉 in T (line 77 in Panel 6), then there are a
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Figure 5.3: ElementRel 〈〈ep, ec〉〉 in S and the Possible Relationships between 〈〈ep〉〉
and 〈〈ec〉〉 in T .

number of Element and ElementRel constructs occurring in the path between

〈〈ep〉〉 and 〈〈ec〉〉 in T that need to be added to S. This is achieved using

procedure phaseICaseB (line 79 in Panel 6 and lines 95-107 in Panel 7).

The transformations in lines 100-104 add to S the Element and ElementRel

constructs occurring in the path between 〈〈ep〉〉 and 〈〈ec〉〉 in T by performing

the skolemisation process described earlier. These transformations make use

of IQL function skolemiseEdge. This function takes as input an ElementRel

〈〈ep, ec〉〉 of S, the schema-level identifier of an Element 〈〈e〉〉 of T and the

cardinality of ElementRel 〈〈ep, e〉〉 of T , and generates a collection of triples
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Panel 6: Schema Restructuring Algorithm — Phase I

for every ElementRel 〈〈ep, ec〉〉 in S in a depth-first order do75

if (Table IIa contains a path p in T for ElementRel 〈〈ep, ec〉〉 of S) then76

if (〈〈ep〉〉 is an ancestor of 〈〈ec〉〉 in T ) then77

if (checkConditions(〈〈ep, ec〉〉,p)) then78

phaseICaseB(〈〈ep, ec〉〉,p);79

else if (〈〈ep〉〉 is a descendant of 〈〈ec〉〉 in T ) then80

if (checkConditions(〈〈ep, ec〉〉,p)) then81

let Q :=getInvertedElementRelExtent(〈〈ep〉〉,〈〈ec〉〉);82

phaseICaseB(Q,p);83

else84

// 〈〈ep〉〉 and 〈〈ec〉〉 are located in different branches in T
let 〈〈e′p〉〉 be the parent of 〈〈ep〉〉 in S;85

if (〈〈e′p〉〉 is a common ancestor of 〈〈ep〉〉 and 〈〈ec〉〉 in T ) then86

let p2 be the path from 〈〈e′p〉〉 to 〈〈ec〉〉 in T ;87

if (checkConditions(〈〈ep, ec〉〉,p2)) then88

let Q := [{x, z}|{x, y} ← 〈〈e′p, ep〉〉; {y, z} ← 〈〈ep, ec〉〉];89

// Q is the extent of virtual ElementRel 〈〈e′p, ec〉〉

phaseICaseB(Q,p2);90

{x, y, z}, where x is an instance of 〈〈ep〉〉, y is an instance of 〈〈e〉〉 and z is an

instance of 〈〈ec〉〉. These triples are used to populate the extents of constructs

〈〈e〉〉, 〈〈ep, e〉〉 and 〈〈e, ec〉〉 of S. More details of function skolemiseEdge are

given later on in this section, where Case (b) is applied to our running

example. Further examples of Case (b) are given in Appendix B.

Lines 105 and 107 then remove the the ElementRel constructs that are the

‘byproducts’ of the skolemisation process. These constructs were added to

S using an ordering of -1 in line 104.2

(c) If 〈〈ep〉〉 is a descendant of 〈〈ec〉〉 in T , we similarly need to add to S the

missing Element and ElementRel constructs to create the path from 〈〈ec〉〉 to

〈〈ep〉〉 (lines 80– 83). We observe that in this case 〈〈ec〉〉 in T is an ancestor

2Using an invalid ordering in this case is not an issue, because the ElementRel constructs
using the invalid ordering are only present in intermediate schemas, and are removed later on.
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Panel 7: Subroutines for Phase I of the Schema Restructuring Algorithm

/* *********** Function checkConditions(〈〈ep, ec〉〉,p) *********** */

let a = true if all internal Element constructs of path p in T are missing from S ;91

let b = true if ElementRel 〈〈ep, ec〉〉 of S has a 1− n cardinality ;92

let c = true if all ElementRel constructs in p have a 1− 1 cardinality;93

return (a ∧ (¬(b ∧ c)));94

/* ************* Procedure phaseICaseB(〈〈ep, ec〉〉,p) ************* */

let byproducts be an empty list;95

for (each Element 〈〈e〉〉 in p, except for 〈〈ep〉〉 and 〈〈ec〉〉) do96

if (more than one ElementRel construct in p has a 1–n cardinality) then97

Assume that just the first such construct has a 1–n cardinality;98

let card be the cardinality of 〈〈ep, e〉〉 in T ;99

add(〈〈e〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈ep, ec〉〉
′e′ card]);100

let i1 be the ordering of 〈〈ep, e〉〉 in T ;101

add(〈〈i1, ep, e〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈ep, ec〉〉
′e′ card]);102

let i2 be the ordering of 〈〈e, ec〉〉 in T , or -1 if 〈〈e, ec〉〉 does not exist in T ;103

add(〈〈i2, e, ec〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈ep, ec〉〉
′e′ card]);104

if (this is not the last iteration) then add 〈〈i2, e, ec〉〉 in byproducts;105

let 〈〈ep〉〉 = 〈〈e〉〉;106

for (each ElementRel 〈〈e, ec〉〉 in byproducts) do contract(〈〈e, ec〉〉,Range Void107

Any);
/* ****** Function getInvertedElementRelExtent(〈〈ep〉〉,〈〈ec〉〉) ****** */

// Given ElementRel 〈〈ep, ec〉〉, formulate a query that describes the

// extent of ElementRel 〈〈ec, ep〉〉 with no loss of information.

let Q1 := unnestCollection [Q2|x1← 〈〈ep〉〉], where Q2 is108

if(member [x|{x, y} ← 〈〈ep, ec〉〉] x1)109

[{y, x1}|{x, y} ← 〈〈ep, ec〉〉; x = x1]110

[{generateUID ′ec
′ [x1], x1}];111

return Q1;112

/* ******* IQL Function skolemiseEdge(〈〈ep, ec〉〉,’e’,card) ******* */

// card is the cardinality of 〈〈ep, e〉〉 in T
if (card is 1− 1) then113

// Get the distinct instances of 〈〈ep〉〉 participating in 〈〈ep, ec〉〉
let q1 := distinct [x|{x, y} ← 〈〈ep, ec〉〉] ;114

// Generate an instance of 〈〈e〉〉 for each of these instances

let q2 := [{x, generateUID ′e′ [x]}|x← q1] ;115

return [{x, y, z}|{x, y} ← q2; {x, z} ← 〈〈ep, ec〉〉];116

else if (card is 1− n) then117

return [{x, generateUID ′e′ [x, z], z}|{x, z} ← 〈〈ep, ec〉〉] ;118

138



of 〈〈ep〉〉. Thus, if we inverted ElementRel 〈〈ep, ec〉〉 to ElementRel 〈〈ec, ep〉〉 in

S, then we could apply procedure phaseICaseB of Case (b) on 〈〈ec, ep〉〉

and the path p from 〈〈ec〉〉 to 〈〈ep〉〉 in T . We also observe that procedure

phaseICaseB does not require an ElementRel to be actually present in S,

but a query describing its extent. Therefore, we do not add 〈〈ec, ep〉〉 to S;

instead, we formulate a query Q that defines its extent, and apply procedure

phaseICaseB to Q and p.

We note that there may be instances of 〈〈ep〉〉 in S with no child instances of

〈〈ec〉〉, and so if we inverted 〈〈ep, ec〉〉 using query [{y, x}|{x, y} ← 〈〈ep, ec〉〉],

then these instances of 〈〈ep〉〉 would be lost. We therefore invert 〈〈ep, ec〉〉

using function getInvertedElementRelExtent (lines 108-112 in Panel 7).

The query formulated by this function prevents the loss of such instances

of 〈〈ep〉〉. In particular, the query iterates through each instance x1 of 〈〈ep〉〉

and checks whether x1 has any child instances of 〈〈ec〉〉. If it does, then the

query returns a list of the instances {x1, y} of 〈〈ep, ec〉〉 that x1 participates

in, by first inverting them to {y, x1}3. Otherwise, if x1 does not have any

child instances of 〈〈ec〉〉, a new tuple {generateUID ′e′c [x1], x1} is generated

as an instance of 〈〈ec, ep〉〉. The XMLDSS-specific IQL function generateUID

is used here to generate a unique instance-level identifier of 〈〈ec〉〉 for each

instance x1 of 〈〈ep〉〉 that does not have a child instance of 〈〈ec〉〉. This

function is further discussed below, together with function skolemiseEdge.

An example of function getInvertedElementRelExtent is given at the end

of Section 5.4.3.

(d) If 〈〈ep〉〉 and 〈〈ec〉〉 are located in different branches in T and the parent

of 〈〈ep〉〉 in S, 〈〈e′p〉〉, is a common ancestor of 〈〈ep〉〉 and 〈〈ec〉〉 in T (as in

the example of Figure 5.3), we need to ensure the existence of two paths

in T within S, p1 from 〈〈e′p〉〉 to 〈〈ep〉〉 and p2 from 〈〈e′p〉〉 to 〈〈ec〉〉. However,

ElementRel 〈〈e′p, ep〉〉 in S will already have been handled in the previous

3Therefore, the query supplied with the transformation returns a list of lists. Function
unnestCollection col in Panel 7 takes as input a collection and unnests it.
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step of Phase I, adding path p1 to S (path [e′p, K, L, ep] in the example of

Figure 5.3), and so we only need to add path p2 to S (path [e′p, M, N, ec] in

the example of Figure 5.3).

We observe that in this case S does not contain a single ElementRel construct

that needs to be transformed into a path in T , but rather a path: ElementRel

constructs 〈〈e′p, ep〉〉 and 〈〈ep, ec〉〉 in S correspond to path p2 in T . Similarly

to Case (c), we formulate a query that describes the extent of ElementRel

〈〈e′p, ec〉〉, without any loss of information, and apply Case (b) to transform

〈〈e′p, ec〉〉 to path p2 in T . Lines 84– 90 in Panel 6 list the steps followed in

this case.

We note that if 〈〈e′p〉〉 is not a common ancestor of 〈〈ep〉〉 and 〈〈ec〉〉 in T ,

or if 〈〈e′p〉〉 is not present in T at all, Phase I leaves it to Phase II to add

the missing Element and ElementRel constructs to S with an undetermined

extent, using the query Range Void Any. This is because in such cases there

is a lack of knowledge about how to add to S the Element and ElementRel

constructs of T that it is missing.

Further examples of Case (d) are given in Appendix B.

Running Example

We now illustrate Phase I with respect to our running example. Phase I applied

to Sconf detects that ElementRel construct 〈〈2, author, book〉〉 corresponds to path

[author, item, book] in T , and so Case (b) applies, since 〈〈author〉〉 is an ancestor

of 〈〈book〉〉 in T . The transformations produced are given below, assuming that

the user has supplied cardinality 1 − n for 〈〈2, author, book〉〉 in Sconf , and 1 − n

for 〈〈2, author, item〉〉 and 1−1 for 〈〈1, item, book〉〉 in T . Transformation 20 below

adds to Sconf the missing Element 〈〈item〉〉, while transformations 21 and 22 add

to Sconf ElementRel constructs 〈〈2, author, item〉〉 and 〈〈1, item, book〉〉.
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20 addEl(〈〈item〉〉, [y|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′])

21 addER(〈〈2, author, item〉〉,

[{x, y}|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′])

22 addER(〈〈1, item, book〉〉,

[{y, z}|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′])

The application of these transformations to the HDM version of the XMLDSS

schema Sconf produces the HDM schema illustrated in Figure 5.4. Applying Phase

I to T in this running example leaves that schema unchanged.

Phase I
output

book
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1
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1
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2
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publisher
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  1 2

item

      1

  2

Figure 5.4: Schema Produced from the Application of Phase I on Sconf .

IQL Functions skolemiseEdge and generateUID

We now give further details of function skolemiseEdge (listed in lines 113-118 in

Panel 7). Consider a source schema S that contains an ElementRel 〈〈ep, ec〉〉 with

cardinality card1, and a target schema that contains ElementRel constructs 〈〈ep, e〉〉

and 〈〈e, ec〉〉 with cardinalities card2 and card3. Assuming S does not contain an

Element 〈〈e〉〉, Phase I will add to S the missing constructs 〈〈e〉〉, 〈〈ep, e〉〉 and 〈〈e, ec〉〉,

using for each one a different projection on the same extent generated by the IQL

function skolemiseEdge. There are are eight different cases to consider, and
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below we discuss how skolemiseEdge is able to consider just cardinality card2

and generate a correct extent for all eight different cases.

i) The source schema ElementRel 〈〈ep, ec〉〉 has a 1–n cardinality, while both

target schema ElementRel constructs have a 1–1 cardinality. Function skole-

miseEdge is not invoked in this case, since, as discussed earlier in this

section, Phase I considers this case as inconsistent and leaves it to Phase II

to add the missing schema constructs to S with an undetermined extent.

ii) Both target schema ElementRel constructs have a 1–n cardinality. As dis-

cussed earlier in this section, in this case the algorithm considers the first

1–n ElementRel target construct as the one with a 1–n cardinality, and

treats the other one as though it had a 1–1 cardinality. Then, if the source

schema ElementRel 〈〈ep, ec〉〉 has a 1–n cardinality, then this case is reduced

to Case (iii) below. Otherwise, if 〈〈ep, ec〉〉 has a 1–1 cardinality, then this

case is reduced to Case (iv) below.

iii) The source schema ElementRel 〈〈ep, ec〉〉 and the target schema ElementRel

〈〈ep, e〉〉 both have a 1–n cardinality, and ElementRel 〈〈e, ec〉〉 has a 1–1 car-

dinality (see upper left of Figure 5.5). In this case, query Q in line 118 of

Panel 7 guarantees that 〈〈ep, e〉〉 will have a 1–n cardinality and that 〈〈e, ec〉〉

will have a 1–1 cardinality.

This is achieved by generating a new instance for 〈〈e〉〉 for each instance of

〈〈ep, ec〉〉 in S using function generateUID. Since Q iterates through 〈〈ep, ec〉〉,

only instances of 〈〈ep〉〉 with child instances of 〈〈ec〉〉 will be associated with

instances of 〈〈e〉〉. Also, since 〈〈ep, ec〉〉 has a 1–n cardinality, if 〈〈ep, ec〉〉 has

n instances then the unique instances of 〈〈ep〉〉 participating in 〈〈ep, ec〉〉 will

be m ≤ n. Thus, the same instance of 〈〈ep〉〉 may be associated with more

than one instances of 〈〈e〉〉, and so 〈〈ep, e〉〉 will have a 1–n cardinality.

Regarding the cardinality of 〈〈e, ec〉〉, since Q generates n unique instances of

〈〈e〉〉 and since 〈〈ec〉〉 has n unique instances participating in 〈〈ep, ec〉〉, 〈〈e, ec〉〉

will have a 1–1 cardinality. Note that it is not possible for the same instance
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of 〈〈e〉〉 to be associated with more than one instance of 〈〈ec〉〉 due to the way

Q is formulated.

iv) The source schema ElementRel 〈〈ep, ec〉〉 has a 1–1 cardinality, target schema

ElementRel 〈〈ep, e〉〉 has a 1–n cardinality and ElementRel 〈〈e, ec〉〉 has a 1–1

cardinality (see upper right of Figure 5.5). In this case, the query in line 118

of Panel 7 guarantees that both 〈〈ep, e〉〉 and 〈〈e, ec〉〉 in S will have a 1–1

cardinality, and the explanation is similar to Case (iii).

v) The source schema ElementRel 〈〈ep, ec〉〉 has a 1–n cardinality, target schema

ElementRel 〈〈ep, e〉〉 has a 1–1 cardinality and target schema ElementRel

〈〈e, ec〉〉 has a 1–n cardinality (see bottom left of Figure 5.5). In this case,

the query produced in lines 113-116 of Panel 7 guarantees that 〈〈ep, e〉〉 will

have a 1–1 cardinality, while 〈〈e, ec〉〉 in S will have a 1–n cardinality.

This is achieved by first selecting each instance of 〈〈ep〉〉 that participates in

an instance of 〈〈ep, ec〉〉 (so as not to include instances of 〈〈ep〉〉 with no chil-

dren) and then applying function distinct4 on the result (query q1). Thus,

if there are multiple instances of 〈〈ep, ec〉〉 with the same instance of 〈〈ep〉〉,

only one instance of 〈〈ep〉〉 is selected. We then generate one instance of

〈〈e〉〉 for each instance of 〈〈ep〉〉 that was selected with q1, and then form the

result triples. Thus, if q1 selects n instances of 〈〈ep〉〉, query q2 generates n

instances for 〈〈e〉〉, and so q2 has a 1–1 cardinality. Thus, 〈〈ep, e〉〉 will have

a 1–1 cardinality.

Regarding the cardinality of 〈〈e, ec〉〉, this will be 1–n due to the join in

line 116, which is between q2 (which has a 1–1 cardinality as discussed

above) and 〈〈ep, ec〉〉 (which has a 1–n cardinality).

vi) The source schema ElementRel 〈〈ep, ec〉〉 and the target schema ElementRel

〈〈ep, e〉〉 both have a 1–1 cardinality and ElementRel 〈〈e, ec〉〉 has a 1–n cardi-

nality (see bottom right of Figure 5.5). In this case, the query produced in

4Function distinct removes duplicates from its input list argument by retaining the first oc-
currence of each recurring list item. The function does not change the ordering of the remaining
items in the list.
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Figure 5.5: Skolemisation Cases (iii)–(vi).
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lines 113-116 of Panel 7 guarantees that both 〈〈ep, e〉〉 and 〈〈e, ec〉〉 in S will

have a 1–1 cardinality, by a similar argument to Case (v).

vii) All three ElementRel constructs have a 1–1 cardinality. In this case, either

query of function skolemiseEdge can guarantee that 〈〈ep, e〉〉 and 〈〈e, ec〉〉 will

have a 1–1 cardinality, since this case can be seen as a special case of any

one of Cases (ii)-(vi).

In our running example, since the source schema ElementRel 〈〈2, author, book〉〉

has a 1− n cardinality, and the target schema ElementRel 〈〈2, author, item〉〉 has a

1−n cardinality, Case (iii) above applies, and the final query for transformation 20

above is as follows:

[y|{x, y, z} ← [{x, generateUID ′item′ [x, y], y}|{x, y} ← 〈〈2, author, book〉〉]]

which can be rewritten as follows, after unnesting:

[generateUID ′item′ [x, y]|{x, y} ← 〈〈2, author, book〉〉]

We now discuss function generateUID and demonstrate it by example. Note

that, for clarity of explanation, we will be using the full identifiers for Element

and ElementRel constructs, e.g. 〈〈item$1〉〉 and 〈〈2, author$1, book$1〉〉, rather than

the shorthand notation used so far in this chapter. Function generateUID takes

as input an Element identifier, in this case ′item$1′, and a list of instance identi-

fiers, [x, y], and generates an instance identifier of the form elemName$count sid&

instanceCount as follows: the prefix elemName$count is provided by the first ar-

gument, in this case item$1; the sid integer is the same as the sid of each item

in the list provided as the second argument; and the instanceCount is the sum of

the instanceCount of each item in that list. In our running example, if the extent of

〈〈2, author$1, book$1〉〉 was [{author$1 5&1, book$1 5&1}, {author$1 5&1, book$1 5&2}],

then the query above applies the head of the comprehension, generateUID ′item′ [x, y],

once for each instance of the body of the comprehension, which iterates through

the extent of 〈〈2, author, book〉〉. Therefore, generateUID would first be invoked

with arguments ′item$1′ and [author$1 5&1, book$1 5&1], producing item$1 5&2 as

the result, and the second time with the arguments ′item$1′ and [author$1 5&1,

book$1 5&2], producing item$1 5&3 as the result. We observe that the output
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of generateUID is always the same for the same input, and always different for

different inputs (i.e. it deterministically produces a unique instance identifer for

each unique input).

5.4.3 Phase II - Restructuring

After the completion of Phase I, Phase II is first applied to the source schema S

and then to the target schema T (Phase II is described in Panel 8, while Panel 9

provides details of the procedures invoked in Panel 8).

When Phase I was applied to S, it added to S some of the Element and

ElementRel constructs present in T but not in S; similarly, when Phase I was

applied to T , it added to T some of the Element and ElementRel constructs present

in S but not in T . However, Phase I is not able to resolve all 1-1 structural

incompatibilities between S and T .

The purpose of Phase II is to fully transform the source schema S into the

target schema T — by S and T here we mean the source and target schemas

resulting from the application of Phase I to the original source and target schemas

that were input to the SRA. It does so by adding to S all Element, Attribute and

ElementRel constructs present in T but not in S and then deletes from S all

Element, Attribute and ElementRel constructs present in S but not in T . As

discussed earlier, due to the reversibility of AutoMed primitive transformations,

the same effect can be achieved by adding to S all constructs present in T but

not in S, and then adding to T all constructs present in S but not in T . For

clarity of presentation, we use the terms ‘source’ and ‘target’ in the rest of this

section assuming that Phase II is being applied to S. When Phase II is applied

to T , the terms ‘source’ and ‘target’ should be swapped. This includes references

made to the data structures of Section 5.4.1.

We now discuss the algorithm for Phase II, which is listed in Panels 8 and 9.

When Phase II is applied on S, it first considers every Element in T , in a depth-

first fashion. There are six cases to consider for each Element 〈〈e〉〉 in T , and we
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discuss these below. In the following, parent(〈〈e〉〉, T ) denotes the parent of 〈〈e〉〉 in

T , parent(〈〈e〉〉, S) denotes the parent of 〈〈e〉〉 in S, and 〈〈p〉〉 denotes the Element

in S that has the same schema-level identifier as parent(〈〈e〉〉, T ) — which may

or may not be the same as parent(〈〈e〉〉, S). Note that parent(〈〈e〉〉, T ) may not

be present in S.

1) If 〈〈e〉〉 is present in S and 〈〈p〉〉 is not, then 〈〈p〉〉 was not originally present in

S but was added to S in the previous step of the algorithm. We therefore add

to S an ElementRel between 〈〈p〉〉 and 〈〈e〉〉 with an extend transformation using

the query Range Void Any (line 122 in Panel 8).

2) If 〈〈e〉〉 is present in S, and is located under the same parent Element (i.e. 〈〈p〉〉=

parent(〈〈e〉〉, S)), then there is an ElementRel 〈〈i, p, e〉〉 in S and an ElementRel

〈〈j, parent(〈〈e〉〉, T), e〉〉 in T .

a) If i = j, then there is nothing to do.

b) If i 6= j, we add 〈〈j, p, e〉〉 to S (line 126 in Panel 8).5

3) If 〈〈e〉〉 is present in S, but is located under a different parent Element than in

T (i.e. 〈〈p〉〉6= parent(〈〈e〉〉, S)), we need to add an ElementRel construct 〈〈p, e〉〉

to S (lines 124 in Panel 8 and 142–160 in Panel 9). Similarly to Phase I, the

way this ElementRel is added to S depends on the relationship between 〈〈p〉〉

and 〈〈e〉〉 in S:

a) If 〈〈p〉〉 is an ancestor of 〈〈e〉〉 in S (line 143), we add 〈〈p, e〉〉 to S using a

path query from 〈〈p〉〉 to 〈〈e〉〉, with no loss of information.

Examples of this case are given at the end of this subsection using our

running example. Further examples are given in Appendix B.

b) If 〈〈p〉〉 is a descendant of 〈〈e〉〉 in S (line 146), and assuming that the user

has not opted for synthetic extent generation (line 147), we add ElementRel

5Note that another child Element 〈〈e′〉〉 of 〈〈p〉〉 may be in the same position j. This is not a
problem, because 〈〈e′〉〉 will either be removed or moved to another position when Phase II is
applied to T .
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〈〈p, e〉〉 to S, using a path query from 〈〈p〉〉 to 〈〈e〉〉 in S. This could lead to

loss of information, since there may be instances of 〈〈e〉〉 in S that do not

have descendant instances of 〈〈p〉〉.

If the user has opted for synthetic extent generation, then we add 〈〈p, e〉〉 to

S using a query produced by function getInvertedElementRelExtent, de-

fined in Panel 7 of Section 5.4.2 for Phase I, which ensures that no instances

of 〈〈p〉〉 are lost (line 150).

We recall that function getInvertedElementRelExtent as defined in Phase

I is able to derive the extent of an ElementRel 〈〈ec, ep〉〉, given an ElementRel

〈〈ep, ec〉〉. However, it is trivial to extend it to be able to derive the extent of

an ElementRel 〈〈ec, ep〉〉, given an Element 〈〈ec〉〉 that is the descendant of an

Element 〈〈ep〉〉. This is achieved by replacing ElementRel 〈〈ep, ec〉〉 in lines 109

and 110 of Panel 7 with the path query from 〈〈ep〉〉 to 〈〈ec〉〉 and projecting

on these two Element constructs (see Appendix B for this definition).

Examples of this case are given at the end of this subsection, where it is ap-

plied to our running example. Further examples are given in Appendix B.

c) If 〈〈p〉〉 and 〈〈e〉〉 are located in different branches in S (lines 152-160 in

Panel 9), and assuming that the user has opted to not allow synthetic

extent generation, we add ElementRel 〈〈p, e〉〉 to S, using a path query from

〈〈p〉〉 to 〈〈e〉〉 through the lowest common ancestor of 〈〈p〉〉 and 〈〈e〉〉 in S,

〈〈ea〉〉. Similarly to Case (2b), this could lead to loss of information, since

there may be instances of 〈〈ea〉〉 that do not have descendant instances of

〈〈p〉〉.

If the user has opted to allow synthetic extent generation, we similarly add

〈〈p, e〉〉 using a path query from 〈〈p〉〉 to 〈〈e〉〉 through 〈〈ea〉〉, but this time we

use function getInvertedElementRelExtent (line 159) to derive the path

query from 〈〈p〉〉 to 〈〈ea〉〉. This ensures that no loss of information occurs.

Examples of this case are given in Appendix B.

4) If 〈〈e〉〉 is not present in S and 〈〈p〉〉 is null, then 〈〈p〉〉 was not originally present in

S but was added to S in the previous step of the algorithm. We therefore add to
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S 〈〈e〉〉 and an ElementRel between 〈〈p〉〉 and 〈〈e〉〉 with extend transformations

using the query Range Void Any (line 129 in Panel 8 and lines 167–168 in

Panel 9).

5) If 〈〈e〉〉 is not present in S, it may be possible to add it to S with an attribute-

to-element transformation under certain conditions. In particular, if 〈〈e〉〉 is

not present in S, but 〈〈p〉〉 in S has an attribute 〈〈p, a〉〉, such that the label of a

is equivalent to the label of 〈〈e〉〉 in T , and T contains an ElementRel 〈〈e, Text〉〉,

then an attribute-to-element transformation is performed. This transformation

adds to S constructs 〈〈e〉〉, 〈〈i, p, e〉〉 (where i is the position of 〈〈e〉〉 in the list of

children of parent(〈〈e〉〉, T )) and 〈〈j, e, Text〉〉 (where j is the position of 〈〈Text〉〉

in the list of children of 〈〈e〉〉). The extents of these constructs are defined with

the help of function skolemiseEdge6 (line 132 in Panel 8 and lines 161–165

in Panel 9).

Examples of this case are given at the end of this subsection and in Appendix B.

6) If 〈〈e〉〉 is not present in S, and 〈〈p〉〉 in S does not have such an Attribute

〈〈p, a〉〉 or T does not contain an ElementRel 〈〈e, Text〉〉, we add to S 〈〈e〉〉 and an

ElementRel between 〈〈p〉〉 and 〈〈e〉〉 with extend transformations using the query

Range Void Any (line 133 in Panel 8 and lines 167–168 in Panel 9).

Examples of this case are given at the end of this subsection and in Appendix B.

Phase II next processes the attributes of 〈〈e〉〉 in T (lines 134–136 in Panel 8)

similarly to elements, in that if an attribute ai of 〈〈e〉〉 in T is not present as an

attribute of 〈〈e〉〉 in S, an element-to-attribute transformation is first attempted

(lines 135 and 169): if 〈〈e〉〉 in S has a child element 〈〈c〉〉 with the same label

as 〈〈ai〉〉 (i.e. if S contains ElementRel 〈〈e, c〉〉), and if 〈〈c〉〉 has a child text node

(i.e. if S contains ElementRel 〈〈c, Text〉〉), then 〈〈e, ai〉〉 is added to S with a query

that uses the extents of 〈〈e, c〉〉 and 〈〈e, Text〉〉 to populate 〈〈e, ai〉〉. Otherwise the

6In this case, skolemiseEdge takes as input an Attribute 〈〈p, a〉〉 and a string e (the schema-
level identifier of the Element to be produced by the attribute-to-element transformation), and
for each tuple {x, y} in the extent of 〈〈p, a〉〉 generates a tuple {x, z, y}, where z is an instance-level
identifier for 〈〈e〉〉.
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Panel 8: Schema Restructuring Algorithm — Phase II

for every element 〈〈e〉〉 in T in a depth-first order: do119

/* ******************** Handle Element ********************* */

let 〈〈p〉〉 be the element with the same label as parent(〈〈e〉〉, T ) in S;120

if (〈〈e〉〉 is present in S) then121

if (〈〈p〉〉 is not present in S and the ordering of 〈〈e〉〉 under 〈〈p〉〉 in T is j)122

then extend(〈〈j, p, e〉〉,Range Void Any);
else if (〈〈p〉〉 6= parent(〈〈e〉〉, S)) then123

InsertElementRel(〈〈p〉〉,〈〈e〉〉)124

else if (the ordering of 〈〈e〉〉 under 〈〈p〉〉 is i in S, j in T , and i 6= j) then125

add(〈〈j, p, e〉〉,〈〈i, p, e〉〉);126

else127

/* if 〈〈e〉〉 is not present in S */

if (〈〈p〉〉 is not present in S) then128

AddElementAndElementRel(〈〈e〉〉,〈〈p〉〉);129

else if (〈〈e〉〉 in T has a child text node and 〈〈p〉〉 has an attribute 〈〈p, a〉〉,130

with the same label as 〈〈e〉〉 in T ) then
let c be the cardinality of ElementRel 〈〈parent(〈〈e〉〉,T), e〉〉 in T ;131

Attribute2Element(〈〈p, a〉〉,〈〈e〉〉,c)132

else AddElementAndElementRel(〈〈e〉〉,〈〈p〉〉)133

/* ******************* Handle Attributes ******************* */

for (every attribute ai of 〈〈e〉〉 in T not present in 〈〈e〉〉 in S) do134

if (〈〈e〉〉 in S has a child element 〈〈c〉〉 with the same label as ai and 〈〈c〉〉135

has a child text node) then Element2Attribute(ai,〈〈e〉〉,〈〈c〉〉)
else AddAttribute(〈〈e〉〉,ai)136

/* ******************* Handle Text Nodes ******************* */

if (T has an ElementRel 〈〈j, e,Text〉〉) then137

if (〈〈e〉〉 in S does not have an ElementRel to the Text node) then138

extend(〈〈j, e,Text〉〉,Range Void Any);139

else if (S has an ElementRel 〈〈i, e,Text〉〉 and i 6= j) then140

add(〈〈j, e,Text〉〉,〈〈i, e,Text〉〉);141

attribute is inserted with an extend transformation, using the query Range Void

Any (lines 136 and 170). This time, a synthetic extent is not generated for the

attribute, even if the user has opted for synthetic extent generation, as missing

attribute instances cannot cause further loss of source data.

150



Panel 9: Subroutines for Phase II of Schema Restructuring Algorithm

/* *********** Proc1: InsertElementRel(〈〈p〉〉,〈〈e〉〉) ************** */

let i be the position of 〈〈e〉〉 in the list of children of parent(〈〈e〉〉, T );142

if (〈〈p〉〉 is an ancestor of 〈〈e〉〉) then143

let 〈〈ej〉〉 be the elements in the path from 〈〈p〉〉 to 〈〈e〉〉 in S, 1 ≤ j ≤ m;144

add(〈〈i, p, e〉〉,[{x, y}|{x, d1} ← 〈〈p, e1〉〉; . . . ; {dm, y} ← 〈〈em, e〉〉]);145

else if (〈〈p〉〉 is a descendant of 〈〈e〉〉) then146

if (synthetic extent generation is not permitted) then147

let 〈〈ek〉〉 be the elements in the path from 〈〈e〉〉 to 〈〈p〉〉 in S, 1 ≤ k ≤ n;148

let Q = [{y, x}|{x, u1} ← 〈〈e, e1〉〉; . . . ; {un, y} ← 〈〈en, p〉〉];149

else let Q := getInvertedElementRelExtent(〈〈e〉〉, 〈〈p〉〉);150

add(〈〈i, p, e〉〉,Q)151

else152

// 〈〈p〉〉 and 〈〈e〉〉 are in different branches

let 〈〈ea〉〉 be the common ancestor of 〈〈p〉〉 and 〈〈e〉〉 in S;153

let 〈〈ek〉〉 be the elements in the path from 〈〈ea〉〉 to 〈〈p〉〉 in S, 1 ≤ k ≤ n;154

let 〈〈e′j〉〉 be the elements in the path from 〈〈ea〉〉 to 〈〈e〉〉 in S, 1 ≤ j ≤ m;155

// Associate 〈〈ea〉〉 and 〈〈e〉〉 using the path between them

let Q1 = [{x, y}|{x, d1} ← 〈〈ea, e
′

1〉〉; . . . ; {dm, y} ← 〈〈e′m, e〉〉]] ;156

if (synthetic extent generation is not permitted) then157

// Associate 〈〈ea〉〉 and 〈〈p〉〉 using the path between them

let Q2 = [{y, x}|{x, u1} ← 〈〈ea, e1〉〉; . . . ; {un, y} ← 〈〈en, p〉〉] ;158

else let Q2 :=getInvertedElementRelExtent(〈〈ea〉〉,〈〈p〉〉);159

add(〈〈i, p, e〉〉,[{x, z}|{x, y} ← Q2; {y, z} ← Q1]);160

/* ********** Proc2: Attribute2Element(〈〈p, a〉〉,〈〈e〉〉,c) ********** */

let i be the position of 〈〈e〉〉 in the list of children of parent(〈〈e〉〉, T );161

let j be the position of 〈〈Text〉〉 in the list of children of 〈〈e〉〉 in T ;162

addEl(〈〈e〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈p, a〉〉 ′e′ c]);163

addER(〈〈i, p, e〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈p, a〉〉 ′e′ c]);164

addER(〈〈j, e,Text〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈p, a〉〉 ′e′ c]);165

/* ********* Proc3: AddElementAndElementRel(〈〈e〉〉,〈〈p〉〉) ********* */

let i be the position of 〈〈e〉〉 in the list of children of parent(〈〈e〉〉, T );166

extendEl(〈〈e〉〉,Range Void Any);167

extendER(〈〈i, p, e〉〉,Range Void Any);168

/* *********** Proc4: Element2Attribute(a,〈〈e〉〉,〈〈c〉〉) *********** */

addAtt(〈〈e, a〉〉,[{x,z}|{x,y}←〈〈e, c〉〉;{y,z}←〈〈c,Text〉〉]);169

/* *************** Proc5: AddAttribute(〈〈e〉〉,a) **************** */

extendAtt(〈〈e, a〉〉,Range Void Any);170
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Finally, if 〈〈e〉〉 in T has a child text node (i.e. T contains ElementRel 〈〈j, e, Text〉〉,

for some j) and 〈〈e〉〉 in S does not, we add an ElementRel 〈〈j, e, Text〉〉 to 〈〈e〉〉 in

S, using the query Range Void Any (line 139). If 〈〈e〉〉 in S contains an ElementRel

〈〈i, e, Text〉〉, but i 6= j, 〈〈j, e, Text〉〉 is added to S using the extent of 〈〈i, e, Text〉〉

(line 141).

We note that line 124 in Panel 8 simulates a ‘move’ operation. When Phase

II is applied on S, line 124 inserts an ElementRel from 〈〈p〉〉 to 〈〈e〉〉 in S. When

Phase II is applied on T , line 124 inserts an ElementRel from the Element with the

same label as parent(〈〈e〉〉, S) in T to 〈〈e〉〉 in T . When traversing the transforma-

tion pathway S ↔ T in the direction S → T , this latter insertion represents the

removal of ElementRel 〈〈parent(〈〈e〉〉, S), e〉〉 from S. These two transformations

therefore perform a ‘move’ operation on S, moving the subtree rooted at 〈〈e〉〉

from under parent(〈〈e〉〉, S) to under 〈〈p〉〉. Instead of regenerating the subtree

rooted at 〈〈e〉〉 to under 〈〈p〉〉 and then removing the subtree rooted at 〈〈e〉〉 from

under parent(〈〈e〉〉, S), the algorithm simply inserts an ElementRel between 〈〈p〉〉

and 〈〈e〉〉, and then removes the ElementRel between parent(〈〈e〉〉, S) and 〈〈e〉〉. This

results in a transformation pathway that is possibly much shorter (depending on

the constructs comprising the subtree rooted at 〈〈e〉〉 in S). This is significant,

because the I/O cost of storing the transformations in the AutoMed Repository

(in a DBMS on disk) is expected to be far greater than the running time of the

SRA.

Running Example

Referring to our running example, the application of Phase II on the schema

output by Phase I (see Figure 5.4) produces transformations 23 – 29 listed below.

The resulting schema Sres is illustrated in Figure 5.6 (grey denotes constructs

existing before the application of Phase II, black denotes constructs added by

Phase II).
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23 addER(〈〈1, root, author〉〉,

[{x, y}|{x, d1} ← 〈〈1, root, genre〉〉; {d1, y} ← 〈〈1, genre, author〉〉])

24 addAtt(〈〈book, ISBN〉〉,[{x,z}|{x,y}←〈〈1, book, ISBN〉〉;{y,z}←〈〈1, ISBN,Text〉〉])

25 addER(〈〈1, book, title〉〉,〈〈2, book, title〉〉)

26 extendEl(〈〈year〉〉, Range Void Any)

27 extendER(〈〈2, book, year〉〉, Range Void Any)

28 extendER(〈〈1, year,Text〉〉,Range Void Any)

29 addER(〈〈3, book, genre〉〉,unnestCollection [Q1|x1← 〈〈genre〉〉])

where in 29 Q1 is

if(member [x|{x, y} ← path1] x1) [{y, x}|{x, y} ← path1; x = x1]

[{generateUID ′book ′ [x1], x1}]

and path1 = [{p1, p3}|{p1, p2} ← 〈〈1, genre, author〉〉; {p2, p3} ← 〈〈2, author, book〉〉]

The application of Phase II on schema T produces transformations 30 – 39

listed below, and the resulting schema Tres is illustrated in Figure 5.6:

30 addER(〈〈1, root, genre〉〉,

[{x, y}|{x, d1} ← 〈〈1, root, author〉〉; {d1, d2} ← 〈〈2, author, item〉〉;

{d2, d3} ← 〈〈1, item, book〉〉; {d3, y} ← 〈〈3, book, genre〉〉])

31 addER(〈〈1, genre, author〉〉,unnestCollection [Q2|x← 〈〈genre〉〉])

32 addER(〈〈2, author, book〉〉,

[{x, y}|{x, d1} ← 〈〈2, author, item〉〉; {d1, y} ← 〈〈1, item, book〉〉])

33 addEl(〈〈ISBN〉〉, [y|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′])

34 addER(〈〈1, book, ISBN〉〉,

[{x, y}|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′])

35 addER(〈〈1, ISBN,Text〉〉,

[{y, z}|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′])

36 addER(〈〈2, book, title〉〉,〈〈1, book, title〉〉)

37 extendEl(〈〈publisher〉〉,Range Void Any)

38 extendER(〈〈3, book, publisher〉〉,Range Void Any)

39 extendER(〈〈1, publisher,Text〉〉,Range Void Any)

where in 31 Q2 is
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Figure 5.6: Identical Schemas Sres and Tres.

if(member [x|{x, y} ← path2] x) [{y, x}|{x, y} ← path2; x = x1]

[{generateUID ′author ′ [x1], x1}]

and path2 = [{p1, p4}|{p4, p3} ← 〈〈2, author, item〉〉; {p3, p2} ← 〈〈1, item, book〉〉;

{p2, p1} ← 〈〈3, book, genre〉〉]

Figure 5.7 illustrates our running example after the application of the entire

SRA. Numbers in white circles denote transformations produced by the SRA,

while numbers in grey circles denote their reverse transformations.

S Sconf
data

source

id
Sres Tres T data

source
20 29

20 29

39 30

39 30

Figure 5.7: Running Example after Application of the SRA.

We list below the overall sequence of primitive transformations comprising

the pathways Sconf → Sres and Tres → T . These illustrate how the two phases

of the SRA first augment Sconf with all the constructs of T that Sconf does not

contain, and how the resulting schema Sres is then reduced by removing those

constructs not present in T . We note that transformations 39 – 30 listed below
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(Tres → T ) are the reverse of the transformations 30 – 39 listed above (T → Tres).

Also, we do not list the id transformations between Sres and Tres, which actually

occur between transformations 29 and 39 .

We see that transformations 20 - 22 skolemise ElementRel 〈〈2, author, book〉〉,

adding constructs 〈〈item〉〉, 〈〈2, author, item〉〉 and 〈〈1, item, book〉〉, while transfor-

mation 32 deletes ElementRel 〈〈2, author, book〉〉. Transformation 23 adds Ele-

mentRel 〈〈1, root, author〉〉, and this, together with transformation 31 , moves the

subtree with root Element 〈〈author〉〉 under 〈〈root〉〉. Transformation 24 performs

an element-to-attribute transformation, using constructs 〈〈1, book, ISBN〉〉 and

〈〈1, ISBN, Text〉〉 to populate the extent of new attribute 〈〈book, ISBN〉〉. This trans-

formation is complemented by transformations 35 – 33 , which delete constructs

〈〈1, book, ISBN〉〉, 〈〈1, ISBN, Text〉〉 and 〈〈ISBN〉〉 (the reverse transformations, 33 –

35 , perform an attribute-to-element transformation in T ). Next, 25 and 36

change the order of ElementRel 〈〈2, book, title〉〉 under 〈〈book〉〉. Then transfor-

mations 26 – 28 add constructs 〈〈year〉〉, 〈〈2, book, year〉〉 and 〈〈1, year, Text〉〉 using

the query Range Void Any, since no information is available from S about their

extents. Another move operation is performed by transformations 29 and 30 ,

which move the subtree with root Element 〈〈genre〉〉 under 〈〈book〉〉. Finally,

transformations 39 - 37 delete constructs 〈〈publisher〉〉, 〈〈3, book, publisher〉〉 and

〈〈1, publisher, Text〉〉 using the query Range Void Any, since their extents cannot be

derived by the rest of the schema constructs of S.

20 addEl(〈〈item〉〉, [y|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′])

21 addER(〈〈2, author, item〉〉,

[{x, y}|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′])

22 addER(〈〈1, item, book〉〉,

[{y, z}|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′])

23 addER(〈〈1, root, author〉〉,

[{x, y}|{x, d1} ← 〈〈1, root, genre〉〉; {d1, y} ← 〈〈1, genre, author〉〉])

24 addAtt(〈〈book, ISBN〉〉,[{x,z}|{x,y}←〈〈1, book, ISBN〉〉;{y,z}←〈〈1, ISBN,Text〉〉])

25 addER(〈〈1, book, title〉〉,〈〈2, book, title〉〉)

26 extendEl(〈〈year〉〉, Range Void Any)
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27 extendER(〈〈2, book, year〉〉, Range Void Any)

28 extendER(〈〈1, year,Text〉〉,Range Void Any)

29 addER(〈〈3, book, genre〉〉,unnestCollection [Q1|x← 〈〈genre〉〉])

39 contractER(〈〈1, publisher,Text〉〉,Range Void Any)

38 contractER(〈〈3, book, publisher〉〉,Range Void Any)

37 contractEl(〈〈publisher〉〉,Range Void Any)

36 deleteER(〈〈2, book, title〉〉,〈〈1, book, title〉〉)

35 deleteER(〈〈1, ISBN,Text〉〉,

[{y, z}|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′])

34 deleteER(〈〈1, book, ISBN〉〉,

[{x, y}|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′])

33 deleteEl(〈〈ISBN〉〉, [y|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′])

32 deleteER(〈〈2, author, book〉〉,

[{x, y}|{x, d1} ← 〈〈2, author, item〉〉; {d1, y} ← 〈〈1, item, book〉〉])

31 deleteER(〈〈1, genre, author〉〉,unnestCollection [Q2|x← 〈〈genre〉〉])

30 deleteER(〈〈1, root, genre〉〉,

[{x, y}|{x, d1} ← 〈〈1, root, author〉〉; {d1, d2} ← 〈〈2, author, item〉〉;

{d2, d3} ← 〈〈1, item, book〉〉; {d3, y} ← 〈〈3, book, genre〉〉])

where in 29 Q1 is

if(member [x|{x, y} ← path1] x1) [{y, x}|{x, y} ← path1; x = x1]

[{generateUID ′book ′ [x1], x1}]

and path1 = [{p1, p3}|{p1, p2} ← 〈〈1, genre, author〉〉; {p2, p3} ← 〈〈2, author, book〉〉]

and where in 31 Q2 is

if(member [x|{x, y} ← path2] x1) [{y, x}|{x, y} ← path2; x = x1]

[{generateUID ′author ′ [x1], x1}]

and path2 = [{p1, p4}|{p4, p3} ← 〈〈2, author, item〉〉; {p3, p2} ← 〈〈1, item, book〉〉;

{p2, p1} ← 〈〈3, book, genre〉〉]

5.4.4 Correctness of the SRA

We now illustrate the correctness of the SRA using our running example: we refer

the reader to Appendix B for a detailed discussion of the correctness of the SRA.

We recall from Chapter 4 that the pathway Sconf ↔ T produced by the SRA in a
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peer-to-peer transformation setting is considered as being correct if Sconf and T

are behaviourally consistent. To show this, we need to show that for any query

QS on Sconf , the results of Q′

S are contained in the results of QS, where Q′

S is

produced by rewriting QS on S to QT on T , using GAV reformulation and path-

way Sconf → T , and then rewriting QT to Q′

S on Sconf , using GAV reformulation

and pathway T → Sconf . If the results of QS and Q′

S are equivalent, then Sconf

and T are behaviourally equivalent with respect to query QS.

Example 1. Consider query QS = 〈〈2, author, book〉〉 on Sconf . Using transforma-

tion 32 , QS is rewritten on T as QT =[{x, y}|{x, d1} ← 〈〈2, author, item〉〉; {d1, y} ←

〈〈1, item, book〉〉]. Using transformations 21 and 22 , QT is rewritten to Q′

S on Sconf

as follows:

Q′

S =[{x, y}|

{x, d1} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′];

{d1, y} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′]]

Applying list comprehension unnesting, this simplifies to:

Q′

S =[{x, y}|{x, d1, z} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′;

{x1, d1, y} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′]

Since function skolemiseEdge will always yield the same result given the same

input, and since the two generators in the above comprehension are joined on

variable d1, the other two pairs of variables must be equal, i.e. x=x1 and z=y for

all tuples generated by the comprehension. Therefore, Q′

S can be simplified to:

Q′

S =[{x, y}|{x, d1, y} ← skolemiseEdge 〈〈2, author, book〉〉 ′item′ ′1− n′]

which is equivalent to:

Q′

S =[{x, y}|{x, d1, y} ← skolemiseEdge QS
′item′ ′1− n′]

We know from the definition of skolemiseEdge that the function generates as

many instances as the instances of its ElementRel (or Attribute) argument (in this

case QS), and we also know that it does not alter the first and third items in the

triples that it produces, and so QS ≡ Q′

S.

Assuming now that the user had not permitted synthetic extent generation,

then QT would be the same as above, but Q′

S would be equal to the empty list,
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and so it is trivially the case that Q′

S ⊆ QS.

Example 2. As a second example, consider query

QS =[{x, z}|{x, y} ← 〈〈1, book, ISBN〉〉; {y, z} ← 〈〈1, ISBN, Text〉〉]

on S, which gives us the opportunity to examine the correctness of the element-

to-attribute transformation of the SRA. Using transformations 34 and 35 , QS is

rewritten to the following query on T :

QT =[{x, z}|

{x, y} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′];

{y, z} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′]]

Applying list comprehension unnesting, this simplifies to:

QT =[{x, z}|{x, y, z1} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′;

{x1, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′]

As in the previous example, since both instances of skolemiseEdge in QT have

the same arguments, and since they are joined on variable y, the other two pairs

of variables must be equal, i.e. x=x1 and z1=z, and so Q′

S can be simplified to:

QT =[{x, z}|{x, y, z} ← skolemiseEdge 〈〈book, ISBN〉〉 ′ISBN′ ′1− 1′]

Using transformation 24 , QT is rewritten to Q′

S on S as follows:

Q′

S =[{x, z}|{x, y, z} ← skolemiseEdge

[{x, z}|{x, y} ← 〈〈1, book, ISBN〉〉; {y, z} ← 〈〈1, ISBN,Text〉〉] ′ISBN′ ′1− 1′]

or, since the first argument of skolemiseEdge is the original query QS:

Q′

S =[{x, z}|{x, y, z} ← skolemiseEdge QS
′ISBN′ ′1− 1′]

By a similar argument to Example 1, QS ≡ Q′

S, or Q′

S ⊆ QS if the user had

not permitted synthetic extent generation.

5.4.5 Complexity Analysis of the SRA

We now examine the complexity of the SRA by deriving the complexity of each

of its three phases. In our discussion, we consider only the complexity of the SRA

and not of the AutoMed API, i.e. we assume that the complexity of applying any

AutoMed primitive transformation to a schema is the same and is O(1).
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Complexity of the Initialisation Phase

When applied to the source schema S, the Initialisation Phase traverses S and

creates pointers to each Element and Attribute construct of S. The complexity of

this process is O(ES) + O(AS), where ES is the number of Element constructs of

S and AS is the number of Attribute constructs of S. Similarly, when applied to

the target schema T , the Initialisation Phase traverses T and creates pointers to

each Element and Attribute construct of T , and the complexity of this process is

O(ET ) + O(AT ).

The Initialisation Phase also traverses S one more time, considers each Ele-

mentRel construct of S and locates the corresponding path in T , if such a path

exists. The complexity of locating a path in T is, in the worst case, O(2 hT ),

where hT is the height of T , if the start and end nodes of the path are both

leaf nodes and that their lowest common ancestor is the root. Thus, the worst

case complexity for this process for S is O(RS hT ), where RS is the number of

ElementRel constructs of S. However, in any tree the number of edges is one less

than the number of its nodes, and so this can also be expressed as O(ES hT ). By

a similar argument, the complexity of this process when the Initialisation Phase

is applied to T is O(ET hS).

The overall worst-case complexity of the Initialisation Phase for S is the sum

of the complexities discussed above, i.e.

O(ES + ET )+O(AS + AT )+O(ES hT )+O(ET hS)

Complexity of Phase I

When applied to S, the Initialisation Phase produces a correspondence between

each ElementRel construct 〈〈ep, ec〉〉 in S and the corresponding path pT in T .

When applied to S, Phase I handles each such pair (〈〈ep, ec〉〉, pT ). Assuming a

complexity CS for handling each such pair, and assuming that every ElementRel

in S has a corresponding path in T , the complexity of Phase I for S is O(ES CS).

Similarly, the complexity of Phase I for T is O(ET CT ). We now discuss com-

plexity CS (and CT ).
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As discussed in Section 5.4.2, there are four cases to consider for pair (〈〈ep, ec〉〉,

pT ): (a) 〈〈ep〉〉 is the parent of 〈〈ec〉〉 in T , (b) 〈〈ep〉〉 is an ancestor of 〈〈ec〉〉 in T , (c)

〈〈ep〉〉 is a descendant of 〈〈ec〉〉 in T , and (d) 〈〈ep〉〉 and 〈〈ec〉〉 are located in different

branches in T .

Phase I does not need to do anything for Case (a), and so the complexity for

this case is O(1).

When handling Case (b), Phase I considers each Element in pT and adds

three constructs to S. In the worst case, pT is a path from a leaf node to the

root, and therefore the complexity of processing each Element in pT is O(hTC ′

S),

where C ′

S is the complexity of issuing the three transformations. Each of these

transformations has a constant complexity (since none of the queries supplied

with the transformations are path queries) — so the complexity of processing

pT is O(hT ). Finally, Phase I deletes the ‘byproduct’ ElementRel constructs it

produced, which are one less than the total number of ElementRel constructs in

pT — this also has a complexity of O(hT ). Thus, Case (b) of Phase I has an

overall worst-case complexity O(2 hT ).

Case (c) is similar to Case (b), but first invokes function getInvertedElemen-

tRelExtent that formulates a query whose length is, in the worst case, equal to

the height of T . Therefore, the worst-case complexity of Case (c) is O(3 hT ).

Case (d) is similar to Case (c), but in this case the query is derived using a

path query of length 2, and so the worst-case complexity of Case (d) is O(2 hT ).

Therefore, the overall worst-case complexity of Phase I for S and T is:

O(ES hT ) + O(ET hS)

Complexity of Phase II

When applied to S (respectively, T ), Phase II traverses T (S), considering each

Element, Attribute and ElementRel construct in T (S), and issues AutoMed trans-

formations on S (T ), depending on whether or not the constructs of T (S) are

present in S (T ). The queries supplied with the transformations that add Element

and Attribute constructs, as well as with those that add ElementRel constructs to
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the Text construct, are non-path queries, and therefore the complexity of gener-

ating each of them is O(1). A query supplied with a transformation that adds an

ElementRel construct (other than to the Text construct) is a path query. Assuming

complexity CS (CT ) for deriving such a query in S (T ), the overall complexity of

Phase II is O(ES +ET ) + O(AS +AT ) + O(ESCS) + O(ETCT ). We now discuss

complexity CS (and CT ).

Phase II handles the addition of an ElementRel construct 〈〈ep, ec〉〉 of T to S

depending on the relationship of 〈〈ep〉〉 and 〈〈ec〉〉 in S. If 〈〈ep〉〉 and 〈〈ec〉〉 have an

ancestor-descendant or a descendant-ancestor relationship, then a path query is

supplied with the AutoMed transformation, and deriving this query has a worst-

case complexity of O(hS).

If 〈〈ep〉〉 and 〈〈ec〉〉 are in leaves of different branches in S, then Phase II issues

a transformation supplied with a query that contains two path queries. The

complexity of deriving each of these queries is, in the worst case, O(hS), so CS is

O(hS). Similarly, CT is O(hT ) in the worst case.

Therefore, the overall worst-case complexity of Phase II is:

O(ES + ET ) + O(AS + AT ) + O(ES hT ) + O(ET hS)

Overall Complexity

Combining the complexities of each of the three phases, the overall worst-case

complexity for the SRA is

O(ES + ET ) + O(AS + AT ) + O(ES hT ) + O(ET hS)

Based on our earlier discussion, the actual complexity of the SRA depends

on the number of elements and attributes of the source and target schemas (but

not on the elements’ “fan-out”), and on the number and the length of the path

queries produced. Since it is not possible to know the number and length of the

path queries that are produced by the SRA for an arbitrary pair of schemas S

and T , we have assumed here that, in the worst case, a path query is generated

for each ElementRel construct of S and T , and that the length of each path query

on S (T ) is, in the worst-case, twice the height of T (S).
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5.5 Schema Integration Algorithms

Consider now the integration of a number of XML data sources with schemas

LS1 . . . LSn under a global schema GS. As discussed in Chapter 4, our approach

supports two types of schema integration in such cases: top-down, in which a

fixed global schema is predefined, and bottom-up, in which the global schema is

automatically generated. We now discuss these two types of integration in more

detail, and provide pseudocode for the respective algorithms (implementation of

these algorithms is an area of future work).

As shown in Panel 10, given our schema restructuring algorithm described in

Section 5.4, and assuming that schema conformance has already been performed,

top-down integration is straightforward: each conformed data source schema is

restructured to match the structure of the predefined global schema. This type

of integration is preferable in settings where a specific global schema needs to be

enforced and where there is no strict requirement to preserve all the information

contained in the data sources. We note that, given the worst-case complexity

of the SRA presented in Section 5.4.5, the worst-case complexity of top-down

schema integration is:

O(
∑n

i=1
ELSi

+ EGS) + O(
∑n

i=1
ALSi

+ AGS) + O(
∑n

i=1
ELSi

hGS) + O(
∑n

i=1
EGS hLSi

)

In settings where a global schema does not already exist, or where all data

source information needs to be preserved, bottom-up integration is preferable.

Assuming schema conformance has already been performed, the bottom-up inte-

gration algorithm is listed in Panels 11 and 12. This algorithm is able to integrate

the given data sources without loss of information in the following three cases:

1. If an initial global schema GS that is not one of the data source schemas

is provided, GS is first augmented with all data source constructs that it

Panel 10: Top-Down Integration Algorithm
Input: Data source schemas LS1 . . . LSn, global schema GS
for (each LSi, 1 ≤ i ≤ n) do

restructure(LSi,GS)
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Panel 11: Bottom-Up Integration Algorithm

Input: Data source schemas LSi, 1 ≤ i ≤ n, initial global schema GS (optional)
Output: Final Global schema GS
if (GS is null) then1

let GS be random(LS1, . . . LSn);2

if (GS is LSj) for some j, 1 ≤ j ≤ n then3

for (each LSi, i 6= j) do4

growingPhase(LSi,GS);5

restructure(LSi,GS);6

else7

for (each LSi) do8

growingPhase(LSi,GS);9

restructure(LSi,GS);10

does not contain (line 9 — details given below), and then each data source

schema is restructured using our schema restructuring algorithm (line 10).

2. If an initial global schema GS that is one of the data source schemas, LSj ,

is provided, GS is first augmented with all data source constructs that it

does not contain (line 5 — details given below), and then each data source

schema except for LSj is restructured using the SRA (line 6). This case is

illustrated in Figure 5.8 with LS1 as the initial global schema.

3. If an initial global schema is not provided, our bottom-up integration algo-

rithm randomly selects one of the data source schemas as the initial global

schema (lines 1–2). This setting is now identical to that of case 2 and is

therefore handled by lines 3–6.

The “growing phase” of our bottom-up integration algorithm is shown in

Panel 12. It traverses its input data source schema LSi in a depth-first man-

ner and adds to GS all Element constructs, Attribute constructs and ElementRel

constructs of the form 〈〈e, Text〉〉 that GS does not contain (lines 12–16, 17–19

and 20–22 respectively). The growing phase also adds any Element-to-Element

ElementRel constructs required to maintain the tree structure of GS, e.g. if an
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Panel 12: Bottom-Up Integration Algorithm — Growing Phase
Input: Data source schema LSi, current global schema GS
for (each element 〈〈e〉〉 in LSi, in a depth-first manner) do11

// Insert 〈〈e〉〉 in GS if it does not exist

if (〈〈e〉〉 does not exist in GS) then12

apply transformation extend(〈〈e〉〉,Range Void Any) on GS;13

let 〈〈p〉〉 be the element in GS corresponding to parent(〈〈e〉〉, LSi);14

let i be the position of 〈〈e〉〉 in the list of children of 〈〈p〉〉;15

apply transformation extend(〈〈i, p, e〉〉,Range Void Any) on GS;16

// Handle the attributes of 〈〈e〉〉
for (every attribute 〈〈e, a〉〉 of 〈〈e〉〉) do17

if (〈〈e〉〉 in GS does not have an attribute 〈〈e, a〉〉 and 〈〈e〉〉 in GS does not18

have a child element with the same label as a) then
apply transformation extend(〈〈e, a〉〉,Range Void Any) on GS;19

// Handle the (possible) text child of 〈〈e〉〉
if (〈〈e〉〉 in LSi has a child text node, and 〈〈e〉〉 in GS does not) then20

let i be the position of the text node in the list of children of 〈〈e〉〉 in LSi;21

apply transformation extend(〈〈i, e,Text〉〉,Range Void Any) on GS;22

element is added to GS. However, the growing phase does not add to GS any

other Element-to-Element ElementRel constructs present in LSi but not present

in GS, since the subsequent schema restructuring phase will transform such Ele-

mentRel constructs in LSi into paths in GS. Another exception is made for those

Attribute constructs that will be handled by the schema restructuring phase using

an element-to-attribute transformation (line 18).

We note that the structure of the final global schema will contain as a sub-

schema the schema that is given to the algorithm as an initial global schema

(or the data source schema that is randomly selected as such by the bottom-up

integration algorithm). If a different schema is provided (or selected), then the

structure of the final global schema may be different, although always containing

the same concepts7.

7Since the SRA is able to perform element-to-attribute and attribute-to-element transfor-
mations, adding to GS Element constructs of LSi that are present in GS as Attribute constructs,
and vice versa, will not add any information to GS. Therefore, our schema integration algorithm
does not add to GS such constructs of LSi.
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GS1

LS2 LSn
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  restructure

  restructure

LS1

grow

grow

Figure 5.8: Bottom-Up Integration with LS1 as the Initial Global Schema.

The complexity of our bottom-up integration algorithm consists of two com-

plexities for each pair (LSi, GS) to which the algorithm is applied. The complex-

ity of the growing phase is

O(
∑n

i=1 ELSi
) + O(

∑n

i=1 ALSi
) + O(

∑n

i=1 TLSi
)

where TLSi
are those ElementRel constructs that link Element constructs to the

Text construct for schema LSi. The complexity of applying the SRA for each pair

of data source and global schemas, assuming that the initial global schema is one

of the data source schemas, is:

O(
∑n

i=1
ELSi

+ EGS) + O(
∑n

i=1
ALSi

+ AGS) + O(
∑n

i=1
ELSi

hGS) + O(
∑n

i=1
EGS hLSi

)

So, the overall complexity of our bottom-up schema integration algorithm is:

O(
∑n

i=1
ELSi

+ EGS) + O(
∑n

i=1
ALSi

+ AGS) + O(
∑n

i=1
TLSi

) +O(
∑n

i=1
ELSi

hGS) +

O(
∑n

i=1
EGS hLSi

)
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5.6 Discussion

In this chapter we have described the schema conformance and the schema trans-

formation phases of our approach to XML schema and data transformation and

integration. We have demonstrated the use of schema matching as a possible

schema conformance method within our approach, we have described in detail

our schema restructuring algorithm, have discussed its complexity and have also

discussed schema integration in our approach.

The chapter has made several contributions. Concerning schema conformance,

we have demonstrated how AutoMed transformation pathways can be derived

from the 1–1, 1–n, n–1 and n–m matchings output by a schema matching tool.

Concerning schema transformation, we have presented an automatic schema

restructuring algorithm (SRA) that transforms a source schema S into a target

schema T . This is achieved by adding to S all constructs present in T but not

in S, and vice versa, so that the resulting schemas are identical. Where possible

(i.e. there is no lack of knowledge and no ambiguity to prevent it from doing so),

our algorithm can generate a synthetic extent for Element constructs present in

one schema but not in the other, thus avoiding possible loss of information from

descendant constructs of these Element constructs. Compared to existing ap-

proaches, only Clio [AFF+02, HHH+05, HPV+02, JHPH07, PVM+02, FKMP05]

considers the problem of information loss during schema restructuring, and their

work is complementary to ours: Clio is focused on the enforcement of foreign key

constraints and can therefore be characterised as a data-level approach (Clio is

able to automatically generate data values based on foreign key constraints). In

contrast, our approach does not consider constraints and is focused on generating

the extents of schema constructs that are missing from the target schema.

We have studied the correctness of the main operations of the SRA using

the notion of behavioural consistency (by example in this chapter, and more

thoroughly in Appendix B). We have shown that when it does not generate

synthetic data, the SRA is behaviourally consistent but suffers from loss of data.

When it does generate synthetic data, the SRA is behaviourally consistent for
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the ancestor and element-to-attribute cases, but is not behaviourally consistent

for the descendant and different branches cases. In all cases of synthetic extent

generation, however, the SRA avoids the loss of data. In conclusion, depending

on the application setting, the user can choose between consistency and loss of

data in some cases, or inconsistency in some cases and preservation of data in all

cases.

Concerning schema integration, we have presented ways in which a number

of XML data sources can be integrated under a global XML schema. Depending

on whether a fixed global schema is predefined or not, top-down or bottom-up

integration can be performed. In the former case, data source information may

be lost if the global schema does not contain all the information present in the

data source schemas, while in the latter all source information is preserved. Both

cases employ our schema restructuring algorithm, ensuring that no information

is lost as a result of structural incompatibilities between the data source schemas

and the global schema.
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Chapter 6

Extending the Approach Using

Subtyping Information

6.1 Introduction

In Chapter 5, we discussed the two phases of our approach, schema conformance

and schema transformation. In particular, we demonstrated the use of schema

matching as the schema conformance technique and we discussed in detail the

specifics of our schema restructuring algorithm (SRA) as a means for schema

transformation. We also provided two integration algorithms that use the SRA,

one for top-down and one for bottom-up integration, assuming schema confor-

mance has already been performed.

This chapter presents a technique that uses ontologies as a ‘semantic bridge’

to achieve schema conformance. In contrast with the use of schema matching in

Chapter 5, which was employed between two XML data sources and conformed

one with respect to the other, this technique conforms each XML data source with

respect to an ontology and is therefore more scalable in a peer-to-peer setting

where each peer needs to exchange data with all other peers. However, since each

data source is conformed with respect to an ontology that may contain subtyping

information, pairs of data sources may still be semantically heterogeneous even

after the schema conformance phase has been performed. For example, if an
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element in one peer schema corresponds to a class in the ontology that is a

subclass of the class to which an element in another peer schema corresponds,

the SRA presented in Chapter 5 treats these two elements as being disjoint.

We therefore extend the SRA in this chapter to take into account subtyping

information. The chapter is structured as follows. Section 6.2 first presents a run-

ning example to which we will refer throughout the chapter. Section 6.3 discusses

extending the AutoMed system to represent ontologies. Section 6.4 describes the

use of one or more ontologies for conforming pairs of XMLDSS schemas, and illus-

trates this using the running example. Section 6.5 describes an extended version

of the SRA, which can use the subtyping information provided by ontologies, and

demonstrates its application with respect to the running example. Section 6.6

summarises the contributions of this chapter.

6.2 Running Example for this Chapter

Figure 6.1 illustrates the XMLDSS schemas of two XML data sources, while

Table 6.1 illustrates an XML document, DS1, that conforms to schema S, and

three XML documents, DT1, DT2 and DT3, that conform to schema T . Notice

that T contains information about a single staff member per document, while S

contains information about multiple staff members per document.

T

staffMember$1

Text

S

academic$1

office$1

2

name$1

1

Text

 1
 1

school$1
1

university$1
1

office$1

1

college$1

name

1

      2name

name

admin$1

office$2

2

name$2

1

2

 1
 1

Figure 6.1: Example Source and Target XMLDSS schemas S and T .

A first examination of schemas S and T reveals that, even though they describe
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<university>

<school name="School of Law">

<academic>

<name>Dr. Nicholas Petrou</name>

<office>123</office></academic>

<academic>

<name>Prof. George Lazos</name>

<office>111</office></academic>

</school>

<school name="School of Economics">

<academic>

<name>Dr. Anna Georgiou</name>

<office>321</office></academic>

</school>

</university>

<staffMember name="Dr. Nicholas Petrou">

<office>

123

<college name="Birkbeck"/>

</office>

</staffMember>

<staffMember name="Prof. George Lazos">

<office>

111

<college name="Imperial"/>

</office>

</staffMember>

<staffMember name="Dr. Anna Georgiou">

<office>

321

<college name="UCL"/>

</office>

</staffMember>

Table 6.1: Source XML Document DS1 (Top) and Target XML Documents DT1,
DT2 and DT3 (Bottom)

largely overlapping information, they are heterogeneous both in terms of their

semantics and their structure. In particular, they contain different but related

concepts, e.g. 〈〈school$1〉〉 and 〈〈college$1〉〉, and they structure their data using
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a different viewpoint: S according to the hierarchy of a university, and T from

an employee viewpoint. There are also three n–1 relationships between the two

schemas: 〈〈academic$1〉〉 and 〈〈admin$1〉〉 in S correspond to 〈〈staffMember$1〉〉 in

T , 〈〈office$1〉〉 and 〈〈office$2〉〉 in S correspond to 〈〈office$1〉〉 in T , and 〈〈name$1〉〉

and 〈〈name$2〉〉 in S correspond to 〈〈staffMember$1, name〉〉 in T .

Figure 6.2 illustrates the RDFS ontology O that we will use to conform

schemas S and T in Section 6.4. First, Section 6.3 discusses extending the Au-

toMed system to represent ontologies. Although this is not required for settings

where all schemas conform to the same ontology, as is the case in our running

example, it is required for settings where different schemas conform to different

ontologies and where we assume that AutoMed provides the necessary mappings

between these ontologies.

O

College

School

Staff
name

teachesIn

name

name

Literal office

University
belongs

name

belongs
belongs

Academic
Staff

subClass

Admin
Staff

subClass

Figure 6.2: Example Ontology O.

6.3 Representing Ontologies in AutoMed

In collaboration with other AutoMed team members, we have extended AutoMed

to support the RDFS [W3C04b], OWL-Lite and OWL-DL [W3C04a] ontology

languages [ZPW08]. Below, we briefly describe the definitions of RDFS and

OWL-DL in terms of AutoMed’s HDM. The definition of OWL-Lite is a subset

of that of OWL-DL and we therefore omit it.
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RDFS constructs are represented as follows in terms of the HDM, where ‘rs:’

is an HDM-specific prefix, used to denote the originating modelling language of

the HDM construct within AutoMed’s Model Definitions Repository, and ‘rdfs:’

is the namespace prefix for RDFS classes:

• An RDFS class c is identified by the scheme 〈〈c〉〉. In the HDM, it is repre-

sented by a node and identified by the scheme 〈〈rs : c〉〉.

• An RDFS property p linking two classes c1 and c2 is identified by the scheme

〈〈p, c1, c2〉〉. In the HDM it is represented by an edge 〈〈p, rs : c1, rs : c2〉〉 be-

tween nodes 〈〈rs : c1〉〉 and 〈〈rs : c2〉〉 and by two cardinality constraints, one

stating that each instance of 〈〈rs : c1〉〉 is associated with zero or more in-

stances of 〈〈rs : c2〉〉, and the other stating the converse. This representation

in the HDM also captures implicitly the RDFS rdfs:domain and rdfs:range

properties.

• Text in RDFS is represented by the Literal construct and is identified by the

scheme 〈〈Literal〉〉. In the HDM, this is represented by a node and identified

by the scheme 〈〈rs : Literal〉〉, of which there is one occurrence in any RDFS

ontology.

• A subclass constraint in RDFS states that a class csub is a subclass of another

class csup. In the HDM, this is represented by a constraint stating that

instances of 〈〈rs : csub〉〉 are also instances of 〈〈rs : csup〉〉, and is identified by

the scheme 〈〈rdfs : subClassOf, rs : csub, rs : csup〉〉.

• A subproperty constraint in RDFS states that a property psub is a sub-

property of another property psup. In the HDM, this is represented by a

constraint stating that instances of 〈〈psub〉〉 are also instances of 〈〈psup〉〉, and

is identified by the scheme 〈〈rdfs : subPropertyOf, psub, psup〉〉.

OWL-DL constructs are represented as follows in terms of the HDM, where

‘ol:’ is the HDM prefix and ‘owl:’ is the OWL namespace prefix:
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• OWL-DL defines the class owl:Thing as a superclass of all classes. This is

identified by a scheme 〈〈Thing〉〉, of which there is one occurrence in any

OWL-DL ontology. In the HDM, this is represented by a node, identified

by the scheme 〈〈ol : Thing〉〉.

• Any other OWL-DL class c is represented by the scheme 〈〈c〉〉. In the HDM,

this is represented by a node and identified by the scheme 〈〈ol : c〉〉. There

is, in addition, an HDM constraint stating that all instances of 〈〈ol : c〉〉 are

also instances of 〈〈ol : Thing〉〉.

If c is a complex OWL-DL class, i.e. it is defined using other classes and set

operators, there is also an HDM constraint specifying the extent of 〈〈ol : c〉〉

with respect to these classes. We note that IQL is sufficiently expressive

to be able to specify the required constraints for all types of OWL-DL

complex classes. For example, for a class c1 defined as the union of classes

c2 and c3 using the owl:unionOf operator, the HDM constraint would be

〈〈ol : c1〉〉 = 〈〈ol : c2〉〉 union 〈〈ol : c3〉〉.

• OWL-DL properties are represented in the same way as RDFS properties,

and likewise for the rdfs:Literal, rdfs:subClassOf and rdfs:subPropertyOf con-

structs.

Finally, OWL-DL incorporates several constraints and we give below the rep-

resentation of just one of these in the HDM. OWL-DL’s other constraints are

represented similarly. We note again that IQL is sufficiently expressive to be able

to specify these constraints.

• In OWL-DL a class c1 may be asserted to be semantically identical to an-

other class c2. In the HDM this assertion is represented by two constraints,

one stating that the instances of c1 are also instances of c2 and the other stat-

ing the converse, and is identified the scheme 〈〈owl : sameAs, ol : c1, ol : c2〉〉.
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6.4 Schema Conformance Using Ontologies

This section discusses the use of correspondences between an XMLDSS schema

S and an ontology O in order to perform schema conformance. By schema con-

formance we mean the transformation of S into a schema whose constructs are

named using terms from O. This process may be as simple as renaming a con-

struct, but may also include more complex operations, such as dropping part of

the extent of a construct, merging multiple constructs into a single construct, or

splitting a single construct into multiple constructs.

In Section 6.4.1, we first consider a scenario in which two schemas, S and

T , are each semantically linked to the same ontology O, each using a set of

correspondences for this purpose. In Section 6.4.2, we use this ‘semantic bridge’

to transform S and T into schemas Sconf and Tconf that use terms from the

same ontology, using our PathGen tool that was introduced in Chapter 5. In

Section 6.4.3, we then discuss the general scenario in which S and T correspond

to different ontologies that are linked via an AutoMed transformation pathway.

The correspondences may be defined manually by a domain expert or derived

semi-automatically using a schema matching tool between each XML data source

and the corresponding ontology, e.g. using the techniques described in [RB01].

In the following, we provide details of our correspondences language and show

that it is able to describe 1–1, 1–n, n–1 correspondences as well as data type

correspondences. Extending our correspondences language and the schema con-

formance algorithm to n–m and schema-to-data correspondences is an area of

future work.

6.4.1 XMLDSS-to-Ontology Correspondences

A set of correspondences between an XMLDSS schema S and an ontology O

provides a mapping between the XMLDSS schema and the ontology. Each cor-

respondence relates an XMLDSS construct of S to one or more path queries over

O. Correspondences may be of the following types:

I. An Element 〈〈e〉〉 may map to a Class 〈〈c〉〉; or to a path ending with an object

174



property1; or to a path ending with a datatype property2 if the Element is

linked to the the Text node. Additionally, the instances of a class occurring

within the correspondence query may be constrained to be members of some

subclass.

II. An Attribute may map either to a datatype property or to a path ending

with a datatype property. Additionally, the instances of a class occurring

within the correspondence query may be constrained to be members of some

subclass.

III. An ElementRel of the form 〈〈i, e, Text〉〉 may map to a datatype property.

Additionally, the instances of a class occurring within the correspondence

query may be constrained to be members of some subclass.

Each correspondence of type I, II or III consists of three parts:

(a) The construct part is a scheme that states which XMLDSS construct the

correspondence refers to.

(b) The extent part is a select-project IQL query applied to the XMLDSS

construct, and may serve one of two purposes. For correspondence types

I and II, this query specifies the subset of the extent of the Element or

Attribute to which the correspondence applies — it may of course be the

whole extent. For correspondence type III and, if required, type II, the

query performs a type-conversion operation in order to conform the data

type of the XMLDSS construct to the data type of the ontology property

to which the XMLDSS construct corresponds. In this case, the IQL query

is an extended select-project-join query comprising a comprehension whose

head is of the form {x, f y}, where f is an IQL type conversion function,

e.g. toString or toKilometers. Also, the user specifies the IQL function that

reverses the effect of f, e.g. toInteger if y is of type Integer, or toMiles if y

represents distance in miles.

1An object property links class instances to class instances and is of the form 〈〈p, c1, c2〉〉.
2A datatype property links class instances to data values and is of the form 〈〈p, c, Literal〉〉.
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(c) The query part is a select-project-join IQL query over the ontology and

has the form specified in I-III above. The query part of a correspondence

of type I may be a single Class scheme; or it may be a path query that uses

only Property constructs, ending with an object property or a datatype

property, and possibly including also filters that constrain instances of a

class to be members of a subclass. The query part of a correspondence of

type II and III may be a path query that uses only Property constructs,

ending with a datatype property, and possibly including also filters that

constrain instances of a class to be members of a subclass.

We note that, in principle, it would be possible to use more high-level query

languages such as XQuery to specify the extent and query parts of correspon-

dences and to use our XQuery-to-IQL translator, discussed in Chapter 3, to

translate these into IQL.

Correspondences of types I or II may be grouped as follows:

IV. An Element may map to more than one path over the ontology, in which

case n correspondences of type I associate the same Element to n different

queries over the ontology.

V. An Attribute may map to more than one path over the ontology, in which

case n correspondences of type II associate the same Attribute to n different

queries over the ontology.

VI. Multiple correspondences may relate different Element constructs that have

the same parent Element to the same path over the ontology, in which case

n correspondences of type I associate these Element constructs to the same

query over the ontology.

VII. Multiple correspondences may relate different Attribute constructs that have

the same owner Element to the same path over the ontology, in which case n

correspondences of type II associate these Attribute constructs to the same

query over the ontology.
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We note that correspondence types I, II and III are 1–1, types IV and V are 1–n

and types VI and VII are n–1. The purpose of all these types of correspondences,

except for type III, is to address semantic heterogeneity between the XMLDSS

schema and the ontology. The purpose of correspondence type III (and partly

also of type II) is to address primitive data type heterogeneity. Support for n–m

correspondences, as well as relaxing the conditions on correspondence type VI

(that requires the same parent Element) and type VII (that requires the same

owner Element) are areas of future work.

With reference to related work, our correspondences are similar to the path-

path correspondences of [ABFS02], in the sense that each correspondence specifies

that a path from the root of an XMLDSS schema to a node corresponds to

one or more paths over the ontology. However, our correspondences are GLAV

mappings, and not LAV as in [ABFS02], since in our case an expression over

one or more XMLDSS constructs maps to an expression over one or more paths

over the ontology. Although BAV pathways could have been used to express our

correspondences, we specify them as GLAV rules for compactness.

Returning to our running example, Tables 6.2 and 6.3 list the correspondences

between the XMLDSS schemas S and T illustrated in Figure 6.1, and the RDFS

ontology O illustrated in Figure 6.23. These provide examples of correspondence

types I and II; examples of correspondence types I, II, III IV and V are given in

Chapter 7, Section 4.

In Table 6.2, the first correspondence maps Element 〈〈university$1〉〉 to Class

〈〈University〉〉. The second one states that the extent of Element 〈〈school$1〉〉 cor-

responds to the instances of Class 〈〈School〉〉 derived from the join of object

properties 〈〈belongs, College, University〉〉 and 〈〈belongs, School, College〉〉 on their

common class construct, 〈〈College〉〉. The third correspondence maps Attribute

〈〈school$1, name〉〉 to a path ending with a datatype property. In the fourth

correspondence, Element 〈〈academic$1〉〉 corresponds to the instances of Class

〈〈Staff〉〉 derived from the specified path expression that are also members of Class

3Sets of correspondences are actually encoded in XML in our implementation but are listed
here in a tabular format for ease of reading. The XML representation of the sets of correspon-
dences shown in Tables 6.2 and 6.3 is given in Appendix A.
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〈〈AcademicStaff〉〉. In the fifth correspondence, Element 〈〈name$1〉〉 corresponds to

a path ending with the datatype property 〈〈name, Staff, Literal〉〉.4 The remaining

correspondences in Tables 6.2 and the correspondences in Table 6.3 are similar.

We observe that the path queries of the correspondences in Tables 6.2 and 6.3

all have the same starting point in the ontology, namely Class 〈〈University〉〉. This is

not a requirement for our approach, and so for example the query for the Element

〈〈staffMember$1〉〉 in Table 6.3 could have been [st|{st, s} ← 〈〈belongs, Staff, School〉〉].

Section 6.5.1 will discuss the implications of using paths over the ontology that

do not share the same starting point, and how our approach is able to work with

both cases.

6.4.2 XMLDSS-to-Ontology Conformance

Given a set of correspondences C between an XMLDSS schema S and an on-

tology O, we want to transform S into a schema Sconf that is conformed with

respect to O. For this purpose, we would like to reuse our PathGen tool in order

to provide a common transformation pathway generation method for both our

schema conformance techniques. As discussed in Chapter 5, PathGen is able to

transform S into a schema Sconf , given a set of 1–1, 1–n, n–1 and n–m mappings

where both the source and the target schema constructs are XMLDSS constructs.

However, C describes mappings between an XMLDSS schema S and an ontology

O, and so we need to transform C into a set of mappings where both the source

and the target schema constructs are XMLDSS constructs. In the following, we

describe our requirements for PathGen arising from each type of correspondence.

Correspondence types I and II. In the case of a 1–1 correspondence re-

lating an Element or Attribute construct c to a single path over the ontology, we

want PathGen to add to S a new Element or Attribute construct c′ whose label

is derived using the ontology path (see below) and whose extent is specified by

the extent part of the correspondence. We then want PathGen to delete c using

4As discussed in Chapter 4, it is possible for an Element construct 〈〈e〉〉 to contain instance
identifiers whose name does not correspond to the name of the 〈〈e〉〉, and this does not affect
querying and materialisation in our approach.
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Table 6.2: Correspondences Between XMLDSS Schema S and Ontology O
Construct: 〈〈university$1〉〉

Extent: 〈〈university$1〉〉
Query: 〈〈University〉〉

Construct: 〈〈school$1〉〉
Extent: 〈〈school$1〉〉
Query: [s|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉]

Construct: 〈〈school$1, name〉〉
Extent: 〈〈school$1, name〉〉
Query: [{s, l}|{c, u} ← 〈〈belongs, College, University〉〉;

{s, c} ← 〈〈belongs, School, College〉〉; {s, l} ← 〈〈name, School, Literal〉〉]
Construct: 〈〈academic$1〉〉

Extent: 〈〈academic$1〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉; member 〈〈AcademicStaff〉〉 st]
Construct: 〈〈name$1〉〉

Extent: 〈〈name$1〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉; member 〈〈AcademicStaff〉〉 st;
{st, l} ← 〈〈name, Staff, Literal〉〉]]

Construct: 〈〈office$1〉〉
Extent: 〈〈office$1〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉; member 〈〈AcademicStaff〉〉 st;
{st, l} ← 〈〈office, Staff, Literal〉〉]]

Construct: 〈〈admin$1〉〉
Extent: 〈〈admin$1〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉; member 〈〈Admin〉〉 st]
Construct: 〈〈name$2〉〉

Extent: 〈〈name$2〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉; member 〈〈Admin〉〉 st;
{st, l} ← 〈〈name, Staff, Literal〉〉]]

Construct: 〈〈office$2〉〉
Extent: 〈〈office$2〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉; member 〈〈Admin〉〉 st;
{st, l} ← 〈〈office, Staff, Literal〉〉]]

the extent of the newly inserted construct c′. We note that if c is an Element

construct, PathGen will need to copy and attach to c′ the constructs that are

attached to c, such as Attribute and ElementRel constructs, and then delete them

before deleting c.
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Table 6.3: Correspondences Between XMLDSS Schema T and Ontology O
Construct: 〈〈staffMember$1, name〉〉

Extent: 〈〈staffMember$1, name〉〉
Query: [{st, l}|{c, u} ← 〈〈belongs, College, University〉〉;

{s, c} ← 〈〈belongs, School, College〉〉;
{st, s} ← 〈〈belongs, Staff, School〉〉; {st, l} ← 〈〈name, Staff, Literal〉〉]

Construct: 〈〈staffMember$1〉〉
Extent: 〈〈staffMember$1〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉]
Construct: 〈〈office$1〉〉

Extent: 〈〈office$1〉〉
Query: [st|{c, u} ← 〈〈belongs, College, University〉〉; {s, c} ← 〈〈belongs, School, College〉〉;

{st, s} ← 〈〈belongs, Staff, School〉〉; {st, l} ← 〈〈office, Staff, Literal〉〉]]
Construct: 〈〈college$1, name〉〉

Extent: 〈〈college$1, name〉〉
Query: [{c, l}|{c, u} ← 〈〈belongs, College, University〉〉; {c, l} ← 〈〈name, College, Literal〉〉]

Construct: 〈〈college$1〉〉
Extent: 〈〈college$1〉〉
Query: [c|{c, u} ← 〈〈belongs, College, University〉〉]

Correspondence type III. In the case of a 1–1 correspondence relating an

ElementRel of the form 〈〈i, e, Text〉〉 to a datatype property in the ontology, we

want PathGen to redefine the extent of 〈〈i, e, Text〉〉. In particular, we want Path-

Gen to add to S construct 〈〈−i, e, Text〉〉 (negative ordering is used here because

〈〈i, e, Text〉〉 already exists in S) using the extent part of the correspondence. We

then want PathGen to delete construct 〈〈i, e, Text〉〉 using the newly added Elemen-

tRel construct and the user-supplied function that cancels the type-conversion

operation, and then to rename construct 〈〈−i, e, Text〉〉 to 〈〈i, e, Text〉〉.

Correspondence types IV and V. In the case of a group of correspondences

of type I/II that describe a 1–n mapping between a construct c and n paths in

the ontology, we first want PathGen to add to S the n constructs c′1, . . . , c
′

n, where

the label of c′i is derived using the path query specified in the ith correspondence

(see below) and the extent of c′i is defined by the query Ei, specified in the extent

part of the ith correspondence. We then want PathGen to delete c using the query

(E1 + + . . . + +En). We note that if c is an Element construct, PathGen needs to

copy and attach to each new construct c′i the constructs that are attached to c
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and their descendants, and then delete them before deleting c.

Correspondence types VI and VII. In the case of a group of correspon-

dences of type I or II that describe an n–1 mapping between n constructs c1, . . . , cn

and a single path in the ontology, we first want PathGen to add to S a construct c′

whose label is derived using the path queries of the correspondences (see below),

and whose extent is defined by query (E1 + + . . . + +En), where Ei is the query

specified in the extent part of the ith correspondence. We then want PathGen to

delete each construct ci using the query Range Void (E1 + + . . . + +En). We note

that if ci is an Element construct, PathGen needs to copy and attach to construct

c′ the constructs that are attached to the constructs ci, i.e. all Attribute and Ele-

mentRel constructs and then delete them before deleting the constructs ci.

Deriving new labels for Element/Attribute constructs.

We now describe the process of deriving a new label for an Element or Attribute

construct of a schema given a path query over an ontology5. Such a query may end

with an object property or with a datatype property. Consider first a query that

ends with an object property. This query comprises a comprehension that joins

a number of properties. We first create a list of the variables referenced in the

patterns of the comprehension’s generators. This list does not contain duplicate

variables, ends with the variable that appears in the head of the comprehension,

and also contains between the variables the names of the properties that are refer-

enced in the comprehension. For example, for the second correspondence item in

Table 6.2, this list is [u, belongs, c, belongs, s]. Each variable in the list corresponds

to a Class in the ontology, and we then replace it with the corresponding Class

name. Our example list now becomes [University, belongs, College, belongs, School].

We then concatenate the items in the list into a single identifier, using ‘.’ as

the delimiter. We note that if the comprehension contains a filter of the form

(member 〈〈c〉〉 v), then the label of Class 〈〈c〉〉 is used within the list, rather than the

5We recall from Section 6.4 that the purpose of this new label is to assign to each Element
and Attribute construct of an XMLDSS schema S a unique name that is consistent with the
terminology of the ontology to which S conforms.
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label of the Class to which variable v was originally bound. Also, if the query over

the ontology is just a single scheme 〈〈c〉〉, then we consider this as a comprehension

[o|o← c] and apply the same process as above.

Considering now paths that end with a datatype property, the process is sim-

ilar. However, if we used the above process, then all path queries ending with

a datatype property (of the form 〈〈p, c, Literal〉〉) would result in labels that have

‘.Literal’ as a suffix. Since this does not offer any additional information, we re-

move the suffix ‘.Literal’ from the label generated.

Discussion

We have shown that a set of correspondences between an XMLDSS schema S

and an ontology O contains all the necessary information required by our PathGen

tool in order to transform S into a schema Sconf that is conformed with respect to

O. Appendix A lists the XML input for PathGen that is automatically produced

from the sets of correspondences shown in Tables 6.2 and 6.3.

In our running example, the conformance of schemas S and T with respect

to ontology O using PathGen and the sets of correspondences of Tables 6.2 and

6.3 produces schemas Sconf and Tconf shown in Figure 6.4 (the transformations

comprising pathways S ↔ Sconf and T ↔ Tconf are given in Appendix A). The

overall pathway S ↔ T is illustrated in Figure 6.3.

S Sconf
data 

source

id
Stransf Ttransf T data

source
Tconf

Figure 6.3: Running Example after the Schema Conformance Phase (Pathways
S ↔ Sconf and T ↔ Tconf) and the Schema Transformation Phase (Pathway
Sconf ↔ Stransf ↔ Ttransf ↔ Tconf).

Finally, we note that in general all Element and Attribute constructs of an

XMLDSS schema should ideally be linked by correspondences to an ontology.
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Figure 6.4: Conformed Source and Target XMLDSS schemas Sconf and Tconf .

However, in practice it may be the case that a certain construct does not cor-

respond to any path in the ontology; or that the user does not provide cor-

respondences for some XMLDSS constructs because the particular transforma-

tion/integration setting does not require correspondences for these. In either case,

such constructs are not affected by the application of PathGen and are treated as-

is by the subsequent schema transformation phase. An advantage of this is that

data transformation is still possible with only a partial set of correspondences

from an XMLDSS schema to the ontology. This property is particularly signif-

icant in terms of the applicability and scalability of our approach, as it allows

for incrementally defining the full set of correspondences between an XMLDSS

schema and an ontology: one can define only those correspondences relevant to

the specific problem at hand, instead of the full set of correspondences.

6.4.3 Schema Conformance Using Multiple Ontologies

We now discuss how our approach can handle a setting where the source and

target XMLDSS schemas are linked to different ontologies. These ontologies

may be connected either directly via an AutoMed transformation pathway, or via

another ontology (e.g. an ‘upper’ ontology) to which both ontologies are connected
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via an AutoMed pathway.

Consider two XMLDSS schemas S and T that are semantically linked by two

sets of correspondences C1 and C2 to two ontologies O1 and O2. Suppose that

there is an articulation between O1 and O2, in the form of a BAV transformation

pathway between them. This may be a direct pathway O1 → O2 or, alternatively,

there may be two pathways O1 → OGen and O2 → OGen linking O1 and O2 to a

more general ontology OGen, from which we can derive a pathway O1 → OGen →

O2 (due to the reversibility of BAV transformation pathways).

In both cases, the pathway O1 → O2 can be used to transform the set of

correspondences C1 expressed with respect to O1 to a set of correspondences C ′

1

expressed with respect to O2. In particular, the respective correspondences in C1

and C ′

1 will have the same construct and extent parts, but will have different

query parts. The transformation of the query parts of C1 is achieved using the

GAV or LAV query reformulation techniques discussed in Chapter 3. Both of

these apply a query unfolding process that replaces any constructs of O1 in C1

with queries that reference only constructs of O2. The result is two XMLDSS

schemas S and T that are semantically linked by two sets of correspondences C ′

1

and C2 to the same ontology O2. Thus, we have reduced this setting, where each

XMLDSS schema corresponds to a different ontology, to our previously discussed

setting, where each XMLDSS schema corresponds to the same ontology.

There is a proviso here in that queries in the correspondence items of C ′

1

must conform syntactically to the definition of path queries we gave in Sec-

tion 6.4.1. Determining necessary conditions on the pathway O1 → O2 for

this proviso to hold is an area of future work. However, we note that use of

the BAV query reformulation technique is not appropriate in general in this

setting, because BAV reformulation in general produces queries of the form

Range (union ql q′

l) (intersect qu q′

u), which violate the syntactic requirements

of our path queries.
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6.5 Extended Schema Restructuring Algorithm

After conforming schemas S and T into schemas Sconf and Tconf using our

ontology-based schema conformance technique, we are now ready to apply the

schema transformation phase on Sconf and Tconf . However, our schema restruc-

turing algorithm (SRA) as described in Chapter 5 is not able to exploit the

subtyping information present in the ontology, since it operates on a basis of

label equivalence between constructs of the source and target schemas. To il-

lustrate the problem using our running example, consider Element constructs

〈〈AcademicStaff〉〉6 and 〈〈AdminStaff〉〉 in S and Element 〈〈Staff〉〉 in T (see Fig-

ure 6.4). The SRA is not able to identify the first two Element constructs as being

subtypes of the third, even though the ontology contains this information. The

SRA would therefore add 〈〈Staff〉〉 to S and 〈〈AcademicStaff〉〉 and 〈〈AdminStaff〉〉

to T using the query Range Void Any, i.e. with an undetermined extent.

In order to use such subtyping information within the schema transformation

phase, we have developed an extended schema restructuring algorithm (ESRA).

The high-level description of the ESRA is similar to that of the SRA given in

Chapter 5. Given Sconf as the source schema and Tconf as the target schema, the

ESRA augments Sconf and Tconf with constructs from Tconf and Sconf , respec-

tively, producing new schemas Stransf and Ttransf . These schemas are identical,

and this is asserted by injecting (automatically) a series of id transformations

between them. Figure 6.3 shown earlier summarises the schemas and pathways

produced by the combined schema conformance and the schema transformation

phases.

Panel 23 below presents the ESRA. There are two differences between the

ESRA and the SRA. First, the Initialisation Phase of the ESRA has been ex-

tended to produce four more data structures that record the subtypes and super-

types of each Element and Attribute construct of S within T and of T within S.

6This is an abbreviated label for Element 〈〈University.belongs.College.belongs.School.belongs.
AcademicStaff〉〉. In the rest of this chapter, for ease of reading, we will use the abbreviated
form for all constructs, unless using the unabbreviated form is needed in order to describe the
functionality under discussion.
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Panel 13: Schema Restructuring Algorithm restructure(S,T)

initialisation(S,T );23

if (synthetic extent generation is permitted) then24

S′=subtypingPhase(S,T );25

S′′=phaseI(S′,T );26

S′′′=phaseII(S′′,T );27

T ′=subtypingPhase(T ,S);28

T ′′=phaseI(T ′,S);29

T ′′′=phaseII(T ′′,S);30

injectIDTransformations(S′′′,T ′′′);31

else32

S′=subtypingPhase(S,T );33

S′′=phaseII(S′,T );34

T ′=subtypingPhase(T ,S);35

T ′′=phaseII(T ′,S);36

injectIDTransformations(S′′,T ′′);37

Second, a new phase has been added, the Subtyping Phase. When applied to S,

this phase adds to S all Element and Attribute constructs of T that are subtypes

and supertypes of constructs of S. Similarly, when applied to T , this phase adds

to T all Element and Attribute constructs of S that are subtypes and supertypes of

constructs of T . As a result, the ESRA is able to exploit the subtyping informa-

tion present in the ontology in producing a transformation pathway that allows

the exchange of data between S and T . To illustrate, in our running example the

Subtyping Phase will add 〈〈AcademicStaff〉〉 and 〈〈AdminStaff〉〉 to T as children of

〈〈Staff〉〉 using the query Range Void 〈〈Staff〉〉 for both and will add 〈〈Staff〉〉 to S as a

child of 〈〈School〉〉 using the query 〈〈AcademicStaff〉〉++〈〈AdminStaff〉〉. This allows

〈〈Staff〉〉 in T to be populated by evaluating 〈〈AcademicStaff〉〉 + +〈〈AdminStaff〉〉

over S.

In the rest of this section, we first present the extension made to the Initiali-

sation Phase of the SRA, we then present the Subtyping Phase and apply it on

our running example, and finally we discuss the application of Phase I and Phase

II on the output schemas of the Subtyping Phase.
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6.5.1 Initialisation

Similarly to the SRA, the Initialisation Phase of the ESRA traverses both source

and target schemas and populates a number of data structures, which will be used

by the Subtyping Phase, Phase I and Phase II. In the ESRA, the Initialisation

Phase populates the same six data structures as in the SRA, as well as the

following four additional data structures:

SourceSupertypes: For every Element or Attribute construct c in the source

schema, this contains its schema-level identifier and a pointer to each DOM

element or attribute in the target schema that is subtype of c.

TargetSupertypes: For every Element or Attribute construct c in the target

schema, this contains its schema-level identifier and a pointer to each DOM

element or attribute in the source schema that is a subtype of c.

SourceSubtypes: For every Element or Attribute construct c in the source schema,

this contains its schema-level identifier and a pointer to each DOM element

or attribute in the target schema that is supertype of c. The list of pointers

to supertypes of c is ordered, and so the first item in the list is the lowest

supertype of c.

TargetSubtypes: For every Element or Attribute construct c in the target schema,

this contains its schema-level identifier and a pointer to each DOM element

or attribute in the source schema that is a supertype of c. The list of pointers

to supertypes of c is ordered, and so the first item in the list is the lowest

supertype of c.

Deriving the information stored in these four data structures from the ontology

is straightforward and can be accomplished by the following process (implementa-

tion of this process is a matter for future work, and so currently this information

is manually specified by the user as an XML document):

First, we derive direct and indirect subclass, superclass, subproperty and

superproperty relationships from the ontology, using an ontology API such as
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Protégé (see http://protege.stanford.edu). Second, we use data structures

SourceEl, TargetEl, SourceAtt and TargetAtt7 to compare the label of each

source schema Element and Attribute construct against the label of each target

schema Element and Attribute construct (and vice versa). To compare the labels

of two constructs, we split the labels into their constituent parts and compare

these parts using the four new data structures discussed above. For example,

given source and target schema constructs 〈〈A.B.C〉〉 and 〈〈A′.B′.C′〉〉, respectively,

we first compare A with A’, to derive whether A ≡ A′, A ⊆ A′ or A ⊇ A′, then

we compare B with B’, etc. We then update the data structures according to

the following. Below, ℓS is the label of a source schema construct cS, ℓT is the

label of a target schema construct cT , and the Initialisation Phase is traversing S,

which means that only data structures SourceSubtypes and SourceSupertypes

are populated. When the Initialisation Phase traverses T , the same logic applies,

but only data structures TargetSubtypes and TargetSupertypes are populated.

1. If ℓS and ℓT have the same number of constituent parts:

a. If the comparison results in only equivalence relationships between all con-

stituent parts, then ℓS and ℓT are the same and no data structure is updated.

b. If one or more pairs of corresponding constituent parts do not share a sub-

type, supertype or equivalence relationship, no data structure is updated.

c. If one or more of the constituent parts of ℓS are subtypes of the correspond-

ing constituent parts of ℓT , while the rest are equivalent, then cS is a subtype

of cT and data structure SourceSubtypes is updated.

d. If one or more of the constituent parts of ℓS are supertypes of the corre-

sponding constituent parts of ℓT , while the rest are equivalent, then cS is a

supertype of cT and data structure SourceSupertypes is updated.

7We recall from Chapter 5 that data structure SourceEl maintains the label of each source
schema Element construct and a pointer to the corresponding DOM target schema element.
Similarly, data structure TargetEl maintains the label of each target schema Element construct
and a pointer to the corresponding DOM source schema element. Data structures SourceAtt

and TargetAtt are similar for source and target schema attributes.
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e. If one or more constituent parts of ℓS are subtypes of the corresponding

constituent parts of ℓT , and at the same time the converse applies, then

no data structure is updated, since the relationship between cS and cT is

uncertain.

2. If ℓS has m constituent parts, ℓT has n constituent parts, and m<n, then it

is possible for cS to be a supertype of cT . For example, given two constructs

cS =〈〈B′〉〉 and cT =〈〈A.B〉〉, such that B′ ⊇ B, then 〈〈B′〉〉 is a supertype of

〈〈A.B〉〉. Thus, in this case, we compare the m constituent parts of ℓS against

the last m constituent parts of ℓT , and:

a. If one or more pairs of corresponding constituent parts do not share a sub-

type, supertype or equivalence relationship, no data structure is updated.

b. If the comparison results in only equivalence relationships between all pairs

of corresponding constituent parts, then cS is a supertype of cT and data

structure SourceSupertypes is updated.

c. If one or more of the constituent parts of ℓS are supertypes of the corre-

sponding constituent parts of ℓT , while the rest are equivalent, then cS is a

supertype of cT and data structure SourceSupertypes is updated.

d. If one or more of the constituent parts of ℓS are subtypes of the correspond-

ing constituent parts of ℓT , then no data structure is updated, since the

relationship between cS and cT is uncertain.

3. If ℓS has m constituent parts, ℓT has n constituent parts, and m>n, then it

is possible for cS to be a subtype of cT . For example, given two constructs

cS =〈〈A.B〉〉 and cT =〈〈B′〉〉, where B ⊆ B′, then 〈〈A.B〉〉 is a subtype of 〈〈B′〉〉.

In this case, the comparison between ℓS and ℓT is similar to Case 2, i.e. we

compare the n constituent parts of ℓT against the last n constituent parts of

ℓS, and:

a. If one or more pairs of corresponding constituent parts do not share a sub-

type, supertype or equivalence relationship, no data structure is updated.
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b. If the comparison results in only equivalence relationships between all pairs

of corresponding constituent parts, then cS is a subtype of cT and data

structure SourceSubtypes is updated.

c. If one or more of the constituent parts of ℓT are supertypes of the corre-

sponding constituent parts of ℓS, while the rest are equivalent, then cS is a

subtype of cT and data structure SourceSubtypes is updated.

d. If one or more of the constituent parts of ℓT are subtypes of the correspond-

ing constituent parts of ℓS, then no data structure is updated, since the

relationship between cS and cT is uncertain.

We now demonstrate the process described above. Consider constructs cS =

〈〈University.belongs.College.belongs.School.belongs.AcademicStaff〉〉 and cT =〈〈University.belongs.

College.belongs.School.belongs.Staff〉〉. When the above process is applied for the con-

structs of the source schema, cS is found to be a subtype of cT (Case 1c). When

it is applied for the constructs of the target schema, cT is found to be a supertype

of cS (Case 1d). As another example, if cS =〈〈University.belongs.College.belongs.School.

belongs.AcademicStaff〉〉, but now cT =〈〈School.belongs.Staff〉〉, then cS would again be

found to be a subtype of cT (Case 3c). However, if cS is 〈〈School.belongs.AcademicStaff〉〉

and cT is 〈〈University.belongs.College.belongs.School.belongs.Staff〉〉, then it is not possible

to derive a subtype, supertype, or equivalence relationship between cS and cT ,

and therefore no data structure is updated (Case 2d). The last two examples

show that our approach is able to handle sets of correspondences in which the

paths over the ontology do not share the same starting point (as well as those

that do).

Finally, we note that if there is additional knowledge (e.g. subtyping informa-

tion) in a given setting that is not captured by the ontology, the user is able to

(manually) provide additional input to update the data structures accordingly.

6.5.2 Subtyping Phase

After the Initialisation Phase, the Subtyping Phase is first applied on the source

schema and then on the target schema. The Subtyping Phase is described in
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Panel 14 below, while Panel 15 provides details of the procedures invoked in

Panel 14. For clarity of presentation, we use the terms ‘source’ and ‘target’ in

the rest of this section assuming that the Subtyping Phase is being applied to

S. When the Subtyping Phase is applied to T , the terms ‘source’ and ‘target’

should be swapped. This includes references made to the data structures of the

Initialisation Phase.

When applied to S, the purpose of the Subtyping Phase is to add to S any

Element and Attribute constructs in T that are subtypes or supertypes of Element

and Attribute constructs of S. To do so, it considers every Element and Attribute

construct c of T in a depth-first fashion and adds c to S if it is a subtype or a

supertype of one or more constructs of S.

In the following we describe the algorithm for the Subtyping Phase. Our

discussion at first assumes that an Element construct 〈〈e〉〉 in T that is not present

in S can only be added to S using one or more Element constructs of S that are

subtypes or supertypes of 〈〈e〉〉 in T . We will then drop this assumption, and

allow an Element construct 〈〈e〉〉 in T not present in S to be added using one or

more Element or Attribute constructs of S that are subtypes or supertypes of 〈〈e〉〉.

A similar assumption is initially made for Attribute constructs present in T but

not in S, and this assumption is also dropped later in our discussion.

When the Subtyping Phase is applied to S, we first consider every Element 〈〈e〉〉

in T in a depth-first fashion (line 38 in Panel 14). If 〈〈e〉〉 is not present in S, we use

the additional data structures built during the Initialisation Phase of the ESRA

to identify if S contains any subtypes or supertypes of 〈〈e〉〉 (lines 40 and 41). If

it does, we add 〈〈e〉〉 to S with an extend transformation (line 43 in Panel 14 and

lines 52-55 in Panel 15). If S contains one or more Element constructs that are

subtypes of 〈〈e〉〉, then the lower-bound query supplied with the transformation,

Qlower, is the list-append of their extents; otherwise Qlower is the constant Void. If

S contains one or more Element constructs that are supertypes of 〈〈e〉〉, then the

upper-bound query supplied with the transformation, Qupper, is the extent of the

least supertype of 〈〈e〉〉 in S; otherwise Qupper is the constant Any.

We also add to S an ElementRel to make 〈〈e〉〉 in S the child of another Element
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Panel 14: ESRA — Subtyping Phase

for every Element 〈〈e〉〉 in T in a depth-first order do38

if (〈〈e〉〉 is not present in S) then39

let 〈〈e1〉〉 . . . 〈〈en〉〉 be the Element subtypes of 〈〈e〉〉 in S;40

let 〈〈E〉〉 be the Element in S that is the least supertype of 〈〈e〉〉 and null if41

there is no supertype;
if (n > 0 or 〈〈E〉〉6=null) then42

// Add 〈〈e〉〉 to S - see Panel 15

addElement(〈〈e〉〉,[〈〈e1〉〉,. . . ,〈〈en〉〉],〈〈E〉〉);43

// Add to S an ElementRel to 〈〈e〉〉 - see Panel 15

addElementRel(〈〈e〉〉,[〈〈e1〉〉,. . . ,〈〈en〉〉],〈〈E〉〉);44

if (〈〈e〉〉 in T has a child text node at position i) then45

addText(〈〈i, e,Text〉〉,[〈〈e1〉〉,. . . ,〈〈en〉〉],〈〈E〉〉);46

for (every Attribute a of 〈〈e〉〉 in T not present in S) do47

let 〈〈e1, a1〉〉 . . . 〈〈em, am〉〉 be the Attribute constructs of S, such that each48

ak is a subtype of a and is attached to 〈〈ek〉〉;
let the least supertype in S of Attribute a be Attribute A, attached to49

Element 〈〈E〉〉;
if (m > 0 or 〈〈E〉〉6=null) then50

addAttribute(〈〈e, a〉〉,[〈〈e1〉〉,. . . ,〈〈em〉〉],〈〈E,A〉〉);51

〈〈p〉〉 in S (line 44 in Panel 14 and lines 56-67 in Panel 15). There are three possible

cases for 〈〈p〉〉:

a) If the parent of 〈〈e〉〉 in T is also present in S, we let this be 〈〈p〉〉 and add

〈〈e〉〉 to S as a child of 〈〈p〉〉 with an extend transformation (line 67), aiming to

replicate as much of the structure of T in S as possible. Qupper is Any if S does

not contain a supertype of 〈〈e〉〉 (line 59). Or, if 〈〈E〉〉 is the lowest supertype

of 〈〈e〉〉 in S, Qupper is a path query from 〈〈p〉〉 to 〈〈E〉〉 in S (line 58).8 Qlower

is Void if S does not contain any subtypes of 〈〈e〉〉 (line 65). Or, if S contains

n subtypes of 〈〈e〉〉, 〈〈e1〉〉 . . . 〈〈en〉〉, Qlower is the list-append of queries q1 . . . qn,

where each qj (1 ≤ j ≤ n) is a path query from 〈〈p〉〉 to 〈〈ej〉〉 (line 65).

8For the purposes of this section, a path query from construct c to construct c′ is a query of
the form [{x, y}|{x, v0} ← c; {v0, v1} ← c1; . . . ; {vn−1, vn} ← cn; {vn, y} ← c′] for some c1, . . . , cn,
n ≥ 0. This is not to be confused with queries appearing within our correspondences.
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Panel 15: ESRA — Procedures for the Subtyping Phase

/* ****** Procedure addElement(〈〈e〉〉,[〈〈e1〉〉,...,〈〈en〉〉],〈〈E〉〉) ****** */

let Qlower = 〈〈e1〉〉+ + . . . + +〈〈en〉〉 or Void if n = 0;52

if (〈〈E〉〉6=null) then let Qupper = 〈〈E〉〉;53

else Qupper = Any;54

extend(〈〈e〉〉,Range Qlower Qupper);55

/* **** Procedure addElementRel(〈〈e〉〉,[〈〈e1〉〉,...,〈〈en〉〉],〈〈E〉〉) **** */

if (〈〈e〉〉 in T has a parent Element which is present in S) then56

let 〈〈p〉〉 be the Element in S with the same label as the parent of 〈〈e〉〉 in T ;57

if (〈〈E〉〉6=null) then let Qupper be the path query from 〈〈p〉〉 to 〈〈E〉〉;58

else let Qupper = Any;59

else60

if (〈〈E〉〉6=null) then let 〈〈p〉〉 be 〈〈E〉〉 and Qupper = [{x, x}|x← 〈〈E〉〉];61

else62

let 〈〈p〉〉 be the lowest common ancestor of 〈〈e1〉〉. . . 〈〈en〉〉 in S and63

Qupper = Any;

for (every 〈〈ej〉〉 in [〈〈e1〉〉,. . . ,〈〈en〉〉]) do let qj be the path query from 〈〈p〉〉 to64

〈〈ej〉〉;
let Qlower be q1 + + . . . + +qn, or Void if n = 0;65

let i be the number of children of 〈〈p〉〉;66

extend(〈〈i + 1, p, e〉〉,Range Qlower Qupper);67

/* ***** Procedure addText(〈〈i, e,Text〉〉,[〈〈e1〉〉,...,〈〈en〉〉],〈〈E〉〉) ***** */

for (every 〈〈ej〉〉 in [〈〈e1〉〉,. . . ,〈〈en〉〉]) do68

if (〈〈ej〉〉 has a child text node) then let qj = 〈〈ej,Text〉〉;69

else let qj = Void;70

let Qlower be q1 + + . . . + +qn;71

if (〈〈E〉〉6=null and has a child text node) then let Qupper = 〈〈E,Text〉〉;72

else let Qupper = Any;73

extend(〈〈i, e,Text〉〉,Range Qlower Qupper);74

/* * Procedure addAttribute(〈〈e, a〉〉,[〈〈e1, a1〉〉,...〈〈em, am〉〉],〈〈E,A〉〉) * */

if (m > 0) then75

for (every 〈〈ek, ak〉〉 in [〈〈e1, a1〉〉,. . . 〈〈em, am〉〉]) do76

let qk be the path query from 〈〈e〉〉 to 〈〈ek, ak〉〉 in S;77

let Qlower be q1 + + . . . + +qm;78

else let Qlower be Void ;79

if (〈〈E,A〉〉6=null) then let Qupper be the path query from 〈〈e〉〉 to 〈〈E,A〉〉 in S;80

else let Qupper = Any;81

extend(〈〈e, a〉〉,Range Qlower Qupper);82
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b) If S contains a supertype 〈〈E〉〉 of 〈〈e〉〉 in T and possibly also subtypes of 〈〈e〉〉,

we let 〈〈p〉〉 be 〈〈E〉〉 (line 61). Qlower is derived in the same way as in Case (a)

above. Qupper is [{x, x}|x← 〈〈E〉〉], since each instance of 〈〈e〉〉 in S must be an

instance of 〈〈E〉〉 (line 61).

c) If S does not contain a supertype of 〈〈e〉〉, then it must contain one or more

subtypes of 〈〈e〉〉. In this case, we set 〈〈p〉〉 to be the lowest common ancestor of

these subtypes in S (line 63). Qlower is derived in the same way as in Case (a)

above. Qupper in this case is always Any, since S does not contain a supertype

of 〈〈e〉〉 (line 63).

If T contains an ElementRel 〈〈i, e, Text〉〉 connecting the current Element being

examined, 〈〈e〉〉, to the 〈〈Text〉〉 construct, this ElementRel is also added to S with

an extend transformation (line 46 in Panel 14 and lines 68-74 in Panel 15). If

S contains n subtypes of 〈〈e〉〉, 〈〈e1〉〉 . . . 〈〈en〉〉, then Qlower is the list-append of

queries qj (1 ≤ j ≤ n), where qj is 〈〈ej, Text〉〉 if 〈〈ej〉〉 has a child text node and

Void otherwise (lines 68-71 in Panel 15). If the least supertype of 〈〈e〉〉 in S is 〈〈E〉〉

and it has a child text node, then Qupper is 〈〈E, Text〉〉. If S does not contain a

supertype of 〈〈e〉〉, or if that Element does not have a child text node, then Qupper

is Any (lines 72-73 in Panel 15).

After handling an Element 〈〈e〉〉 of T , we then consider each Attribute 〈〈e, a〉〉

of 〈〈e〉〉 in T . We use the additional data structures built during the Initialisation

Phase of the ESRA to identify if S contains any subtypes or supertypes of 〈〈e, a〉〉

(lines 48 and 49). If it does, then we use these subtypes and supertypes to add

〈〈e, a〉〉 to S (line 51 in Panel 14 and lines 75-82 in Panel 15). If 〈〈e, a〉〉 is not

present in S, we add it to S with an extend transformation (line 82 in Panel 15).

Qlower is formulated using any Attribute subtypes of a, a1. . . am, present in S. Each

such Attribute ak is attached to an Element 〈〈ek〉〉. In particular, Qlower is the list-

append of queries q1. . . qm, where each qk is a path query from 〈〈e〉〉 to 〈〈ek, ak〉〉,

projecting on 〈〈e〉〉 and ak (lines 76-78 in Panel 15). If no subtypes of a exist in

S, then Qlower is Void. Qupper is formulated using the lowest supertype of 〈〈e, a〉〉

present in S, Attribute A, attached to Element 〈〈E〉〉. Qupper is a path query from
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〈〈e〉〉 to 〈〈E, A〉〉, projecting on 〈〈e〉〉 and A (lines 80-81 in Panel 15). If no supertype

of 〈〈e, a〉〉 exists in S, then Qupper is Any.

We note here that each transformation that adds an Element to S or T re-

sults in an update in the data structure SourceEl or TargetEl. Similarly, each

transformation that adds an Attribute to S or T results in an update in data

structure SourceAtt or TargetAtt. We also note that, after the end of the Sub-

typing Phase, the ESRA goes through the data structures SourceElementRel

and TargetElementRel (which are used by Phase I) and for those ElementRel

constructs of S and T that did not originally have a corresponding path in the

other schema, the ESRA checks schemas Ssub and Tsub output by the Subtyping

Phase and provides the corresponding path in the other schema, if such a path

exists, since Ssub and Tsub have additional paths compared to S and T .

Dropping the Previous Assumptions

Up to this point, we have assumed that an Element 〈〈e〉〉 in T may only have

Element subtypes or supertypes in S. We now drop this assumption and consider

the case where an Element 〈〈e〉〉 in T has one or more Attribute subtypes or super-

types in S. In the following, we discuss the adjustments that need to be made to

the earlier description.

• Main method (Panel 14)

An Element 〈〈e〉〉 in T may also have Attribute constructs as subtypes and

supertypes in S. We therefore adjust lines 40 and 41 to reflect this.

• Procedure addElement (Panel 15)

The lower-bound query Qlower is defined as the list-append of the subtype

Element constructs present in S (lines 52-55). If, more generally, one of the

subtypes is an Attribute aj, attached to Element 〈〈ej〉〉, then the query that

contributes to Qlower is [x|{x, y} ← 〈〈ej, aj〉〉].

If the lowest supertype in S of 〈〈e〉〉 in T is A, attached to Element 〈〈E〉〉, then

the upper-bound query Qupper is [x|{x, y} ← 〈〈E, A〉〉].
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• Procedure addElementRel (Panel 15)

This procedure adds to S an ElementRel that makes 〈〈e〉〉 a child of another

Element 〈〈p〉〉 in S. We have discussed above the three different possibilities:

(a) if 〈〈e〉〉 in T has a parent Element with label ℓ and an Element with label ℓ

exists in S, then we consider this as 〈〈p〉〉; (b) if S contains a supertype 〈〈E〉〉 of

〈〈e〉〉 in T , then we consider 〈〈E〉〉 as 〈〈p〉〉; (c) if S does not contain a supertype

of 〈〈e〉〉 in T , then we consider 〈〈p〉〉 to be the lowest common ancestor of the

subtypes of 〈〈e〉〉 in T that are present in S.

Generalising Case (a), if 〈〈e〉〉 in T has a parent Element with label ℓ and an

Attribute with the label ℓ exists in S, then we consider 〈〈p〉〉 to be the owner

Element of that Attribute of S. Generalising Case (b), if S contains an Attribute

A which is a supertype of 〈〈e〉〉 in T , then we consider 〈〈p〉〉 to be the owner

Element of A. Case (c) does not require any generalisation.

The lower-bound query Qlower is defined as q1++. . .++qn, where each qj is a

path query from 〈〈p〉〉 to the jth subtype, 〈〈ej〉〉, of 〈〈e〉〉 in S (lines 64-65). If,

more generally, the jth subtype is an Attribute 〈〈ej, aj〉〉, then query qj is a path

query from 〈〈p〉〉 to 〈〈ej, aj〉〉.

The upper-bound query Qupper is either the constant Any, or a query that uses

an Element 〈〈E〉〉, where 〈〈E〉〉 in S is the lowest supertype of 〈〈e〉〉 in T (lines 58

and line 61). If, more generally, the lowest supertype is an Attribute A, then

we use the owner Element of A to define Qupper.

• Procedure addText (Panel 15)

The lower-bound query Qlower is defined as q1++. . .++qn, where each qj is

〈〈ej, Text〉〉 (〈〈ej〉〉 being the jth subtype in S of 〈〈e〉〉). If, more generally, one of

the subtypes is an Attribute aj, attached to an Element 〈〈ej〉〉, then qj is 〈〈ej, aj〉〉.

The upper-bound query Qupper is 〈〈E, A〉〉, where A is the Attribute in S that is

the lowest supertype of 〈〈e〉〉 in T , and 〈〈E〉〉 is its owner Element.

Up to this point, we have also assumed that an Attribute a in T may only

have Attribute subtypes and supertypes in S. We now drop this assumption and
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consider the case where an Attribute a in T has one or more Element subtypes

and supertypes in S. In the following, we discuss the adjustments that need to

be made to the earlier description.

• Main method (Panel 14)

An Attribute 〈〈e, a〉〉 in T may also have Element constructs as subtypes and

supertypes in S. We therefore adjust lines 48 and 49 to reflect this.

• Procedure addAttribute (Panel 15)

In cases where an Attribute in T has one or more subtype or supertype Element

constructs in S, then these constructs are also used to define the extent of the

Attribute of T . We therefore modify the queries specified in this procedure to

cater for element-to-attribute transformations for such cases.

If a subtype in S of 〈〈e, a〉〉 in T is an Element 〈〈ek〉〉, and S also contains an

ElementRel 〈〈ek, Text〉〉, then query qk in line 78 is a path query from 〈〈e〉〉 to

〈〈ek, Text〉〉, projecting on 〈〈e〉〉 and 〈〈Text〉〉.

Similarly, if the lowest supertype in S of 〈〈e, a〉〉 in T is an Element 〈〈E〉〉 and S

also contains an ElementRel 〈〈E, Text〉〉, then Qupper in line 78 is a path query

from 〈〈e〉〉 to 〈〈E, Text〉〉, projecting on 〈〈e〉〉 and 〈〈Text〉〉.

6.5.3 Applying the Subtyping Phase

We now illustrate the Subtyping Phase with respect to our running example.

When applied to Sconf , the Subtyping Phase traverses Tconf and first detects

that Element 〈〈Staff〉〉 in Tconf has subtypes 〈〈AcademicStaff〉〉 and 〈〈AdminStaff〉〉

in Sconf . It therefore adds 〈〈Staff〉〉 and 〈〈3, School, Staff〉〉 to Sconf with transfor-

mations 81 and 82 below, since 〈〈School〉〉 is the lowest common ancestor of

〈〈AcademicStaff〉〉 and 〈〈AdminStaff〉〉 in Sconf .
9 It then detects that Attribute

9The enumeration of transformations listed here does not start from number 1, since they
are preceded by the transformations of the schema conformance phase, which are listed in
Appendix A.
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〈〈Staff, Staff.name〉〉 in Tconf has Element subtypes 〈〈AcademicStaff.name〉〉 and

〈〈AdminStaff.name〉〉 in Sconf and adds 〈〈Staff, Staff.name〉〉 to Sconf with transfor-

mation 83 . Next, it detects that 〈〈Staff.office〉〉 in Tconf has subtypes 〈〈Academic

Staff.office〉〉 and 〈〈AdminStaff.office〉〉 in Sconf and adds 〈〈Staff.office〉〉 to Sconf with

transformations 84 and 85 . Also, ElementRel 〈〈Staff.office, Text〉〉 in Tconf is added

to Sconf with transformation 86 . The resulting schema Ssub is shown in Figure 6.5

(grey denotes constructs existing before the application of the Subtyping Phase,

black denotes constructs added by the Subtyping Phase).

81 extendEl(〈〈Staff〉〉,Range (〈〈AcademicStaff〉〉+ +〈〈AdminStaff〉〉) Any)

82 extendER(〈〈3,School,Staff〉〉,Range Q1 Any), where Q1 is

[{x, y}|{x, y} ← 〈〈1,School,AcademicStaff〉〉] + +

[{x, y}|{x, y} ← 〈〈2,School,AdminStaff〉〉]

83 extendAtt(〈〈Staff,Staff.name〉〉,Range Q2 Any), where Q2 is

[{x, z}|{x, y} ← 〈〈1,AcademicStaff,AcademicStaff.name〉〉;

{y, z} ← 〈〈1,AcademicStaff.name,Text〉〉] + +

[{x, z}|{x, y} ← 〈〈1,AdminStaff,AdminStaff.name〉〉;

{y, z} ← 〈〈1,AdminStaff.name,Text〉〉]

84 extendEl(〈〈Staff.office〉〉,Range (〈〈AcademicStaff.office〉〉+ +〈〈AdminStaff.office〉〉) Any)

85 extendER(〈〈1,Staff,Staff.office〉〉,Range Q3 Any), where Q3 is

[{x, y}|{x, y} ← 〈〈1,AcademicStaff,AcademicStaff.office〉〉] + +

[{x, y}|{x, y} ← 〈〈1,AdminStaff,AdminStaff.office〉〉]

86 extendER(〈〈1,Staff.office,Text〉〉,Range Q4 Any), where Q4 is

〈〈1,AcademicStaff.office,Text〉〉+ +〈〈1,AdminStaff.officeText〉〉

When applied to Tconf , the Subtyping Phase traverses Sconf and detects that

Element 〈〈AcademicStaff〉〉 in Sconf has supertype 〈〈Staff〉〉 in Tconf and therefore

adds 〈〈AcademicStaff〉〉 and 〈〈2, Staff, AcademicStaff〉〉 to Tconf with transforma-

tions 87 and 88 below. It then detects that 〈〈AcademicStaff.name〉〉 in Sconf has

supertype 〈〈Staff, Staff.name〉〉 in Tconf and adds 〈〈AcademicStaff.name〉〉 in Tconf

with transformations 89 and 90 . ElementRel 〈〈1, AcademicStaff.name, Text〉〉 is

also added to Tconf with transformation 91 . Transformations 92 - 94 add Ele-

ment 〈〈AcademicStaff.office〉〉 and its associated ElementRel constructs to Tconf in
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a way similar to Element 〈〈AcademicStaff.name〉〉. The rest of the transforma-

tions, 95 -102, are similar to transformations 87 - 94 , but now relate to Element

constructs 〈〈AdminStaff〉〉, 〈〈AdminStaff.name〉〉 and 〈〈AdminStaff.office〉〉. The re-

sulting schema Tsub is shown in Figure 6.6.

87 extendEl(〈〈AcademicStaff〉〉,Range Void 〈〈Staff〉〉)

88 extendER(〈〈2,Staff,AcademicStaff〉〉,Range Void [{x, x}|x← 〈〈Staff〉〉])

89 extendEl(〈〈AcademicStaff.name〉〉,Range Void [x|{x, y} ← 〈〈Staff,Staff.name〉〉])

90 extendER(〈〈2,AcademicStaff,AcademicStaff.name〉〉,

Range Void [{x, x}|x← 〈〈Staff,Staff.name〉〉])

91 extendER(〈〈1,AcademicStaff.name,Text〉〉,Range Void 〈〈Staff,Staff.name〉〉)

92 extendEl(〈〈AcademicStaff.office〉〉,Range Void 〈〈Staff.office〉〉)

93 extendER(〈〈2,AcademicStaff,AcademicStaff.office〉〉,

Range Void [{x, x}|x← 〈〈Staff.office〉〉])

94 extendER(〈〈1,AcademicStaff.office,Text〉〉,Range Void 〈〈1,Staff,Staff.office〉〉)

95 extendEl(〈〈AdminStaff〉〉,Range Void 〈〈Staff〉〉)

96 extendER(〈〈2,Staff,AdminStaff〉〉,Range Void [{x, x}|x← 〈〈Staff〉〉])

97 extendEl(〈〈AdminStaff.name〉〉,Range Void [x|{x, y} ← 〈〈Staff,Staff.name〉〉])

98 extendER(〈〈2,AdminStaff,AdminStaff.name〉〉,Range Void [{x, x}|x← 〈〈Staff〉〉])

99 extendER(〈〈1,AdminStaff.name,Text〉〉,Range Void 〈〈Staff,Staff.name〉〉)

100 extendEl(〈〈AdminStaff.office〉〉,Range Void 〈〈Staff.office〉〉)

101 extendER(〈〈2,AdminStaff,AdminStaff.office〉〉,Range Void [{x, x}|x← 〈〈Staff.office〉〉])

102 extendER(〈〈1,AdminStaff.office,Text〉〉,Range Void 〈〈1,Staff,Staff.office〉〉)

6.5.4 Applying Phase I and Phase II

After the application of the Subtyping Phase to the source and target schemas,

the ESRA applies Phase I and Phase II to the schemas output by the Subtyping

Phase. As discussed earlier, Phase I and Phase II of the ESRA are identical to

those of the SRA, and we refer the reader to Chapter 5 for their description. We

note, however, that the schemas that are input to Phase I are the schemas that

are output by the application of the Subtyping Phase to S and T , not S and T .

Referring to our running example, the application of the Phase I to schemas

199



Ssub

University.belongs.
College.belongs.
School.belongs.

AcademicStaff

2
University.belongs.
College.belongs.

School.belongs.

AcademicStaff.

name

1

Text

1 1

University.belongs.
College.belongs.

School.belongs.

AcademicStaff.

office

University.belongs.
College.belongs.
School.belongs.

AdminStaff

2
University.belongs.
College.belongs.

School.belongs.

AdminStaff.

name

1
University.belongs.
College.belongs.

School.belongs.

AdminStaff.

office

      1     2

11

University

University.belongs.College.

belongs.School

1

University.belongs.
College.belongs.

School.belongs.Staff

University.belongs.
College.belongs.School.

belongs.Staff.name

    3

      1

University.belongs.College.belongs.

School.belongs.Staff.office

1

Figure 6.5: Schema Ssub, Output of the Subtyping Phase for Schema Sconf .
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Figure 6.6: Schema Tsub, Output of the Subtyping Phase for Schema Tconf .

Ssub and Tsub has no effect on either schema. The application of Phase II to

schema Ssub results in the transformation pathway listed below:
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103 extendEl(〈〈College〉〉,Range Void Any)

104 extendER(〈〈1,Staff.office,College〉〉,Range Void Any)

105 extendAtt(〈〈College,College.name〉〉,Range Void Any)

106 addER(〈〈1,Staff,AcademicStaff〉〉,

[{y, z}|{x, y} ← 〈〈3,School,Staff〉〉; {x, z} ← 〈〈1,School,AcademicStaff〉〉])

107 addER(〈〈2,Staff,AdminStaff〉〉,

[{y, z}|{x, y} ← 〈〈3,School,Staff〉〉; {x, z} ← 〈〈1,School,AdminStaff〉〉])

The resulting schema, Sres, is illustrated in Figure 6.8 (grey denotes constructs

existing before the application of Phase II, black denotes constructs added by the

Phase II).

The application of Phase II to schema Tsub results in the transformation path-

way listed below:

108 extendEl(〈〈University〉〉,Range Void Any)

109 extendEl(〈〈School〉〉,Range Void Any)

110 extendER(〈〈3,School,Staff〉〉,Range Void Any)

111 extendER(〈〈1,School,AcademicStaff〉〉,Range Void Any)

112 extendER(〈〈2,School,AdminStaff〉〉,Range Void Any)

The resulting schema, Tres, is illustrated in Figure 6.9. We see that schemas

Sres and Tres are identical, and this is asserted by injecting (automatically) a

series of id transformations between them.

Figure 6.7 illustrates the overall transformations in our running example after

the application of the ESRA. Numbers in white circles denote transformations

produced by the ESRA, while numbers in dark circles denote their reverse trans-

formations.

Sdata 
source

id
Sres Tres

data
source

1 56

1 56

Tconf TSsubSconf Tsub

81 86

81 86

102 87

102 87

80 57

80 57

112 108

112 108

103 107

103 107

Figure 6.7: Running Example after Application of the ESRA.
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Figure 6.8: Schema Sres.
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Figure 6.9: Schema Tres.
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6.5.5 Discussion

The ESRA is able to use subtyping information between schema constructs of

the source and target schemas in order to produce a transformation pathway

that avoids the possible loss of information that would have occurred if the SRA

of Chapter 5 had been used. For example, it is clear from Figure 6.4 (which shows

the conformed schemas input to the ESRA in our running example) that using

the SRA instead of the ESRA would have resulted in a transformation pathway

that would not transform any data from the data source of S to the data source

of T .

We also observe that the ESRA is not tightly coupled with our ontology-based

schema conformance technique. For example, subtyping information between

schema constructs of the source and target schemas could be specified manually by

the user, or could be semi-automatically produced by a schema matching tool, e.g.

by deriving subsumption relationships as discussed in [Riz04]. This demonstrates

the independence of the schema conformance and schema transformation phases

of our overall approach to XML data transformation/integration.

Finally, by performing a complexity analysis similar to that of the SRA in

Chapter 5, it is straightforward to conclude that the complexity of the Subtyping

Phase is O(ES hT ) + O(ET hS), where ES and ET are the number of Element

constructs of S and T , and where hS and hT are the heights of S and T . Therefore,

the overall complexity of the ESRA is the same as that of the SRA, i.e.:

O(ES + ET ) + O(AS + AT ) + O(ES hT ) + O(ET hS)

6.6 Summary

This chapter has made two key contributions. First, we have presented an

ontology-based schema conformance technique. Compared to the schema match-

ing technique presented in Chapter 5, this technique is more scalable in a peer-

to-peer setting where all peers need to exchange data with all other peers, since it

allows schemas to be conformed individually with respect to an ontology, rather
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than pairwise with each other. Second, we have extended the schema restructur-

ing algorithm of Chapter 5 with the ability to use subtyping information when

generating the transformation pathway between the source and target schemas.

In a setting where the constructs of the source and target schemas have subtype

and/or supertype relationships between them, our extended schema restructuring

algorithm is able to avoid the loss of information that would have occurred if the

algorithm of Chapter 5 had been used.

Our schema conformance technique uses correspondences from XML schemas

to one or more ontologies as a way of providing semantics for these schemas. When

correspondences are (manually or semi-automatically) defined from multiple XML

schemas to one ontology, then the correspondences are used to automatically

conform these XML schemas to the ontology. When correspondences are defined

from multiple XML schemas to multiple ontologies, and assuming that these

ontologies are linked via AutoMed transformation pathways, it is still possible to

conform the XML schemas to a single ontology. Our approach therefore promotes

correspondence reusability by allowing the use of multiple ontologies.

Apart from [BL04], which was developed in parallel with our approach, our

ontology-based schema conformance technique is the only other technique that

employs ontologies for schema conformance. Compared to [BL04], our approach

provides richer correspondences using 1-n, n-1 and schema-to-data GLAV rules

while still preserving the same degree of automation. Moreover, our approach

demonstrates the use of multiple ontologies as a ‘semantic bridge’, which is only

briefly discussed in [BL04]. Regarding schema transformation, our extended

schema restructuring algorithm maintains the ability to avoid loss of information

caused by structural incompatibility between the source and target schemas, by

generating a synthetic extent for those target schema constructs that are absent

from the source schema.
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Chapter 7

Transformation and Integration

of Real-World Data

7.1 Overview

Chapter 5 presented in detail our approach for XML data transformation and

integration, provided a complexity analysis of the schema restructuring algorithm,

and discussed the correctness of this algorithm (which is covered in more detail

in Appendix B). Chapter 6 then extended our approach with the ability to

use ontologies for schema conformance, and subtyping information for schema

transformation.

We now investigate the application of our approach in four case studies, illus-

trating centralised, service-oriented and peer-to-peer data transformation/integra-

tion scenarios. Each case study examines a particular real-world application set-

ting and demonstrates one or more aspects of our approach.

In particular, Section 7.2 describes the application of our approach to the in-

tegration of heterogeneous relational biological data sources. The aim of this case

study is to demonstrate (a) the applicability of our approach for the integration of

non-XML data sources, and (b) the benefit of using our approach to separate the

manual/semi-automatic schema conformance phase from the automatic schema

transformation phase. Section 7.3 describes the application of our approach for
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the transformation of crime data that has been exported in XML format from a

relational database, demonstrating schema transformation and aiming to assess

schema materialisation using our approach. Section 7.4 describes the applica-

tion of our approach to the semantic reconciliation of services whose input and

output formats correspond to the same ontology, and aiming to demonstrate:

(a) an application setting where the scalability of our ontology-based schema

conformance technique is a significant factor, (b) real-world correspondences to

ontologies handled by our ontology-based schema conformance technique, and (c)

the applicability of our approach for service composition, thereby providing a uni-

form approach to workflow and data integration. Section 7.5 describes a similar

application setting that aims to demonstrate the applicability of our ontology-

based schema conformance technique in a setting where services correspond to

different ontologies that have been integrated using AutoMed.

Performance timings for the schema restructuring algorithm are given in the

first two case studies, and for all the automatic algorithms in the second case

study. These are not the result of rigorous performance evaluations, and should

be considered only as indicative of the performance of our algorithms. Also, as

is discussed at the end of these two case studies, there is significant scope for

improvement in terms of the performance of the AutoMed repository and the

query processor.

The case studies described in this chapter are representative examples of the

particular problems they address, and have been chosen after consulting with

experts in each specific domain. We note, however, that care must be taken

not to over-generalise the conclusions of each case study. In particular, the first

case study is representative of using our approach for integrating relational data

sources. However, the data source schemas in the case study are small (less than

10 tables), and so additional experimentation is required to investigate the per-

formance of our approach before applying it to larger data sources, e.g. whose

schemas contain hundreds of tables. The second case study is representative of

XML data transformation and materialisation using our approach. Again, addi-

tional experimentation is required for evaluating the performance implications for

206



materialising larger data sources. The third case study is representative of service

reconciliation in bioinformatics, and of our ontology-based schema conformance

technique; it is not, however, representative of XML schema transformation in

general, as the service inputs and outputs are very simple. The fourth case study

is representative of our ontology-based schema conformance technique in a set-

ting with multiple ontologies, but is again not representative of XML schema

transformation in general, since service inputs and outputs are very simple.

7.2 Integration of Heterogeneous Data Sources

Using an XML Layer

This section presents an architecture for integrating heterogeneous biological data

sources, and reports on our experiences in using this architecture to provide an

integrated resource that supports analysis, mining and visualisation of functional

genomics1 data. This architecture was developed as part of the BioMap2 project.

The data integration framework used for this application setting, described in

Section 7.2.1, was developed by other colleagues and is presented in more detail

in [MZR+05]. Our own contribution, namely the use of our approach as a unifying

XML ‘layer’ for the integration of heterogeneous data sources, is described in

Sections 7.2.2 and 7.2.3.

7.2.1 The BioMap Setting

Biological data sources are highly heterogeneous in terms of their data model,

schemas, nomenclature and data formats [DOB95]. Such data sources also fre-

quently make use of large numbers of unstable, inconsistent identifiers for biolog-

ical entities [Cla03]. The architecture described in this section handles these two

1Functional genomics [HB97] is a field of molecular biology focusing on the gene functions
and interactions, often based on the large scale analyses of the genomic data or the entire
genomes.

2See http://www.biochem.ucl.ac.uk/bsm/biomap
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Figure 7.1: Architectural Overview of the Data Integration Framework

issues by combining two data integration techniques, the first for addressing data

heterogeneity and the second for resolving the issue of inconsistent identifiers.

BioMap is a collaborative project involving UCL, Birkbeck, Brunel, EBI3 and

ICH4, aiming to develop a data warehouse that integrates a variety of experi-

mental biological data. The aim of BioMap is to provide an integrated resource

that supports analysis, mining and visualisation of functional genomics data. The

BioMap data warehouse is implemented within Oracle, extending techniques de-

veloped for the CATH-PFDB database [SMJ+02] and is designed to serve as a

source for further data marts5 which could themselves be constructed using the

AutoMed-based techniques presented here. Current data sources to the BioMap

data warehouse include CATH [OMJ+97], KEGG [KGK+04], Gene3D [LGMO04],

Gene Ontology [ABB+00], MSD [GOT+04] and ten other specialist resources.

The BioMap data integration architecture is illustrated in Figure 7.1. There

are two principal sources of information for the global database (i.e. the BioMap

data warehouse) — data sources and cluster data.

Each data source is an externally maintained resource that is to be integrated

3European Bioinformatics Institute, http://www.ebi.ac.uk
4Institute of Child Health, http://www.ich.ucl.ac.uk/ich
5A data mart is a database derived from one or more data warehouses that contains a

portion of the data contained in the warehouses, often in a summarised form.
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as part of the global database. A data source could be a conventional relational

or other structured database, or a semi-structured data source, such as an XML

file. Conceptually, a data source describes facts about biological entities. We

listed above some of the major data sources of the BioMap project.

Each cluster data resource is constructed from one or more data sources and

provides the basis for a generally applicable approach to the integration of data

lacking a common reference identifier. Conceptually, a cluster data resource pro-

vides a data-dependent classification of the entities within data sources into re-

lated sets (see [MZR+05]).

Wrappers provided by the AutoMed Toolkit automatically generate the Au-

toMed internal representations of the Schemas and the Global Schema shown in

Figure 7.1, and store these in the AutoMed Metadata Repository. The AutoMed

toolkit and our own schema restructuring algorithm are then used to generate the

transformation pathways from the Schemas to the Global Schema. These path-

ways can be used for (virtual) query processing over the source schemas, and for

materialising and incrementally maintaining the data warehouse — see [MZR+05]

and [FP03] for details.

7.2.2 The Integration Process

The integration process consists of the following steps:

1. Automatic generation of the AutoMed relational schemas, LS1, . . . , LSn,

corresponding to the Data Source and Cluster Data Schemas.

2. Similarly, automatic generation of the AutoMed relational schema, GS, cor-

responding to the Global Schema, i.e. the schema of the Global Database.

3. Automatic translation of schemas LS1, . . . , LSn and GS into the corre-

sponding XMLDSS schemas X1, . . . , Xn and GX.

4. Conformance of each schema Xi to GX by means of appropriate rename

transformations, to ensure that only semantically equivalent schema con-

structs share the same name, and that all equivalent schema constructs do
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share the same name. This results in a set of new schemas X ′

1, . . . , X
′

n.

5. Application of any necessary data cleansing transformations on each X ′

i,

creating a set of schemas X ′′

1 , . . . , X ′′

n.

6. Restructuring of each schema X ′′

i to GX by applying our schema restruc-

turing algorithm to each pair of schemas X ′′

i and GX.

The above integration process results in n transformation pathways, LSi →

Xi → X ′

i → X ′′

i → GX → GS, from the schema of each data source or cluster

data resource to the global schema, where the pathway GX → GS is common

for all n pathways.

Steps 1 and 2 are carried out automatically by AutoMed’s relational wrapper,

as discussed in Chapter 3. Steps 3 to 6 are explained in more detail below.

Step 3: Translating AutoMed relational to XMLDSS schemas. To

translate a relational schema to an XMLDSS schema we first generate a graph,

G, from the relational schema. G contains a node for each table in the relational

schema and also contains an edge from the node corresponding to table R1 to

the node corresponding to table R2 if there is a foreign key in R2 referencing the

primary key of R1. In the given relational schemas there are no cycles in G — in

a general setting, we would have to break any cycles at this point. We then create

a set of trees, T , obtained by traversing G from each node that has no incoming

edges, and we convert T into a single tree by adding a generic root. We finally

use T to generate the pathway from the relational schema to its corresponding

XMLDSS schema, as described in Panel 16.

To illustrate the translation, the top of Figure 7.2 illustrates a part of the

schema of the CLUSTER data source (where foreign keys have the same name

as the primary keys they reference). At the bottom of the figure, the XMLDSS

schema that corresponds to this relational schema is illustrated. Similarly, Fig-

ure 7.3 illustrates a part of the relational global schema and the corresponding

AutoMed XMLDSS schema.

Step 4: Schema Conformance. Our schema restructuring algorithm, used

in Step 5 of the integration process, assumes that if two schema constructs in
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Panel 16: XMLDSS Schema Generation from Relational Schema using Tree
Structure T

Input: Tree structure T
Output: XMLDSS schema Xi

for (each node t in a depth-first traversal of T ) do83

if (t is the root) then84

Insert the Text construct into Xi.85

Insert the root itself as an Element construct.86

else87

Insert t as an Element.88

Insert an ElementRel construct from the parent of t to t.89

Find the columns ci belonging to the table that corresponds to t.90

for (each ci) do91

Insert ci as an Element construct.92

Insert an ElementRel construct from t to ci.93

Insert an ElementRel construct from ci to Text.94

Remove the now redundant relational constructs from Xi.95

the source and in the target schema, respectively, have the same name, then they

refer to the same real-world concept, and if they do not have the same name,

they do not. Thus, after the XMLDSS schemas are produced, and before the

application of the schema restructuring algorithm in Step 5, a number of rename

transformations are manually issued on each source XMLDSS schema by a domain

expert (this process could also have been performed semi-automatically using a

schema matching tool together with our PathGen tool, as discussed in Chapter 5).

In our running example, the domain expert produced the following rename

transformations on the XMLDSS schema in Figure 7.2:
113 rename(〈〈CLUSTER$1〉〉,〈〈GLOBAL$1〉〉)

114 rename(〈〈DESCRIPTION$1〉〉,〈〈ASSIGNMENT DESCRIPTION$1〉〉)

115 rename(〈〈SEQUENCE SOURCE ID$1〉〉,〈〈PSEQID$1〉〉)

116 rename(〈〈SEQUENCE SOURCE ID$2〉〉,〈〈SEQUENCE SOURCE ID$1〉〉)

117 rename(〈〈SEQUENCE SOURCE ID$3〉〉,〈〈SSEQID$1〉〉)

118 rename(〈〈SEQUENCE SOURCE ID$4〉〉,〈〈SEQUENCE SOURCE ID$2〉〉)

119 rename(〈〈ASSIGNMENT TYPE ID$2〉〉,〈〈PASSID$1〉〉)

120 rename(〈〈ASSIGNMENT TYPE ID$3〉〉,〈〈ASSIGNMENT TYPE ID$2〉〉)
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Figure 7.2: Top: part of the CLUSTER relational schema. Bottom: correspond-
ing part of the CLUSTER XMLDSS schema.

and the following rename transformation on the XMLDSS schema in Figure 7.3:

121 rename(〈〈SEQUENCE SOURCE ID$2〉〉,〈〈SSEQID〉〉)

Step 5: Data cleansing. After the local XMLDSS schemas have been

conformed with the global XMLDSS schema, the domain expert can manually is-

sue any further necessary transformations to remove any representational hetero-

geneities at the data level. For example, consider in our running example attribute

212



CLUSTER_DATA

PK CLUSTER_ID

ASSIGNMENT_TYPE_ID
ASSIGNMENT_DESCRIPTION
SEQUENCE_SOURCE_ID

SEQUENCES

PK SEQUENCE_ID

SEQUENCE_SOURCE_ID

PCData

GLOBAL$1

CLUSTER_DATA$1

ASSIGNMENT_
DESCRIPTION$1

CLUSTER_ID$1

1

           1

ASSIGNMENT_
TYPE_ID$1

SEQUENCE_
SOURCE_ID$1

4
2

     1

1
    1

 3

SEQUENCES$1

SEQUENCE_
SOURCE_ID$2

SEQUENCE_ID$1

1

   2
  1

    1     1

        2

Figure 7.3: Left: Part of the Global Relational Schema. Right: Corresponding
Part of the XMLDSS Schema.

DESCRIPTION in relation ASSIGNMENT TYPES which is called DESCRIPTION$1

in the CLUSTER XMLDSS schema (see Figure 7.2). The extent of this attribute

in the data source consists of mixed case strings, whereas in the global schema

these Text instances are expected to be uppercase strings. To turn these to upper-

case strings, the transformations below can be appended to the transformation

pathway resulting from the conformance step (i.e. Step 4 above). Here upperCase

is a built-in IQL function that converts all the alphabetic characters in a string

to uppercase.

122 add(〈〈0,ASSIGNMENT DESCRIPTION$1,Text〉〉,

[{v0, upperCase v1}|{v0, v1} ← 〈〈1,ASSIGNMENT DESCRIPTION$1,Text〉〉])

123 contract(〈〈1,ASSIGNMENT DESCRIPTION$1,Text〉〉,[])

124 rename(〈〈0,ASSIGNMENT DESCRIPTION$1,Text〉〉,

〈〈1,ASSIGNMENT DESCRIPTION$1,Text〉〉)

Step 6: Automatic restructuring of each data source schema X ′′

i

into the global XMLDSS schema GX. In this particular setting, our schema

restructuring algorithm is not supplied with any subtyping information. Transfor-

mations 125-134, given below, transform the 〈〈SEQUENCE SOURCES$1〉〉 subtree
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of the schema arising from the CLUSTER XMLDSS schema (Figure 7.2) after

the data cleansing step into the partial global XMLDSS schema (Figure 7.3). The

transformations that add to the global XMLDSS schema GX the subtree with

Element 〈〈ASSIGNMENT TYPES$1〉〉 as its root are similar to transformations 129-

134, i.e. the empty list is the query supplied to all the transformations.

// Application of schema restructuring algorithm on source XMLDSS schema

// (in this case, the XMLDSS schema derived from the CLUSTER data source)

125 add(〈〈1,GLOBAL$1,CLUSTER DATA$1〉〉,

[{v0, v2}|{v0, v1} ← 〈〈1,GLOBAL$1,SEQUENCE SOURCES$1〉〉;

{v1, v2} ← 〈〈2,SEQUENCE SOURCES$1,CLUSTER DATA$1〉〉])

126 extend(〈〈3,CLUSTER DATA$1,ASSIGNMENT DESCRIPTION$1〉〉,

[{v1, v2}|{v0, v1} ← 〈〈3,ASSIGNMENT TYPES$1,CLUSTER DATA$2〉〉;

{v0, v2} ← 〈〈2,ASSIGNMENT TYPES$1,DESCRIPTION$1〉〉])

127 rename(〈〈3,CLUSTER DATA$1,SEQUENCE SOURCE ID$1〉〉,

〈〈4,CLUSTER DATA$1,SEQUENCE SOURCE ID$1〉〉)

128 add(〈〈2,GLOBAL$1,SEQUENCES$1〉〉,

[{v0, v2}|{v0, v1} ← 〈〈1,GLOBAL$1,SEQUENCE SOURCES$1〉〉;

{v1, v2} ← 〈〈3,SEQUENCE SOURCES$1,SEQUENCES$1〉〉])

// Application of schema restructuring algorithm on target XMLDSS schema

// (in this case, the global XMLDSS schema GX)

129 add(〈〈SEQUENCE SOURCES$1〉〉,[])

130 add(〈〈1,GLOBAL$1,SEQUENCE SOURCES$1〉〉,[])

131 add(〈〈1,SEQUENCE SOURCES$1,SEQUENCE SOURCE ID$1〉〉,[])

132 add(〈〈1,SEQUENCE SOURCE ID$1,Text〉〉,[])

133 add(〈〈2,SEQUENCE SOURCES$1,CLUSTER DATA$1〉〉,[])

134 add(〈〈3,SEQUENCE SOURCES$1,SEQUENCES$1〉〉,[])

...
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7.2.3 Implementation and Results

The data integration process described above was carried out on a Pentium 4

2.8Ghz, with 1Gb RAM and Linux as the operating system. The Gene3D,

KEGG Gene, KEGG Genome, KEGG Orthology, CATH and CLUSTER data

sources, and the global database are all Oracle databases, while the AutoMed

Repository is a PostgreSQL database. Note that the Linux machine that per-

formed the integration was located on a different site than that hosting the

databases, and this had a negative impact on the performance of the integra-

tion process.

Each of the involved data source schemas contained up to 5 tables, while the

global schema contained 25 tables. Each of the transformation pathways used

to integrate the data source schemas with the global schema contained between

800 and 1000 transformations. The run-time of the integration process, i.e. Steps

1–6 described above — including the manually created transformations of Steps

4 and 5, took under 15 minutes for each data source, resulting in a total running

time of about 85 minutes. This time compares favourably with the likely time

it would take to manually specify and populate view definitions for the global

schema in terms of the data source schemas.

Note that the experiment was performed in late 2004 using an early version

of our schema restructuring algorithm described in Chapter 5 that lacked a num-

ber of significant performance optimisations. One of these optimisations was to

derive the correct order number for ElementRel constructs at the time of their

insertion, rather than inserting each one with an order of -1 and then reordering

all ElementRel constructs after all other insert/delete operations. As a result, the

current schema restructuring algorithm would have produced pathways ranging

from 400 to 600 transformations, resulting in a lower running time.
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7.3 XML Data Transformation and Materialisa-

tion

This section presents the application of our schema restructuring and materiali-

sation algorithms for the transformation of crime data from a source XML rep-

resentation to a target XML representation, and the subsequent materialisation

of the latter using data associated with the former.

Section 7.3.1 first describes the crime data transformation and materialisation

setting and Section 7.3.2 discusses the extraction of XML DataSource Schemas

in this setting. Sections 7.3.3, 7.3.4 and 7.3.5 discuss schema conformance, re-

structuring and materialisation in this setting.

7.3.1 The Crime Informatics Setting

Police forces in the U.K. maintain burglary-related crime data in relational databases

that do not necessarily share the same schema, and, as a result, collaboration

across police forces incurs a significant overhead. To address this problem, an

XML interchange format has been developed by the Crime Informatics group at

Birkbeck, and our XML schema and data transformation approach can be used

to materialise this XML format using data from each police force. This section

discusses the application of our approach to data from a single police force —

more general application would be similar.

Figure 7.4 illustrates the crime data transformation setting for a single police

force. Each force is responsible for exporting its relational data in XML format,

e.g. using relational-to-XML converters built into their DBMS of choice. This

XML document is then semi-automatically conformed to use the same termi-

nology as the target XML format (transformation pathway XS ↔ XSconf) and

then our schema restructuring algorithm is responsible for providing the pathway

between the conformed source schema and the target schema (transformation

pathway XSconf ↔ XT ).
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Figure 7.4: The Crime Data Transformation and Materialisation Setting.

7.3.2 XMLDSS Schema Extraction

The crime data stored in the relational database of the particular police force con-

sists of a single table with 211 columns. From these, about 65 store information

such as date, time and location, whereas the rest represent boolean statements

about the crime, such as whether the burglar exited through the front door or

whether the burglar stole any jewelry. As a result of this design, the table is quite

sparse. Furthermore, since the database consists of a single table with multiple

attributes, the exported XML document is shallow, as illustrated below, and so

the XMLDSS schema corresponding to this XML document (generated using the

DOM XMLDSS extraction algorithm of Chapter 4) is similarly shallow, as shown

in Figure 7.5.

<document>

<row>

<ID>23</ID>

<CRIME_REF>961615</CRIME_REF>

<DATE_COMMITTED>02-MAR-00</DATE_COMMITTED>

...

<jewel>1</jewel>

<keys>0</keys>

<bags>0</bags>

...

</row>

...

</document>

217



row

ID CRIME_REF DATE_COMMITTED jewel

document

Text

... ...... keys bags

Figure 7.5: The XMLDSS Schema for the Exported XML Document.

Note that the exported XML document contains carriage returns and inden-

tations between element tags which make the XML document more readable.

However, if we were to extract an XMLDSS schema from the XML document

as it is, this ‘whitespace’ text would result in an invalid XMLDSS schema, since

XMLDSS does not support mixed content elements (as discussed in Chapter 4).

For this reason, we chose to enable the WHITESPACE COLLAPSE6 option of the

XMLWrapperFactory when creating the source and target XMLWrapper objects

(XMLWrapperFactory options were discussed in Chapter 4).

The target schema is shown in Figure 7.6. To create it, the crime domain

experts produced a sample XML document containing instances of all possible

information that is desirable to appear in the target, and then its corresponding

XMLDSS schema was automatically generated, again using the DOM XMLDSS

extraction algorithm of Chapter 4 with the WHITESPACE COLLAPSE option enabled.

Compared to the source schema, the target schema is not as shallow. Further-

more, many of the source schema boolean fields are modelled as lists of values

in the target XMLDSS schema, and the source XMLDSS schema contains 626

constructs whereas the target XMLDSS schema contains only 57. For example,

the target schema construct mo keywords (modus operandi keywords) contains all

6The semantics of the WHITESPACE COLLAPSE option are identical to those of XML Schema,
i.e. the whitespace prefix and suffix of a text node is removed, and if this results in an empty
string, then the text node is deleted.
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Figure 7.6: The Target XMLDSS Schema.

keywords relating to the characteristics of the burglary (points of entry and exit,

whether the alarm was disabled etc.), whereas these are represented as more than

100 boolean-valued elements in the source schema, one element per keyword.

7.3.3 Schema Conformance

After generating the source and target XMLDSS schemas, XS and XT , we pro-

ceed to the schema conformance phase, which will create pathway XS ↔ XSconf

in Figure 7.4. The schema conformance phase in this example is performed man-

ually after consultation with the crime domain experts, and transforms schema

XS into schema XSconf (see Figure 7.4), which uses the same terminology and

describes information at the same level of granularity as schema XT .

Table 7.1 gives the transformations of pathway XS → XSconf . Query q1

concatenates the text of elements 〈〈LOCN NUMBER$1〉〉, 〈〈LOCN STREET$1〉〉,

〈〈LOCN DISTRICT$1〉〉, 〈〈LOCN TOWN$1〉〉 and 〈〈LOCN POSTCODE$1〉〉, using

commas as a separator. Similarly, queries q2 and q3 concatenate the text of

elements 〈〈TIME FIRST COMMITTED$1〉〉, 〈〈DATE FIRST COMMITTED$1〉〉 and

〈〈TIME LAST COMMITTED$1〉〉, 〈〈DATE LAST COMMITTED$1〉〉, respectively.
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Table 7.1: Transformation pathway XS → XSconf .
135 rename(〈〈document$1〉〉,〈〈root$1〉〉) 136 rename(〈〈row$1〉〉,〈〈crm28$1〉〉)
137 rename(〈〈ID$1〉〉,〈〈id$1〉〉) 138 rename(〈〈MO NOTES$1〉〉,〈〈circumstances$1〉〉)
139 add(〈〈address$1〉〉,q1) 140 rename(〈〈LOCATION DESC$1〉〉,〈〈property type$1〉〉)
141 add(〈〈from$1〉〉,q2) 142 add(〈〈to$1〉〉,q3)
143 add(〈〈item$1〉〉,q4) 144 add(〈〈item$1, category〉〉,q6)
145 add(〈〈goods taken$1〉〉,q7) 146 add(〈〈crm28$1, goods taken$1〉〉,q8)
147 add(〈〈goods taken$1, item$1〉〉,q5) 148 add(〈〈mo keywords$1〉〉,q9)
149 add(〈〈crm28$1,mo keywords$1〉〉,q10) 150 add(〈〈mo keywords$1,Text〉〉,q11)
151 rename(〈〈MO DESC$1〉〉,〈〈mo description$1〉〉)

Transformations 143-144 perform an n-1 element-to-attribute transformation.

The source schema contains many elements with a domain of 0/1 that correspond

to items stolen during the burglary, e.g. whether the burglars stole jewelry, cash

and so on. In the target schema, there exists one instance of element 〈〈item$1〉〉

for each stolen item. Query q4 therefore generates as many instances for element

〈〈item$1〉〉 as there are columns with a value of 1 for a specific burglary, while

queries q5 and q6 create the necessary instances for ElementRel 〈〈crm28$1, item$1〉〉

and Attribute 〈〈item$1, category〉〉, respectively. Note that the attribute takes val-

ues from the labels of the respective elements of the export XML document. After

generating the extents for element 〈〈item$1〉〉, element 〈〈goods taken〉〉 is created,

together with the necessary 〈〈crm28$1, goods taken$1〉〉 ElementRel construct (the

cardinality for this is 1-1). Note that ElementRel 〈〈goods taken$1, item$1〉〉 will be

created by the schema restructuring algorithm.

Similarly, transformations 148-150 perform an n-1 element-to-element transfor-

mation. The source schema contains many elements with a domain of 0/1 that

correspond to the modus operandi of the burglary, whereas the target schema

contains a single element, 〈〈mo keywords〉〉, that contains a list of modus operandi

keywords that correspond to the labels of the source schema elements.

7.3.4 Schema Restructuring

After creating schema XSconf , we can now apply the schema restructuring algo-

rithm to create pathway XSconf ↔ XT . The algorithm restructures both schema

220



XSconf , creating schema XSres, and schema XT , creating schema XTres, render-

ing them identical and then applies an id transformation between the two (see

Figure 7.4). Pathway XSconf ↔ XSres consists of 60 transformations, pathway

XT ↔ XTres consists of 618 transformations, and including the id transformation

between schemas XSres and XTres, the overall pathway XSconf ↔ XT consists

of 679 transformations.

We tested the running times for the XMLDSS schema extraction algorithm,

the schema conformance and the schema restructuring algorithm using an export

XML document containing approximately 100 rows (586Kb). The time required

to create the source and target XMLDSS schemas was about 50 seconds, the

time consumed by the schema conformance phase was about 35 seconds, and the

time taken by the schema restructuring algorithm was 90 seconds. Most of the

running time, i.e. over 90%, is spent by the AutoMed repository, not the actual

algorithms.

7.3.5 Schema Materialisation

After creating the transformation pathway XS ↔ XT , we are now able to mate-

rialise XMLDSS schema XT with data from the data source of XMLDSS schema

XS. For this purpose, we use our XMLDSS schema materialisation algorithm,

described in Chapter 4, which uses the DOM API.

We successfully applied our XMLDSS schema materialisation algorithm, dis-

cussed in Chapter 4, to the file mentioned above. The export XML document

was materialised in 36 minutes. The very poor performance is attributable to

a number of causes: to the queries supplied with the transformations of the

schema conformance phase, involving the 150 boolean-valued elements (transfor-

mations 143-150); to the AutoMed query processor; and to the use of the DOM

API for this setting. In particular, the current AutoMed query processor does

not support the efficient evaluation of the join operator and path queries are per-

formed using a nested-loops join algorithm for each step. The use of the DOM
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API means that only single schemes can be handled by the AutoMed XML wrap-

per and the entire burden of evaluating path queries falls to the AutoMed query

processor. If the eXist native XML database had been used, then these path

queries would have been delegated to eXist’s query engine for evaluation, and the

materialisation of schema XT would have been much faster.

7.4 Service Reconciliation Using A Single On-

tology

This section presents an approach for the reconciliation of bioinformatics services

using our schema and data transformation approach together with a scientific

workflow tool. This work was developed as part of the ISPIDER project7.

Section 7.4.1 introduces the problem of bioinformatics service reconciliation

and Section 7.4.2 reviews current approaches related to service interoperability.

Section 7.4.3 introduces our proposed approach for a scalable solution to the

problem of bioinformatics service reconciliation and Section 7.4.4 applies this ap-

proach to a particular case study, for the reconciliation of services that correspond

to the same ontology.

7.4.1 Bioinformatics Service Reconciliation

In recent years, the bioinformatics field has seen an explosion in the number of

services offered to the community. These platform-independent software compo-

nents have consequently been used for the development of complex tasks through

service composition within workflows, thereby promoting reusability of services.

However, the large number of services available impedes service composition and

so developing techniques for semantic service discovery that would significantly

reduce the search space is of great importance [LAWG05].

After discovering services that are relevant to one’s interests, the next step

is to identify whether these services are functionally compatible. Bioinformatics

7See http://www.ispider.manchester.ac.uk
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services are independently created by many parties worldwide, using different

technologies and data types, hindering integration and reusability [Ste02]. As a

result, after discovering two such services, the researcher needs to identify whether

the output of the first is compatible with the input of the second (based on a num-

ber of factors, such as the technology employed by each service, the representation

format and the data type used), and then provide a means of reconciliation, if

the services are not functionally compatible.

In practice, compatible services are rare. Within the Taverna8 workflow tool,

service technology reconciliation is addressed by using Freefluo [OAF+04], an

extensible workflow enactment environment that bridges the gap between web

services and other service types, such as web-based REST9 services. However,

the researcher still needs to reconcile the outputs and inputs of services in terms

of content, data type and representation format, spending time and effort in de-

veloping functionality that, even though essential for the services to interoperate,

is irrelevant to the experiment.

The primary cause of this problem is the existence of multiple different data

types and representation formats even for basic concepts, such as DNA sequences.

Most current service composition tools concentrate on a specific data type and

representation format (or combinations of pairs of types and formats, when

translation is needed) to accomplish a highly specific task, rather than being

generic [LBW+04]. As a result, reusability of existing tools is low.

Another common practice in bioinformatics is the use of flat-file representation

formats for the overwhelming majority of data types, while the adoption rate

of XML is low. This practice does not allow the application of Semantic Web

technologies and solutions to their full extent, such as semantically annotating

different pieces of information within a bioinformatics data type.

We argue that (a) the use of XML and (b) allowing the annotation and ma-

nipulation of service inputs and outputs at a fine-grained level, can boost service

8See http://taverna.sourceforge.net
9Representational State Transfer (REST): stateless services that support caching.
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interoperability in a scalable manner. It is important that the amount of anno-

tations required be kept to a minimum, given that service providers are usually

disinclined to provide comprehensive annotations for their services. We have de-

veloped an approach for the reconciliation of services by exploiting the (manual)

semantic annotation of service inputs and outputs to one ontology (discussed

in this section), or several interconnected ontologies (discussed in Section 7.5),

and the subsequent automatic restructuring of the XML output of one service

to the required XML input of another using our schema restructuring algorithm.

Although our approach uses XML as the common representation format, non-

XML services are also supported by the use of converters to and from XML. Our

approach can be used for service reconciliation in two different ways: either me-

diating between services as a service itself, e.g. from within a workflow tool, or

statically by generating mediating services.

7.4.2 Related Work in Service Reconciliation

Research such as [SK03, MBE03, BDSN02] has mainly focused on service tech-

nology composition, matchmaking and routing, assuming that service inputs and

outputs are a priori compatible. This assumption is restrictive, as it is often the

case that two services are semantically compatible, but cannot interoperate due

to data type and/or representation format mismatches.

This problem has forced service consumers to handle such mismatches with

custom code from within the calling services. In an effort to minimise this issue

and promote service reusability, myGrid10 has fostered the notion of shims [HSL+04],

i.e. services that act as intermediaries between services and reconcile their inputs

and outputs. However, a new shim needs to be manually created for each pair

of services that need to interoperate. [HSL05] states that, even though in theory

the number of shims that myGrid needs to provide is quadratic in the number of

services it contains, the actual number of shims should be much smaller. How-

ever, this manual approach is not scalable, as in 2005 myGrid gave access to 1,000

10See http://www.mygrid.org.uk
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services [LAWG05], while in 2007 this number was over 3,000.

[BL04] describes a scalable framework that uses mappings to one or more on-

tologies, possibly containing subtyping information, for reconciling the output of

a service with the input of another. The sample implementation of this frame-

work is able to use mappings to a single ontology in order to generate an XQuery

query as the transformation program.

We observe that [BL04] only provides for shim generation, whereas our ap-

proach provides a uniform approach to workflow and data integration, both of

which are key aspects of in silico biological experiments. Furthermore, our ap-

proach differs from [BL04] in a number of aspects and provides a more generic

solution to the problem of bioinformatics service reconciliation. First, we also

consider services that produce or consume non-XML data and also allow primi-

tive data type reconciliation, whereas [BL04] does not. Moreover, we allow 1-n

GLAV correspondences, compared to the 1-1 LAV correspondences of [BL04] and

we also define a methodology for reconciling services that correspond to more

than one ontology (discussed in Section 7.5). We also note that our XML schema

restructuring algorithm is able to avoid loss of information during data transfor-

mation, by analysing the hierarchical nature of the source and target schemas

and by using subtype information provided by the ontologies.

[TAK05] also uses a mediator system for service composition. However, the

focus is either to provide a service over the global schema of the mediator, whose

data sources are services, or to generate a new service that acts as an interface over

other services. In contrast, we reconcile a sequence of semantically compatible

services that need to form a pipeline: there is no need for a single ‘global schema’

or a single new service to be created.

7.4.3 Our Service Reconciliation Approach

Consider a service S1 that produces data that need to be consumed by another

service S2. Our service reconciliation consists of the following 4 steps, illustrated

in Figure 7.7:
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Step 1: XML as the common representation format. We handle differ-

ences in the representation format by using XML as the common representation

format. If the output/input of a service is not in XML, then a format converter

is needed to convert to/from XML.

Step 2: XMLDSS as the schema type. We use our own XMLDSS schema

type for the XML documents input to and output by services. We recall that

an XMLDSS schema can be automatically generated from an XML document or

from an accompanying DTD/XML Schema if this is available.

Step 3: Correspondences to typed ontologies. We use one or more on-

tologies as a ‘semantic bridge’ between services. Providers or users of services

semantically annotate the inputs and outputs of services by defining correspon-

dences between an XMLDSS schema and an ontology. Ontologies are assumed

to be typed, i.e. each concept is associated with a data type, and so defining

correspondences resolves both the semantic heterogeneity and the data type het-

erogeneity encountered between schemas (a discussion on the different types of

heterogeneity was given in Chapter 2).

Steps 4-5: Schema and data transformation. We use the schema con-

formance and the schema restructuring algorithms described in Chapter 6 to

automatically transform the XMLDSS schema of S1 to the XMLDSS schema of

S2.

If service S1 does not have an accompanying DTD or XML Schema for its

output, sample XML output documents for S1 must be provided, and these must

represent all valid formats that S1 is able to produce, so as to create an XMLDSS

schema that represents all possible instances of the output of S1. If this is not

possible, then an XMLDSS can be extracted at run-time for every new instance

XML document output by S1. The same applies for the input of S2.

Our approach for service reconciliation can support two different architectures:

Shim generation: With this approach, we use the AutoMed system and our
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Figure 7.7: Reconciliation of services S1 and S2 using ontology O1.

schema transformation approach to generate shims, i.e. tools or services for the

reconciliation of services, by generating transformation scripts which are then

incorporated within the workflow tool.

Mediation service: With this architecture, the workflow tool invokes service

S1, receives its output, and submits this output and a handle on service S2 to

a service provided by the AutoMed system. This service uses our approach to

transform the output of S1 to a suitable input for consumption by S2.

With the shim generation approach, AutoMed is not part of the run-time

architecture, and so it is necessary to export AutoMed’s mediation functionality.

This functionality consists of the format converters, the algorithms for generating

an XMLDSS schema from an XML document, a DTD or an XML Schema, and

our schema transformation algorithms.

Format converters are not a part of the AutoMed toolkit and so can be used
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from within a workflow tool, without exporting any AutoMed functionality. The

converters can be either incorporated within the workflow tool, or their function-

ality can be imported using services. As an example, a number of shims in myGrid

are format converters.

The XMLDSS schema type does not require AutoMed functionality, and so

the XMLDSS schema derivation algorithms can be used from within a workflow

tool in the same way as format converters.

The XMLDSS schema conformance and schema restructuring algorithms de-

scribed in Chapter 6 are currently tightly coupled with the AutoMed system. To

use our approach without integrating AutoMed with a workflow tool, we need to

export this functionality. To this effect, Chapter 4 has presented an algorithm

that derives a single XQuery query Q, able to materialise X2 using data from X1,

using the transformation pathway X1 → X ′

1 → X ′

2 → X2 produced by the two

algorithms.

We now discuss a case study that demonstrates the mediation service ap-

proach.

7.4.4 Case Study Using A Single Ontology

Figure 7.8 illustrates a sample workflow with three services that will be used to

demonstrate our approach. Listings of all service inputs, outputs and XMLDSS,

XML Schema and DTD schemas discussed in this section are given in Appendix C.
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Figure 7.8: Sample Workflow.

The first service takes as input an IPI11 accession number, e.g. IPI00015171,

and outputs the corresponding IPI entry as a flat file using the UniProt12 format.

11International Protein Index, see http://www.ebi.ac.uk/IPI.
12Universal Protein Resource, see http://www.ebi.uniprot.org.
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The second service receives an InterPro13 accession number and returns the cor-

responding InterPro entry. The third service receives a Pfam14 accession number

and returns the corresponding Pfam entry. In this workflow, two transformations

are needed: T1 extracts the InterPro accession number from an IPI entry that

uses the UniProt format, while T2 extracts the Pfam accession number from an

InterPro entry.

We now apply the mediation service approach for the reconciliation of the

services of the workflow of Figure 7.8.

Step 1: XML as a common representation format. Service getIPIEntry

outputs a flat file that follows the UniProt representation format15 and contains

a single entry consisting of multiple lines. Each line consists of two parts, the

first being a two-character line code, indicating the type of data contained in the

line, while the second contains the actual data, consisting of multiple fields.

Since UniProt also has an XML representation format specified by an XML

Schema16, we created a format converter that, given an IPI flat file f that follows

the UniProt format, converts f to an XML file conforming to that XML Schema.

Service getInterProEntry outputs an XML file and so there is no need for

a format converter. Concerning the input of the second and the third service,

they each take as input a single string, representing an InterPro/Pfam accession

number, respectively. The input XML documents for these contain a single XML

element, ip acc and pf acc, respectively, with a PCData node as a single child,

as shown below. For these, the format converters implement the functionality of

the XPath expressions /ip acc/text() and /pf acc/text(), respectively.

<ip_acc>InterPro_accession_string</ip_acc>

<pf_acc>Pfam_accession_string</pf_acc>

Step 2: XMLDSS schema generation. As discussed above, service getIPIEntry

13See http://www.ebi.ac.uk/interpro.
14See http://www.sanger.ac.uk/Software/Pfam.
15IPI also supports the FASTA representation format, containing less information.
16Available at http://www.pir.uniprot.org/support/docs/uniprot.xsd
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outputs a flat file which is converted to an XML file that conforms to the UniProt

XML Schema. An XMLDSS schema for the output of this service is automat-

ically derived from that XML Schema. Similarly, an XMLDSS schema for the

output of service getInterProEntry is automatically derived using the InterPro

DTD schema17.

Concerning the input of the second and the third service, the corresponding

XMLDSS schemas are automatically extracted by using a single sample XML

document for each, such as the ones given earlier.

Step 3: Correspondences. After generating the required XMLDSS schemas

for our workflow, we need to specify the correspondences between these schemas

and an ontology. In this example, we have used the typed myGrid OWL domain

ontology18.

As discussed in Chapter 6, it is not necessary to provide a complete set of

correspondences between an XMLDSS schema and an ontology, if the XMLDSS

constructs that are not mapped to the ontology are not needed for the trans-

formation. This property is particularly significant in this setting in terms of

applicability and scalability, as it allows for incrementally defining the full set of

correspondences between an XMLDSS schema and an ontology: one can define

only those correspondences relevant to the specific problem at hand, instead of

the full set of correspondences.

In our example, this means that we only need to specify correspondences

for those constructs of the XMLDSS schema of the output of getIPIEntry

that contribute to the input of service getInterProEntry. Consequently, we

need to specify correspondences for only two constructs, 〈〈dbReference$9〉〉 and

〈〈dbReference$9, id〉〉 (see Table 7.2). The first models an entry in a bioinformatics

data resource, whose type is specified by 〈〈dbReference$9, type〉〉. The type of a

resource is modelled in IPI using data values, whereas in the ontology it is mod-

elled as classes, and so n correspondences are required for this construct, where

17Available at ftp://ftp.ebi.ac.uk/pub/databases/interpro/interpro.dtd
18Available at http://www.mygrid.org.uk/ontology.
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Table 7.2: Correspondences between the XMLDSS schema of the output of
getIPIEntry and the myGrid ontology.

Construct: 〈〈dbReference$9〉〉
Extent: [{d}|{d, t} ← 〈〈dbReference$9, type〉〉; t =′ InterPro′]

Path: 〈〈InterPro record〉〉

Construct: 〈〈dbReference$9〉〉
Extent: [{d}|{d, t} ← 〈〈dbReference$9, type〉〉; t =′ Pfam′]

Path: 〈〈Pfam record〉〉

Construct: 〈〈dbReference$9, id〉〉
Extent: [{d, i}|{d, i} ← 〈〈dbReference$9, id〉〉;

{d, t} ← 〈〈dbReference$9, type〉〉; t =′ InterPro′]
Path: [{ir, l}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉;

{ia, l} ← 〈〈datatype, InterPro accession,Literal〉〉]

Construct: 〈〈dbReference$9, id〉〉
Extent: [{d, i}|{d, i} ← 〈〈dbReference$9, id〉〉;

{d, t} ← 〈〈dbReference$9, type〉〉; t =′ Pfam′]
Path: [{pr, l}|{pa, pr} ← 〈〈part of,Pfam accession,Pfam record〉〉;

{pa, l} ← 〈〈datatype,Pfam accession,Literal〉〉]

n is the number of types of resources that IPI supports and that also exist in

the ontology. Each of these correspondences maps 〈〈dbReference$9〉〉 to a class in

the ontology representing a bioinformatics data resource record and specifies the

part of the extent of 〈〈dbReference$9〉〉 to which the correspondence applies. For

example, the first correspondence states that those instances of 〈〈dbReference$9〉〉

whose 〈〈dbReference$9, type〉〉 Attribute has a data value of ‘InterPro’, map to

the 〈〈InterPro record〉〉 ontology class. For simplicity, but without loss of generality,

we only provide the two correspondences related to InterPro and Pfam.

The XMLDSS schema of the input of service getInterProEntry consists of a

single Element construct, 〈〈ip acc〉〉, which corresponds to class 〈〈InterPro accession〉〉

in the ontology, and of an ElementRel construct, 〈〈1, ip acc, Text〉〉. The correspon-

dences are given in Table 7.3. The correspondences for the XMLDSS schema of

the input of the third service, getPfamEntry, are not listed as they are similar.
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Table 7.3: Correspondences between the XMLDSS schema of the input of
getInterPro and the myGrid ontology.

Construct: 〈〈ip acc$1〉〉
Extent: 〈〈ip acc$1〉〉

Path: [{ia}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉]

Construct: 〈〈1, ip acc$1,Text〉〉
Extent: 〈〈1, ip acc$1,Text〉〉

Path: [{ia, l}|{ia, ir} ← 〈〈part of, InterPro accession, InterPro record〉〉;
{ia, l} ← 〈〈datatype, InterPro accession,Literal〉〉]

Steps 4-5: Schema and data transformation. After manually specify-

ing correspondences, the schema conformance and schema restructuring algo-

rithms can automatically transform the outputs of services getIPIEntry and

getInterProEntry to the required inputs for services getInterProEntry and

getPfamEntry respectively.

Concerning the output of service getIPIEntry, the schema conformance algo-

rithm (SCA) first retrieves all correspondences related to 〈〈dbReference$9〉〉 (in this

case 2 correspondences) and inserts 〈〈InterPro record$1〉〉 and 〈〈Pfam record$1〉〉, us-

ing the correspondences’ expressions to select the appropriate 〈〈dbReference$9〉〉

instances, i.e. those that have a type Attribute with value ‘InterPro’ and ‘Pfam’

respectively. As discussed in Chapter 6, the SCA then replicates under the newly

inserted Elements the structure located under 〈〈dbReference$9〉〉 (again using the

correspondences’ expressions to select the appropriate structure), and then re-

moves 〈〈dbReference$9〉〉. Note that this removal is postponed until after any

other insertions are performed, as other insertions may need to use the extent of

〈〈dbReference$9〉〉 in the queries supplied with the AutoMed transformations.

The SCA then retrieves all correspondences related to 〈〈dbReference$9, id〉〉

(in this case 2 correspondences) and inserts Attributes 〈〈InterPro record$1,InterPro

record.part of.InterPro accession〉〉 and 〈〈Pfam record$1,InterPro record.part of.Pfa

m accession〉〉, using the correspondences’ expressions to select the appropriate

〈〈dbReference$9, id〉〉 instances (as discussed earlier, 〈〈dbReference$9〉〉 has not yet

been removed). Concerning primitive data types, 〈〈dbReference$9, id〉〉 is of type

string, and the same applies for all accession numbers in the myGrid domain
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ontology, so there is no need for any type-casting operations.

Concerning the input of getInterProEntry, the SCA uses the first corre-

spondence to rename 〈〈ip acc$1〉〉 to 〈〈InterPro record.part of.InterPro accession$1〉〉,

while the second correspondence, which is a primitive data type reconciliation

correspondence, is of no consequence as both the input of the service and the

ontology model InterPro accession numbers use the string data type.

After the application of the SCA, the XMLDSS schema X2 of the input of

service getInterProEntry contains three constructs, 〈〈InterPro record.part of.Int

erPro accession$1〉〉, 〈〈Text〉〉 and an ElementRel linking these two constructs. The

XMLDSS schema of the output of service getIPIEntry, X1, contains a number of

constructs, but the only ones relevant to those of X2 are 〈〈InterPro record$1〉〉 and

〈〈InterPro record$1,InterPro record.part of.InterPro accession〉〉. The schema restruc-

turing algorithm (SRA) therefore applies a number of contract transformations

supplied with the queries Void and Any, so as to remove non-relevant constructs.

The only non-trivial transformation is the attribute-to-element transformation:

first Element 〈〈InterPro record.part of.InterPro accession$1〉〉 is added to X1 using

the extent of Attribute 〈〈InterPro record$1,InterPro record.part of.Inter Pro accession〉〉,

then ElementRel 〈〈InterPro record.part of.InterPro accession$1,Text〉〉 is added, again

using the Attribute extent, and finally the Attribute is deleted.

After applying the SRA, we finally employ the XMLDSS schema materiali-

sation algorithm to materialise X2, i.e. the input of service getInterProEntry,

using data from the data source of X1, i.e. the output of service getIPIEntry,

using the transformation pathway X1 → X ′

1 → X ′

2 → X2.

The application of Steps 4 and 5 for the second part of the workflow in Fig-

ure 7.8 is similar.
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7.5 Service Reconciliation Using Multiple On-

tologies

This section describes the application of our schema and data transformation

approach for the reconciliation of service-based e-learning systems, i.e. systems

whose functionality is exposed via services. In general, the services of each system

may correspond to a different ontology, each of which is linked to a single learning

domain ontology via a BAV transformation pathway. This work was developed

for the MyPlan19 project.

Section 7.5.1 introduces our example setting in which two e-learning systems,

each using a different ontology, need to exchange data. Section 7.5.2 presents the

transformation of each e-learning ontology into the domain e-learning ontology,

forming the semantic bridge between the two e-learning systems — a role that

was assumed by a single ontology in the previous case study. Next, Section 7.5.3

describes the use of the semantic bridge in order to conform the inputs and

outputs of services of the two systems and Section 7.5.4 describes the subsequent

schema and data transformation process.

7.5.1 e-Learning Service Reconciliation

The MyPlan project aims to develop models of learners and to support them in

planning their lifelong learning. One goal of MyPlan is to facilitate interoperabil-

ity in a scalable fashion between existing systems targeted at the lifelong learner.

Since direct access to these systems’ repositories is in general not possible, an

approach based on reconciling and combining the services these systems provide

is being explored.

For our running example here, suppose we need to transfer learners’ data from

the L4All20 system to the eProfile21 system. Each system is accompanied by an

ontology. L4All uses the L4ALL RDFS ontology, developed specifically for the

19See http://www.lkl.ac.uk/research/myplan
20See http://www.lkl.ac.uk/research/l4all
21See http://www.schools.bedfordshire.gov.uk/im/EProfile
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L4All system, while eProfile uses the Friend-Of-A-Friend OWL-DL ontology22

(FOAF is OWL-Full, but we only use its OWL-DL subset here). A Lifelong

Learning Ontology, LLO (defined in OWL-DL), developed as part of the MyPlan

project, aims to encompass all concepts relating to lifelong learners [BMP08].

Figure 7.9 illustrates a portion of each of these three ontologies.

Suppose now we need to transform the output of a service S1 which retrieves

data about a learner from L4All, to become the input of a service S2 which inserts

data about that learner into eProfile. Listed below are a sample output from S1:

<user>

<userID>John</userID>

<fullname>John Smith</fullname>

<age>1970</age> <gender>F</gender>

<email>JohnS@bbk.ac.uk</email>

<travel>15</travel> <location>London</location>

<occupation>Technology Professional</occupation>

<qual><![CDATA[PhD]]></qual>

<skills><![CDATA[write good reports]]></skills>

<interests><![CDATA[Sport]]></interests>

</user>

and a sample input for S2:

<eProfile>

<accountName>Mike2008</accountName>

<mbox>Mike2008@yahoo.com</mbox>

<name>Mike Jonson</name>

<interest>sport</interest>

</eProfile>

Compared to the setting of Section 7.4, our approach in this multiple ontolo-

gies setting contains one more step, which is the formation of the transformation

pathways between the two system ontologies, L4ALL and FOAF, and the domain

ontology, LLO, but does not require Step 2, as the services in this setting produce

and consume XML files (see Figure 7.10). These services may or may not have

22See http://www.foaf-project.org
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Figure 7.9: Left: Ontologies L4ALL, LLO and FOAF. Right: XMLDSS schemas
X1 and X2.

an accompanying DTD/XML Schema for their inputs and outputs, and so Step 3

either extracts an XMLDSS schema from the accompanying DTD/XML Schema,

or from sample input/output XML documents provided for the services, if such

a schema does not exist.

Similarly to the setting of Section 7.4, the result of this process is a transfor-

mation pathway X1 ↔ X ′

1 ↔ X ′

2 ↔ X2, which can then be used at run-time by

the MyPlan service broker to automatically generate data compliant with service

S2 from data output by service S1. We discuss Steps 1 and 3-6 in more detail

next, after briefly describing the transformation of each system’s ontology into

the domain ontology of our setting.

7.5.2 Transforming Ontologies using AutoMed

The transformation of the L4ALL and FOAF ontologies into the LLO ontology

using AutoMed requires the creation of transformation pathways L4ALL→LLO
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Figure 7.10: Reconciliation of Services S1 and S2.

and FOAF→LLO. L4ALL and LLO overlap significantly, but L4ALL is expressed

in RDFS while LLO is expressed in OWL-DL. Both FOAF and LLO are expressed

in OWL-DL, but FOAF is a general-purpose ontology while LLO targets lifelong

learning.

Overcoming the modelling language heterogeneity problem between L4ALL

and LLO is straightforward: each L4ALL RDFS construct is transformed into an

equivalent OWL construct. For example, to replace the RDFS class 〈〈l4 : Learner〉〉

with the equivalent OWL-DL class with the same name, the following transfor-

mations are applied to L4ALL:

add(〈〈llo : Learner〉〉,〈〈l4 : Learner〉〉)

delete(〈〈l4 : Learner〉〉,〈〈llo : Learner〉〉)

The first transformation above adds the OWL-DL construct 〈〈llo : Learner〉〉 to

L4ALL, specifying that its extent is equivalent to the extent of the RDFS con-

struct 〈〈l4 : Learner〉〉. The RDFS construct 〈〈l4 : Learner〉〉 can then be deleted,

specifying that its extent is equivalent to the extent of the OWL-DL construct

〈〈llo : Learner〉〉. Note that, since a number of properties reference the 〈〈l4 : Learner〉〉
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Table 7.4: Fragment of the Transformation Pathway L4ALL→LLO.
. . . add/extend steps for L4ALL→LLO. . .

152 delete(〈〈l4 : id, l4 : Learner, l4 : Identification〉〉,
〈〈llo : hasIdentification, llo : Learner, llo : Identification〉〉)

153 delete(〈〈l4 : learning − prefs, l4 : Learner, l4 : Learning Prefs〉〉,
〈〈llo : hasInterest, llo : Learner, llo : Interest〉〉)

154 delete(〈〈l4 : interests, l4 : Learning Prefs, rdfs : Literal〉〉,
〈〈llo : topicInterest, llo : Interest, rdfs : Literal〉〉)

155 delete(〈〈l4 : Learner〉〉,〈〈llo : Learner〉〉)
156 delete(〈〈l4 : email, l4 : Identification, rdfs : Literal〉〉,

〈〈llo : email, llo : Identification, rdfs : Literal〉〉)
157 delete(〈〈l4 : username, l4 : Identification, rdfs : Literal〉〉,

〈〈llo : userID, llo : Identification, rdfs : Literal〉〉)
158 delete(〈〈l4 : name, l4 : Identification, rdfs : Literal〉〉,

〈〈llo : fullName, llo : Identification, rdfs : Literal〉〉)
. . . more delete/contract steps for L4ALL→LLO. . .

class, in practice these would have to be deleted before deleting that class. Ta-

ble 7.4 lists a fragment of the delete steps within the pathway, as these steps will

be referred to again later in this section.

After translating the L4ALL ontology from RDFS to OWL-DL, the rest of

the pathway L4ALL↔LLO is formed by specifying transformations that address

the structural and semantic heterogeneities of the two ontologies (since the data

model heterogeneity has already been addressed). The result is the transforma-

tion of the L4ALL ontology into an ontology that is identical to LLO, and this is

asserted by automatically injecting a series of id transformations between them.

Regarding the integration of the FOAF and LLO ontologies, the transforma-

tion pathway FOAF→ LLO first adds to FOAF all the LLO constructs and then

deletes from FOAF all FOAF constructs. Table 7.5 lists a fragment of the delete

steps within the pathway LLO → FOAF, as these will be referred to again —

note that pathway LLO → FOAF is the reverse of the pathway FOAF → LLO.

We note from 166 that 〈〈llo : Learner〉〉 is equivalent to 〈〈foaf : Agent〉〉. Also, since

FOAF does not contain a class analogous to 〈〈llo : Interest〉〉 in the LLO, in 165 we

use an IQL function genClass to generate as many instances of class 〈〈llo : Interest〉〉

as there are instances of property 〈〈foaf : topic interest, foaf : Person, owl : Thing.〉〉.
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Table 7.5: Fragment of the transformation pathway LLO→FOAF
. . . add/extend steps for LLO→FOAF. . .

159 delete(〈〈llo : userID, llo : Identification, rdfs : Literal〉〉,
[{ag, lit}|{ag, oa} ← 〈〈foaf : holdsAccount, foaf : Agent, foaf : OnlineAccount〉〉;

{oa, lit} ← 〈〈foaf : accountName, foaf : OnlineAccount, rdfs : Literal〉〉])
160 delete(〈〈llo : fullName, llo : Identification, rdfs : Literal〉〉,

[{t, lit}|{t, lit} ← 〈〈foaf : name, owl : Thing, rdfs : Literal〉〉; member t 〈〈foaf : Agent〉〉])
161 delete(〈〈llo : email, llo : Identification, rdfs : Literal〉〉,

[{y, z}|{x, y, z} ← (genProperty 〈〈foaf : mbox, foaf : Agent, rdfs : Literal〉〉)])
162 delete(〈〈llo : hasIdentification, llo : Learner, llo : Identification〉〉,

(genProperty 〈〈foaf : Agent〉〉))
163 delete(〈〈llo : topicInterest, llo : Interest, rdfs : Literal〉〉,

[{y, z}|{x, y, z} ← (genProperty 〈〈foaf : topic interest, foaf : Person, owl : Thing〉〉)])
164 delete(〈〈llo : hasInterest, llo : Learner, llo : Interest〉〉,

[{x, y}|{x, y, z} ← (genProperty 〈〈foaf : topic interest, foaf : Person, owl : Thing〉〉)])
165 delete(〈〈llo : Interest〉〉,(genClass 〈〈foaf : topic interest, foaf : Person, owl : Thing〉〉))
166 delete(〈〈llo : Learner〉〉,〈〈foaf : Agent〉〉)

. . . more delete/contract steps for LLO→FOAF. . .

Similarly, the IQL function genProperty generates the extent of a property.

This function takes as input another property or a class. In particular, if

genProperty has to generate the extent of a property with a 1–n cardinality, then

the input to genProperty is another property, and genProperty produces a set of

triples by skolemising the input property. If genProperty has to generate the

extent of a property with a 1–1 cardinality, then the input to genProperty is a

class, and genProperty produces a set of pairs — each item in the pair is the same

instance of the input class. We also note that the LLO property userID maps to the

join of FOAF properties holdsAccount and accountName (see transformation 159).

Finally, note that FOAF has a general-purpose name property, with domain and

range owl:Thing and rdfs:Literal, respectively, whereas LLO only has a fullName

property which is not general-purpose (see transformation 160).

7.5.3 XML Data Source Enrichment

After establishing the semantic bridge required by our service reconciliation ap-

proach, we now need to define correspondences C1 and C2 from the XMLDSS

schemas of services S1 and S2 to ontologies L4ALL and FOAF, respectively. Note
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that, in contrast with the setting of Section 7.4, each correspondence refers to

the whole extent of its referring XMLDSS construct, and so the correspondences

listed in this section omit the extent column.

Using the correspondences between X2 and FOAF, C2, our schema confor-

mance algorithm automatically transforms schema X2 into a schema X ′

2 (see

Figure 7.11) that is semantically enriched since its element names use terms from

the FOAF ontology. For example, 〈〈eProfile$1〉〉 is renamed to 〈〈foaf : Agent〉〉 and

〈〈mbox〉〉 to 〈〈Agent.mbox.Literal〉〉. The correspondences and the transformations

referring to this process are not listed here, as they are straightforward.

Our service reconciliation approach specifies that, in a multiple ontologies

setting, one of the sets of correspondences that uses one end of the semantic bridge

needs to be transformed into a new set of correspondences that uses the other

end of the bridge. In this case, the set of correspondences C1 of service S1, from

XMLDSS schema X1 to L4ALL, is transformed into a new set of correspondences,

C ′

1, from XMLDSS schema X1 to FOAF.

Table 7.6 lists some of the correspondences C1, between X1 and L4ALL. The

new set of correspondences C ′

1 are given in Table 7.7, which lists the transformed

version of the correspondences of Table 7.6. These are obtained using GAV refor-

mulation on the ontology path queries of the correspondences C1. As discussed

in Chapter 6 and Section 7.4, for this process to yield a correct set of correspon-

dences, there is a proviso that the new set of correspondences C ′

1 must conform

syntactically to the format of our correspondences language.

After producing the new set of correspondences C ′

1, we apply our schema

conformance algorithm and obtain XMLDSS schema X ′

1 (see Figure 7.11), which

uses the same terminology as XMLDSS schema X ′

2.

7.5.4 Ontology-Assisted Schema and Data Transforma-

tion

Resulting from the above data source enrichment process are schemas X ′

1 and

X ′

2 that both use the terminology of FOAF, as well as pathways X1 → X ′

1 and
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Table 7.6: Correspondences C1 between XMLDSS Schema X1 and the L4ALL
Ontology

.

Construct: Path:

〈〈user$1〉〉 [c|c← 〈〈l4 : Learner〉〉]

〈〈userID$1〉〉 [id|{l, id} ← 〈〈l4 : id, l4 : Learner, l4 : Identification〉〉;
{id, lit} ← 〈〈l4 : username, l4 : Identification, rdfs : Literal〉〉]

〈〈fullname$1〉〉 [id|{l, id} ← 〈〈l4 : id, l4 : Learner, l4 : Identification〉〉;
{id, lit} ← 〈〈l4 : name, l4 : Identification, rdfs : Literal〉〉]

〈〈email$1〉〉 [id|{l, id} ← 〈〈l4 : id, l4 : Learner, l4 : Identification〉〉;
{id, lit} ← 〈〈l4 : email, l4 : Identification, rdfs : Literal〉〉]

〈〈interests$1〉〉 [p|{l, p} ← 〈〈l4 : learning − prefs, l4 : Learner, l4 : Learning Prefs〉〉;
{p, lit} ← 〈〈l4 : interests, l4 : Learning Prefs, rdfs : Literal〉〉]

Table 7.7: Correspondences C ′

1 between XMLDSS Schema X1 and the FOAF
Ontology

Construct: Path:
〈〈user$1〉〉 [c|c← 〈〈foaf : Agent〉〉]
〈〈userID$1〉〉 [id|{l, id} ← (genProperty〈〈foaf : Agent〉〉);

{ag, oa} ← 〈〈foaf : holdsAccount, foaf : Agent, foaf : OnlineAccount〉〉;
{oa, userlit} ← 〈〈foaf : accountName, foaf : OnlineAccount, rdfs : Literal〉〉]

〈〈fullname$1〉〉 [id|{l, id} ← (genProperty〈〈foaf : Agent〉〉);
id← 〈〈foaf : Agent〉〉; {id, lit} ← 〈〈foaf : name, owl : Thing, rdfs : Literal〉〉]

〈〈email$1〉〉 [id|{l, id} ← (genProperty〈〈foaf : Agent〉〉);
{x, id, lit} ← (genProperty〈〈foaf : mbox, foaf : Agent, rdfs : Literal〉〉)]

〈〈interests$1〉〉 [p|{l, p, z} ← (genProperty〈〈foaf : topic interest, foaf : Person, owl : Thing〉〉);
{x, p, t} ← (genProperty〈〈foaf : topicinterest, foaf : Person, owl : Thing〉〉)]

X2 → X ′

2. However, this is not, in general, enough for transforming data from one

data source to the other: we need to apply our schema restructuring algorithm

on the enriched schemas to produce pathway X ′

1 ↔ X ′

2, which addresses the

following problems.

First, X ′

1 and X ′

2 may in general be structurally different, e.g. X ′

1 may use

attributes rather than elements to store text. This was the case in the previous

service reconciliation case study, but is not the case in our current example.

Second, even though both XMLDSS schemas use the same terminology, el-

ement names may contain differences, due to sub-class and sub-property con-

straints in the ontologies. For example, this is the case with element 〈〈email$1〉〉

from schema X1 (replaced by element 〈〈foaf : Agent.foaf : mbox.rdfs : Literal$1〉〉
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Figure 7.11: Enriched XMLDSS schemas X ′

1 and X ′

2.

in schema X ′

1) and element 〈〈mbox$1〉〉 from schema X2 (replaced by element

〈〈foaf : Agent.foaf : mbox.owl : Thing$1〉〉 in schema X ′

2).

We recall from Chapter 6 that our schema restructuring algorithm is able

to use input that specifies an element in the source schema to be a sub-class or

super-class of an element in the target schema and vice-versa. This information is

currently provided manually to our algorithm. Using an off-the-shelf or developing

a custom reasoning component (e.g. using the Protege23 API) to automatically

provide this input is straightforward and a matter of future work.

After obtaining pathway X ′

1 → X ′

2, we can then compose it with pathway

X1 → X ′

1 and the reverse of pathway X2 → X ′

2 generated from the previous

data source enrichment process, to obtain pathway X1 → X ′

1 → X ′

2 → X2. This

pathway can now be used to automatically transform data that is structured ac-

cording to X1 to be structured according to X2, using our schema materialisation

algorithm. Indeed, we used our materialisation algorithm to materialise the sam-

ple document of service S1 (listed in Section 7.5.1) using schema X2 and obtained

the following XML document:

<eProfile>

<accountName>John</accountName>

<mbox>JohnS@bbk.ac.uk</mbox>

<name>John Smith</name>

<interest>Sport</interest>

</eProfile>

23See http://protege.stanford.edu
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7.6 Discussion

In this chapter, we have demonstrated the application of our XML data trans-

formation and integration approach in four real-world applications with differ-

ent transformation/integration architectures, namely centralised (Section 7.2),

service-oriented (Sections 7.4 and 7.5) and peer-to-peer (Sections 7.3-7.5).

In the first application setting, we have described an approach for the integra-

tion of multiple heterogeneous biological data sources within the BioMap project.

In particular, our approach was used as an XML middleware layer on top of rela-

tional and XML data sources, in order to overcome the data model heterogeneity

typical in biological settings. Our six-step integration process, which employs our

schema restructuring algorithm, consists of three fully automatic steps, allowing

the domain experts to focus on the important issues of the semantic heterogene-

ity between the data sources and of the data cleansing operations, thus removing

the burden of addressing the data model and structural heterogeneities of this

setting.

In the second application setting, we have described the use of our XML data

transformation approach for the migration of XML data, published from a rela-

tional data source, to a target XML format and the subsequent materialisation of

this target format using the source data. Our approach facilitated this data mi-

gration process by letting domain experts focus only on the semantic differences

between the two formats, and removed the burden of reconciling their structural

differences. Furthermore, we demonstrated the successful application of our ma-

terialisation algorithm for the materialisation of the target schema with source

data. This also highlighted the need to improve the AutoMed system in terms of

XML query processing in order to support the materialisation of medium-sized

(or larger) documents, and this is a matter of ongoing work.

In the third application setting, we have described an approach for the rec-

onciliation of services whose inputs and outputs have known semantic correspon-

dences to an ontology. Our approach, illustrated with a real bioinformatics work-

flow, presents a number of desirable characteristics: it makes no assumptions
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about the representation format of service inputs and outputs or about the use

of primitive data types; it is scalable, since it requires the provision of only those

correspondences that are relevant to the problem at hand and since it promotes

correspondence reusability; and it can be used either dynamically or statically

from within a workflow tool.

In the fourth application setting, we have described the use of our approach

for peer-to-peer XML data transformation in a real-world e-learning setting. This

setting has demonstrated our service reconciliation approach in a setting where

each service may have correspondences to a different ontology. We have provided

examples of ontology transformations in AutoMed, and have illustrated that our

schema conformance technique that uses correspondences to ontologies can be

applied to different ontology languages.
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Chapter 8

Conclusions and Future Work

In this thesis, we have presented a modular framework for XML schema and data

transformation and integration, and new techniques for the semi-automatic con-

formance and the automatic transformation/integration of heterogeneous XML

data sources. In this chapter, we first provide an overview of the thesis and then

discuss its contributions and the areas of future work.

In Chapter 2, we reviewed the major issues in data transformation and inte-

gration, with particular focus on schema matching and schema mapping, both in

general and for purely XML settings.

In Chapter 3, we discussed the AutoMed heterogeneous data integration sys-

tem, which was used as the basis for developing our framework, exploiting its

support for defining GAV mappings and query processing. We described Au-

toMed’s underlying HDM data model and its IQL query language, we discussed

schema and data transformation using its transformations-based approach, and

we also described query processing in AutoMed.

In Chapter 4, we described the schema type used in our framework to repre-

sent XML data sources, XMLDSS, and we provided algorithms for extracting an

XMLDSS schema from an XML data source. We presented our XML schema and

data transformation framework, providing an overview of its schema conformance

and schema transformation phases, and we discussed its application in three dif-

ferent settings: peer-to-peer data transformation, top-down data integration and
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bottom-up data integration. We also described querying and materialisation in

our framework.

In Chapter 5, we demonstrated the use of schema matching as the schema

conformance method within our framework, and we described in detail our schema

restructuring algorithm (SRA). The SRA implements the schema transformation

phase of our framework and assumes that schema constructs in the source and

target schema with the same label are semantically equivalent.

In Chapter 6, we described an ontology-based schema conformance method

that conforms a set of XMLDSS data source schemas using correspondences be-

tween these XMLDSS schemas and one or more ontologies. We described an

extended schema restructuring algorithm (ESRA), which uses the subtyping in-

formation present in the ontologies in order to avoid the loss of information that

could occur if the SRA of Chapter 5 were used.

In Chapter 7, we demonstrated the application of our framework in four real-

world application settings: (i) for the integration of relational and XML data

sources using our framework as a unifying XML “layer”; (ii) for the transforma-

tion and materialisation of XML data from one XML format to another; (iii)

for the reconciliation of bioinformatics services that have known correspondences

to a domain ontology; and (iv) for peer-to-peer XML data transformation in an

e-learning setting where each peer has known correspondences to a possibly dif-

ferent ontology, and where these ontologies have been integrated using AutoMed.

Our XML schema and data transformation and integration framework makes

several contributions:

• We have identified structural summaries as the most appropriate schema type

for XML data transformation and integration, and we have developed such

a schema type, XMLDSS, for use in our framework. With XMLDSS, our

framework can operate on any type of XML data source, regardless of the

schema type used — if one is used at all. Also, our framework can be used

for the transformation and integration of non-XML data sources as shown in

Chapter 7.
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• We have identified two distinct phases within XML data transformation and

integration, schema conformance and schema transformation. The separation

between these two phases makes our framework modular since it allows the use

of different approaches or implementations for each step, as shown in Chap-

ters 5 and 6.

• We have developed a schema conformance method that uses correspondences

from XML data sources to one or more ontologies. This schema conformance

method is more scalable than using schema matching in peer-to-peer settings,

since correspondences developed for past transformations/integrations can be

reused for future ones. This feature is particularly useful in a service reconcil-

iation or service composition scenario, as shown in Chapter 7.

• Schema conformance is necessarily a semi-automatic process since it requires

the provision of semantics by the user, but we have shown that XML schema

transformation can be fully automatic. We have provided a schema restruc-

turing algorithm that implements the schema transformation phase and that

(i) is fully automatic; (ii) is able to avoid the loss of information that may

be caused by structural incompatibilities between the data sources; and (iii)

can use the subtyping information present within the ontology to which the

data sources correspond in order to transform a source schema construct into

a subtype or a supertype in the target schema or vice versa.

We have also demonstrated the use of our framework in several real-world appli-

cation settings and, finally, we have shown that the transformation/integration

functionality of our framework can be exported in the form of XQuery queries.

This thesis has presented an implementation of our XML data transforma-

tion/integration framework that uses the AutoMed data integration system in

order to provide the mappings and query processing capabilities. However, our

framework could be implemented using any other data integration system, so long

as this supports GAV mappings and sufficiently expressive query formulation and

evaluation capabilities. In particular, the transformations generated by our tech-

niques require support for (possibly nested) select-project-join-union queries, as
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well as for the synthetic extent generation functions described in Chapters 5 and

6.

A first version of the schema restructuring algorithm and of querying and

materialisation in our framework were described in [Zam04, ZP04]. An early

version of the extended schema restructuring algorithm was described in [ZP06].

The application of our framework in three of the four settings of Chapter 7 is

described in [MZR+05, ZMP07a, ZMP07c, ZPW08, ZPR08].

There are several directions of future work building on the results of this

thesis:

• Support for more types of matches in the schema conformance phase:

So far, our framework supports 1–1, 1–n, n–1 and n–m matches for the confor-

mance of schemas using a schema matching approach, and 1–1, 1–n and n–1

matches using our ontology-based method. For the future, our ontology-based

method could be extended to support n–m matches, and both methods could

be extended to support schema-to-data matches. Another task is to determine

necessary conditions for which our ontology-based method can be applied to

settings where different data sources correspond to different ontologies (as dis-

cussed in Chapter 6, the queries in the new set of correspondences must be

path queries that conform to a particular syntax).

• Extend our framework to handle a richer set of constraints:

We have investigated the transformation and integration of XML data sources,

taking into account cardinality constraints. However, data sources may contain

further types of constraints, such as primary and foreign keys, that may affect

the transformation/integration process. For example, as discussed in [AL05],

the combination of source and target schema constraints may render a par-

ticular setting inconsistent. The extension of the XMLDSS schema type to

include constraint information and the investigation of the implications that

such constraints may have in the processes of schema conformance and schema

transformation would be a significant extension to our framework.
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• Event-based materialisation:

In Chapter 4, we have described a tree-based (DOM-based) XMLDSS materi-

alisation algorithm. The development of an event-based materialisation is not

straightforward, but would be required in settings where the materialisation

of the target or integrated schema needs to be performed using data sources

that contain a significant amount of data.

• Performance of transformation queries:

In certain cases, our framework uses custom IQL functions to generate a syn-

thetic extent for schema constructs in order to avoid the loss of information

from their descendant constructs. These functions may have a significant effect

on the performance of transformation queries and can sometimes be simplified

(as illustrated throughout Appendix B). Therefore, an area of future work is

to develop optimisers for these functions and investigate the performance of

transformation queries within our framework.

• Integration of our service reconciliation approach within workflow tools:

In Chapter 7, we described a scalable approach to service reconciliation. This

approach would be of considerable value for workflow tools such as Taverna [OAF+04]

that currently use manually developed services (“shims”) to reconcile the input

and output of pairs of services that need to interoperate. Also, users’ feedback

in such a setting would help to identify further issues that need to be addressed

in the use of our framework for service reconciliation.

In conclusion, in this thesis we have presented a framework that uses new

techniques for the transformation and integration of heterogeneous XML data

sources. Our work provides solutions for several issues that are not addressed

by state-of-the-art approaches found in the literature: our framework allows the

integrator to combine different approaches to schema conformance and schema

transformation, which is not possible using the majority of other approaches;

our ontology-based schema conformance method is more scalable than schema

matching in peer-to-peer settings; and our schema restructuring algorithm is able
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to avoid the loss of information that may occur using other existing XML trans-

formation/integration approaches. We have demonstrated the different aspects

of our framework in four real-world application settings, and we have identified

several directions for future work that would further enhance the framework pre-

sented here.

250



Appendix A

BAV Pathway Generation Using

PathGen

A.1 PathGen Input XML Format

The PathGen component, discussed in Chapter 5, takes as input a set of 1–1,

1–n, n–1 or n–m mappings between schemas S and T , and generates a BAV

transformation pathway S ↔ Sconf , where Sconf is schema S conformed with

respect to T . The input set of mappings is expressed in an XML format, which

is illustrated in Table A.1 for the running example of Chapter 5.1

The input XML document contains a list of item elements, each of which

describes a single mapping. This mapping may be 1–1, 1–n, n–1 or n–m, de-

pending on the number of sourceConstruct and targetConstruct child ele-

ments. Each sourceConstruct element results in transformation add(c,q) on the

source schema, where c is the schema construct added to S and q is the query

that defines the extent of c in terms of the rest of the schema constructs of S.

Conversely, each targetConstruct element results in transformation delete(c,q)

on S. Note that if q is a Range query, then the transformations are extend and

contract, respectively.

1For clarity of presentation, throughout this appendix we do not escape characters ’<’ and
‘>’ in XML documents with their escape sequences, ‘&lt;’ and ‘&gt;’, respectively.
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<PathGenML version="1.0" schemaName="S" conformedSchemaName="S_conf">

<item>

<sourceConstruct name="<<author,dob>>">

<query>[{x,concat [y3,’ ’,y2,’ ’,y1]}|{x,y1}<-<<author,birthday>>;

{x,y2}<-<<author,birthmonth>>;

{x,y3}<-<<author,birthyear>>]

</query></sourceConstruct>

<targetConstruct name="<<author,birthday>>">

<query>[{x,(substring y 8 10)}|{x,y}<-<<author,dob>>]</query>

</targetConstruct>

<targetConstruct name="<<author,birthmonth>>">

<query>[{x,(substring y 5 7)}|{x,y}<-<<author,dob>>]</query>

</targetConstruct>

<targetConstruct name="<<author,birthyear>>">

<query>[{x,(substring y 0 4)}|{x,y}<-<<author,dob>>]</query>

</targetConstruct></item>

<item>

<sourceConstruct name="<<topic>>">

<query><<genre>></query></sourceConstruct>

<targetConstruct name="<<genre>>">

<query><<topic>></query></targetConstruct></item>

<item>

<sourceConstruct name="<<1,author,book>>">

<query><<2,author,book>></query></sourceConstruct>

<targetConstruct name="<<2,author,book>>">

<query><<1,author,book>></query></targetConstruct></item>

<item>

<sourceConstruct name="<<author,firstn>>">

<query>[{x,substring z 0 (indexOf ‘ ’)}|{x,y}<-<<1,author,name>>;

{y,z}<-<<1,name,Text>>]

</query></sourceConstruct>

<sourceConstruct name="<<author,lastn>>">

<query>[{x,substring z ((indexOf ‘ ’)+1) ((length z)-1)}|

{x,y}<-<<1,author,name>>;{y,z}<-<<1,name,Text>>]</query>

</sourceConstruct>

<targetConstruct name="<<1,author,name>>">

<query>[{x,y}|{x,y}<-(generateElementRel <<author>> <<name>>)]

</query></targetConstruct>

<targetConstruct name="<<1,name,Text>>">

<query>let q equal [x,(concat [z1,‘ ’,z2])|{x,z1}<-<<author,firstn>>;

{x,z2}<-<<author,lastn>>]

in [{y,z}|{x,y}<-<<1,author,name>>;{y,z}<-q]</query>

</targetConstruct></item>

</PathGenML>

Table A.1: XML Input File for PathGen Component
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As discussed in Chapter 5, such an XML document is currently created manu-

ally by the integrator. However, it would be straightforward to develop a graphical

user interface that retrieves the output of a particular schema matching tool, such

as COMA++ [ADMR05], generates most of the XML document automatically,

and allows the user to provide the necessary IQL queries. Note also that the user

could specify the queries using XQuery, and these would be translated into IQL

using the XQuery-to-IQL translator discussed in Chapter 3.

A.2 Using Correspondences with PathGen

This section discusses the use of a set of correspondences as input for our PathGen

tool. For this purpose, we first need to convert the XML format used to represent

a set of correspondences into the XML format used as input for PathGen.

We illustrate this process using the running example of Chapter 6. In par-

ticular, Section A.2.1 first presents the XML format used to represent our cor-

respondences language, and illustrates this format by listing the sets of corre-

spondences between XMLDSS schemas S and T and ontology O in Chapter 6.

Then, Section A.2.2 discusses the algorithm that converts the XML format of our

correspondences language to the XML format used as input by PathGen. Sec-

tion A.2.3 lists the transformations produced by PathGen based on the two sets

of correspondences.

A.2.1 Correspondences XML Format

An XML document representing a set of correspondences (see for example Ta-

bles A.2 and A.3) contains a list of group elements, each of which describes a

correspondence type. If a group element contains a mapping between a single Ele-

ment, Attribute or ElementRel XMLDSS construct and a single Class or path in the

ontology, then it describes a correspondence of type I, II or III, respectively. Each

such group element contains a single gitem element. This contains an attribute
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that names the Element, Attribute or ElementRel construct that corresponds to a

Class or path in the ontology, and two child elements, extent and path. Element

extent contains a query that constrains the extent of the construct, for corre-

spondence types I or II, or performs a type-conversion, for correspondence types

II or III. Element path describes the Class or path in the ontology to which the

construct corresponds.

A correspondence of type IV or V is represented similarly, but contains multi-

ple path elements, since it describes an Element or Attribute XMLDSS construct

that corresponds to multiple Class constructs or paths in the ontology.

A correspondence of type VI or VII is represented using a group element

that contains multiple gitem elements, all of which contain a single path ele-

ment that contains the same expression over the ontology. This is because such

a correspondence describes the mapping between multiple Element or Attribute

XMLDSS constructs to a single Class or path in the ontology.

Tables A.2, A.3 and A.4 list the sets of correspondences between XMLDSS

schemas S and T and the ontology O of the running example of Chapter 6.

<correspondencesML version="1.0" schema="Ch6_S" ontology="UniversityOntology">

<group><gitem construct="<<university$1>>">

<extent><<university$1>></extent>

<path><<University>></path></gitem></group>

<group><gitem construct="<<school$1,name>>">

<extent><<school$1,name>></extent>

<path>

[{s,l}|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{s,l}<-<<name,School,Literal>>]</path></gitem></group>

<group><gitem construct="<<school$1>>">

<extent><<school$1>></extent>

<path>[s|{c,u}<-<<belongs,College,University>>;

{s,c}<-<<belongs,School,College>>]</path></gitem></group>

<group><gitem construct="<<academic$1>>">

<extent><<academic$1>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>;member <<AcademicStaff>> st]</path>

</gitem></group>

Table A.2: Correspondences for XMLDSS Schema S w.r.t. Ontology O.
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<group><gitem construct="<<name$1>>">

<extent><<name$1>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>; member <<AcademicStaff>> st;

{st,l}<-<<name,Staff,Literal>>]]</path></gitem></group>

<group><gitem construct="<<office$1>>">

<extent><<office$1>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>;member <<AcademicStaff>> st;

{st,l}<-<<office,Staff,Literal>>]]</path></gitem></group>

<group><gitem construct="<<admin$1>>">

<extent><<admin$1>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>;member <<Admin>> st]</path></gitem></group>

<group><gitem construct="<<name$2>>">

<extent><<name$2>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>;member <<Admin>> st;

{st,l}<-<<name,Staff,Literal>>]]</path></gitem></group>

<group><gitem construct="<<office$2>>">

<extent><<office$2>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>;member <<Admin>> st;

{st,l}<-<<office,Staff,Literal>>]]</path></gitem></group>

</correspondencesML>

Table A.3: Correspondences for XMLDSS Schema S w.r.t. Ontology O (contin-
ued).
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<correspondencesML version="1.0" schema="Ch6_T" ontology="UniversityOntology">

<group><gitem construct="<<staffMember$1,name>>">

<extent><<staffMember$1,name>></extent>

<path>[{st,l}|

{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>;{st,l}<-<<name,Staff,Literal>>]</path>

</gitem></group>

<group><gitem construct="<<staffMember$1>>">

<extent><<staffMember$1>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>]</path></gitem></group>

<group><gitem construct="&lt&;lt;office$1>>">

<extent><<office$1>></extent>

<path>

[st|{c,u}<-<<belongs,College,University>>;{s,c}<-<<belongs,School,College>>;

{st,s}<-<<belongs,Staff,School>>;{st,l}<-<<office,Staff,Literal>>]]

</path></gitem></group>

<group><gitem construct="<<college$1,name>>">

<extent><<college$1,name>></extent>

<path>[{c,l}|{c,u}<-<<belongs,College,University>>;

{c,l}<-<<name,College,Literal>>]</path></gitem></group>

<group><gitem construct="<<college$1>>">

<extent><<college$1>></extent>

<path>[c|{c,u}<-<<belongs,College,University>>]</path></gitem></group>

</correspondencesML>

Table A.4: Correspondences for XMLDSS Schema T w.r.t. Ontology O.

A.2.2 Transformation of a Set of Correspondences to the

PathGen Input XML Format

The transformation of a set of correspondences to the PathGen XML format is

performed based on the discussion in Chapter 6 on the transformations that each

correspondence type should produce.

In particular, each correspondence type, represented by a group element, is

converted into a single item element. This item element will contain as many

sourceConstruct elements as the number of gitem elements in the group ele-

ment, and as many targetConstruct elements as the number of path elements

in the gitem elements of the group element.

The construct named in each sourceConstruct element is the construct
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named in its respective gitem element, while the label of the construct named in

the targetConstruct element is derived using the Class or path in the ontology

to which the source schema construct corresponds to.

The extent of the targetConstruct (i.e. its query child element) is given by

the extent element of the gitem element, while the extent of the sourceConstruct

element (i.e. its query child element) is given by the newly inserted construct,

i.e. the scheme named by the targetConstruct element.

Below, Tables A.5 and A.6 list the PathGen XML document produced from

the correspondences of Tables A.2 and A.3, while Table A.7 lists the PathGen

XML document produced from the correspondences of Table A.4.

<PathGenML version="1.0" schemaName="Ch6_S"

conformedSchemaName="Ch6_S_conformedto_UniversityOntology">

<item><sourceConstruct name="<<university$1>>">

<query><<University>></query></sourceConstruct>

<targetConstruct name="<<University>>">

<query><<university$1>></query></targetConstruct></item>

<item><sourceConstruct name="<<school$1,name>>"><query>

<<school$1,University.belongs.College.belongs.School.name>></query>

</sourceConstruct>

<targetConstruct

name="<<school$1,University.belongs.College.belongs.School.name>>">

<query><<school$1,name>></query></targetConstruct></item>

<item><sourceConstruct name="<<school$1>>">

<query><<University.belongs.College.belongs.School>></query>

</sourceConstruct>

<targetConstruct name="<<University.belongs.College.belongs.School>>">

<query><<school$1>></query></targetConstruct></item>

<item><sourceConstruct name="<<academic$1>>"><query>

<<University.belongs.College.belongs.School.belongs.AcademicStaff>>

</query></sourceConstruct>

<targetConstruct

name="<<University.belongs.College.belongs.School.belongs.AcademicStaff>>">

<query><<academic$1>></query></targetConstruct></item>

<item><sourceConstruct name="<<name$1>>"><query>

<<University.belongs.College.belongs.School.belongs.AcademicStaff.name>>

</query></sourceConstruct>

<targetConstruct name=

"<<University.belongs.College.belongs.School.belongs.AcademicStaff.name>>">

<query><<name$1>></query></targetConstruct></item>

Table A.5: PathGen Input Derived from Correspondences of Table A.2.
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<item><sourceConstruct name="<<office$1>>"><query>

<<University.belongs.College.belongs.School.belongs.AcademicStaff.office>>

</query></sourceConstruct>

<targetConstruct name=

"<<University.belongs.College.belongs.School.belongs.AcademicStaff.office>>">

<query><<office$1>></query></targetConstruct></item>

<item><sourceConstruct name="<<admin$1>>"><query>

<<University.belongs.College.belongs.School.belongs.Admin>></query>

</sourceConstruct>

<targetConstruct

name="<<University.belongs.College.belongs.School.belongs.Admin>>">

<query><<admin$1>></query></targetConstruct></item>

<item><sourceConstruct name="<<name$2>>"><query>

<<University.belongs.College.belongs.School.belongs.Admin.name>>

</query></sourceConstruct>

<targetConstruct

name="<<University.belongs.College.belongs.School.belongs.Admin.name>>">

<query><<name$2>></query></targetConstruct></item>

<item><sourceConstruct name="<<office$2>>"><query>

<<University.belongs.College.belongs.School.belongs.Admin.office>>

</query></sourceConstruct>

<targetConstruct name=

"<<University.belongs.College.belongs.School.belongs.Admin.office>>">

<query><<office$2>></query></targetConstruct></item>

</PathGenML>

Table A.6: PathGen Input Derived from Correspondences of Table A.2.
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<PathGenML version="1.0" schemaName="Ch6_T"

conformedSchemaName="Ch6_T_conformedto_UniversityOntology">

<item><sourceConstruct name="<<staffMember$1,name>>"><query>

<<staffMember$1,University.belongs.College.belongs.School.belongs.Staff.name>>

</query></sourceConstruct>

<targetConstruct name=

"<<staffMember$1,University.belongs.College.belongs.School.belongs.Staff.name>>">

<query><<staffMember$1,name>></query></targetConstruct></item>

<item><sourceConstruct name="<<staffMember$1>>">

<query><<University.belongs.College.belongs.School.belongs.Staff>>

</query></sourceConstruct>

<targetConstruct

name="<<University.belongs.College.belongs.School.belongs.Staff>>">

<query><<staffMember$1>></query></targetConstruct></item>

<item><sourceConstruct name="<<office$1>>">

<query>

<<University.belongs.College.belongs.School.belongs.Staff.office>>

</query></sourceConstruct>

<targetConstruct

name="<<University.belongs.College.belongs.School.belongs.Staff.office>>">

<query><<office$1>></query></targetConstruct></item>

<item><sourceConstruct name="<<college$1,name>>">

<query><<college$1,University.belongs.College.name>></query>

</sourceConstruct>

<targetConstruct name="<<college$1,University.belongs.College.name>>">

<query><<college$1,name>></query></targetConstruct></item>

<item><sourceConstruct name="<<college$1>>">

<query><<University.belongs.College>></query></sourceConstruct>

<targetConstruct name="<<University.belongs.College>>">

<query><<college$1>></query></targetConstruct></item>

</PathGenML>

Table A.7: PathGen Input Derived from Correspondences of Table A.4.
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A.2.3 Application of PathGen on the Converted Sets of

Correspondences

The application of PathGen on XMLDSS schema S using the set of correspon-

dences of Tables A.2 and A.3, converted to the PathGen XML format as shown

in Tables A.5 and A.6, results in transformation pathway S → Sconf , listed be-

low. For better readability, we have abbreviated the labels of Class and Property

constructs in many of the transformations.

167add(〈〈University〉〉,〈〈university$1〉〉)

168add(〈〈1, University, school$1〉〉,〈〈1, university$1, school$1〉〉)

169delete(〈〈1, university$1, school$1〉〉,〈〈1, University, school$1〉〉)

170delete(〈〈university$1〉〉,〈〈University〉〉)

171add(〈〈school$1, Uni.bel.Col.bel.Sch.name〉〉,〈〈school$1, name〉〉)

172delete(〈〈school$1, name〉〉,〈〈school$1, Uni.bel.Col.bel.Sch.name〉〉)

173add(〈〈Uni.bel.Col.bel.School〉〉,〈〈school$1〉〉)

174add(〈〈1, Uni.bel.Col.bel.School, academic$1〉〉,〈〈1, school$1, academic$1〉〉)

175delete(〈〈1, school$1, academic$1〉〉,〈〈1, Uni.bel.Col.bel.School, academic$1〉〉)

176add(〈〈2, Uni.bel.Col.bel.School, admin$1〉〉,〈〈2, school$1, admin$1〉〉)

177delete(〈〈2, school$1, admin$1〉〉,〈〈2, Uni.bel.Col.bel.School, admin$1〉〉)

178add(〈〈1, University, Uni.bel.Col.bel.School〉〉,〈〈1, University, school$1〉〉)

179delete(〈〈1, University, school$1〉〉,〈〈1, University, Uni.bel.Col.bel.School〉〉)

180add(〈〈Uni.bel.Col.bel.School, Uni.bel.Col.bel.Sch.name〉〉,〈〈school$1, Uni.bel.Col.bel.Sch.name〉〉)

181delete(〈〈school$1, Uni.bel.Col.bel.Sch.name〉〉,

〈〈Uni.bel.Col.bel.School, Uni.bel.Col.bel.Sch.name〉〉)

182delete(〈〈school$1〉〉,〈〈Uni.bel.Col.bel.School〉〉)

183add(〈〈Uni.bel.Col.bel.Sch.bel.AcademicStaff〉〉,〈〈academic$1〉〉)

184add(〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff, name$1〉〉,〈〈1, academic$1, name$1〉〉)

185delete(〈〈1, academic$1, name$1〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff, name$1〉〉)

186add(〈〈2, Uni.bel.Col.bel.Sch.bel.AcademicStaff, office$1〉〉,〈〈2, academic$1, office$1〉〉)

187delete(〈〈2, academic$1, office$1〉〉,〈〈2, Uni.bel.Col.bel.Sch.bel.AcademicStaff, office$1〉〉)

188add(〈〈1, Uni.bel.Col.bel.School, Uni.bel.Col.bel.Sch.bel.AcademicStaff〉〉,

〈〈1, Uni.bel.Col.bel.School, academic$1〉〉)

189delete(〈〈1, Uni.bel.Col.bel.School, academic$1〉〉,

〈〈1, Uni.bel.Col.bel.School, Uni.bel.Col.bel.Sch.bel.AcademicStaff〉〉)

190delete(〈〈academic$1〉〉,〈〈Uni.bel.Col.bel.Sch.bel.AcademicStaff〉〉)
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191add(〈〈Uni.bel.Col.bel.Sch.bel.AcademicStaff.name〉〉,〈〈name$1〉〉)

192add(〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff.name, text〉〉,〈〈1, name$1, text〉〉)

193delete(〈〈1, name$1, text〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff.name, text〉〉)

194add(〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff, Uni.bel.Col.bel.Sch.bel.AcademicStaff.name〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff, name$1〉〉)

195delete(〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff, name$1〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff, Uni.bel.Col.bel.Sch.bel.AcademicStaff.name〉〉)

196delete(〈〈name$1〉〉,〈〈Uni.bel.Col.bel.Sch.bel.AcademicStaff.name〉〉)

197add(〈〈Uni.bel.Col.bel.Sch.bel.AcademicStaff.office〉〉,〈〈office$1〉〉)

198add(〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff.office, text〉〉,〈〈1, office$1, text〉〉)

199delete(〈〈1, office$1, text〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.AcademicStaff.office, text〉〉)

200add(〈〈2, Uni.bel.Col.bel.Sch.bel.AcademicStaff, Uni.bel.Col.bel.Sch.bel.AcademicStaff.office〉〉,

〈〈2, Uni.bel.Col.bel.Sch.bel.AcademicStaff, office$1〉〉)

201delete(〈〈2, Uni.bel.Col.bel.Sch.bel.AcademicStaff, office$1〉〉,

〈〈2, Uni.bel.Col.bel.Sch.bel.AcademicStaff, Uni.bel.Col.bel.Sch.bel.AcademicStaff.office〉〉)

202delete(〈〈office$1〉〉,〈〈Uni.bel.Col.bel.Sch.bel.AcademicStaff.office〉〉)

203add(〈〈Uni.bel.Col.bel.Sch.bel.Admin〉〉,〈〈admin$1〉〉)

204add(〈〈1, Uni.bel.Col.bel.Sch.bel.Admin, name$2〉〉,〈〈1, admin$1, name$2〉〉)

205delete(〈〈1, admin$1, name$2〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.Admin, name$2〉〉)

206add(〈〈2, Uni.bel.Col.bel.Sch.bel.Admin, office$2〉〉,〈〈2, admin$1, office$2〉〉)

207delete(〈〈2, admin$1, office$2〉〉,〈〈2, Uni.bel.Col.bel.Sch.bel.Admin, office$2〉〉)

208add(〈〈2, Uni.bel.Col.bel.School, Uni.bel.Col.bel.Sch.bel.Admin〉〉,

〈〈2, Uni.bel.Col.bel.School, admin$1〉〉)

209delete(〈〈2, Uni.bel.Col.bel.School, admin$1〉〉,

〈〈2, Uni.bel.Col.bel.School, Uni.bel.Col.bel.Sch.bel.Admin〉〉)

210delete(〈〈admin$1〉〉,〈〈Uni.bel.Col.bel.Sch.bel.Admin〉〉)

211add(〈〈Uni.bel.Col.bel.Sch.bel.Admin.name〉〉,〈〈name$2〉〉)

212add(〈〈1, Uni.bel.Col.bel.Sch.bel.Admin.name, text〉〉,〈〈1, name$2, text〉〉)

213delete(〈〈1, name$2, text〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.Admin.name, text〉〉)

214add(〈〈1, Uni.bel.Col.bel.Sch.bel.Admin, Uni.bel.Col.bel.Sch.bel.Admin.name〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.Admin, name$2〉〉)

215delete(〈〈1, Uni.bel.Col.bel.Sch.bel.Admin, name$2〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.Admin, Uni.bel.Col.bel.Sch.bel.Admin.name〉〉)

216delete(〈〈name$2〉〉,〈〈Uni.bel.Col.bel.Sch.bel.Admin.name〉〉)

217add(〈〈Uni.bel.Col.bel.Sch.bel.Admin.office〉〉,〈〈office$2〉〉)

218add(〈〈1, Uni.bel.Col.bel.Sch.bel.Admin.office, text〉〉,〈〈1, office$2, text〉〉)

219delete(〈〈1, office$2, text〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.Admin.office, text〉〉)
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220add(〈〈2, Uni.bel.Col.bel.Sch.bel.Admin, Uni.bel.Col.bel.Sch.bel.Admin.office〉〉,

〈〈2, Uni.bel.Col.bel.Sch.bel.Admin, office$2〉〉)

221delete(〈〈2, Uni.bel.Col.bel.Sch.bel.Admin, office$2〉〉,

〈〈2, Uni.bel.Col.bel.Sch.bel.Admin, Uni.bel.Col.bel.Sch.bel.Admin.office〉〉)

222delete(〈〈office$2〉〉,〈〈Uni.bel.Col.bel.Sch.bel.Admin.office〉〉)

The application of PathGen on XMLDSS schema T using the set of corre-

spondences of Table A.4, converted to the PathGen XML format as shown in

Table A.7, results in transformation pathway T → Tconf , listed below. For better

readability, we have abbreviated the labels of Class and Property constructs in

many of the transformations.

223add(〈〈staffMember$1, Uni.bel.Col.bel.Sch.bel.Staff.name〉〉,〈〈staffMember$1, name〉〉)

224delete(〈〈staffMember$1, name〉〉,〈〈staffMember$1, Uni.bel.Col.bel.Sch.bel.Staff.name〉〉)

225add(〈〈Uni.bel.Col.bel.Sch.bel.Staff〉〉,〈〈staffMember$1〉〉)

226add(〈〈1, Uni.bel.Col.bel.Sch.bel.Staff, office$1〉〉,〈〈1, staffMember$1, office$1〉〉)

227delete(〈〈1, staffMember$1, office$1〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.Staff, office$1〉〉)

228add(〈〈Uni.bel.Col.bel.Sch.bel.Staff, Uni.bel.Col.bel.Sch.bel.Staff.name〉〉,

〈〈staffMember$1, Uni.bel.Col.bel.Sch.bel.Staff.name〉〉)

229delete(〈〈staffMember$1, Uni.bel.Col.bel.Sch.bel.Staff.name〉〉,

〈〈Uni.bel.Col.bel.Sch.bel.Staff, Uni.bel.Col.bel.Sch.bel.Staff.name〉〉)

230delete(〈〈staffMember$1〉〉,〈〈Uni.bel.Col.bel.Sch.bel.Staff〉〉)

231add(〈〈Uni.bel.Col.bel.Sch.bel.Staff.office〉〉,〈〈office$1〉〉)

232add(〈〈1, Uni.bel.Col.bel.Sch.bel.Staff.office, college$1〉〉,〈〈1, office$1, college$1〉〉)

233delete(〈〈1, office$1, college$1〉〉,〈〈1, Uni.bel.Col.bel.Sch.bel.Staff.office, college$1〉〉)

234add(〈〈2, Uni.bel.Col.bel.Sch.bel.Staff.office, text〉〉,〈〈2, office$1, text〉〉)

235delete(〈〈2, office$1, text〉〉,〈〈2, Uni.bel.Col.bel.Sch.bel.Staff.office, text〉〉)

236add(〈〈1, Uni.bel.Col.bel.Sch.bel.Staff, Uni.bel.Col.bel.Sch.bel.Staff.office〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.Staff, office$1〉〉)

237delete(〈〈1, Uni.bel.Col.bel.Sch.bel.Staff, office$1〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.Staff, Uni.bel.Col.bel.Sch.bel.Staff.office〉〉)

238delete(〈〈office$1〉〉,〈〈Uni.bel.Col.bel.Sch.bel.Staff.office〉〉)

239add(〈〈college$1, Uni.bel.Col.name〉〉,〈〈college$1, name〉〉)

240delete(〈〈college$1, name〉〉,〈〈college$1, Uni.bel.Col.name〉〉)

241add(〈〈Uni.bel.College〉〉,〈〈college$1〉〉)

242add(〈〈1, Uni.bel.Col.bel.Sch.bel.Staff.office, Uni.bel.College〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.Staff.office, college$1〉〉)
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243delete(〈〈1, Uni.bel.Col.bel.Sch.bel.Staff.office, college$1〉〉,

〈〈1, Uni.bel.Col.bel.Sch.bel.Staff.office, Uni.bel.College〉〉)

244add(〈〈Uni.bel.College, Uni.bel.Col.name〉〉,〈〈college$1, Uni.bel.Col.name〉〉)

245delete(〈〈college$1, Uni.bel.Col.name〉〉,〈〈Uni.bel.College, Uni.bel.Col.name〉〉)

246delete(〈〈college$1〉〉,〈〈Uni.bel.College〉〉)
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Appendix B

Correctness of the Schema

Restructuring Algorithm

B.1 Introduction

We now study the correctness of our schema restructuring algorithm (SRA), which

was presented in Chapter 5. Our study aims to investigate the correctness of the

transformation pathways produced by the SRA between the source and target

schemas that it is applied to.

To do so, we first need to determine a correctness criterion for the SRA.

In the literature, several methodologies have been proposed to study schema

equivalence. As discussed in [MP98], there are three main approaches to schema

equivalence: (i) transformational equivalence, where two schemas S and T are

equivalent if there is a sequence of reversible primitive transformations that can

be applied to S and produce T ; (ii) mapping equivalence, where S and T are

equivalent if for any pair of instances of these two schemas, IS and IT , there is

a one-to-one correspondence between the elements of IS and the elements of IT ;

(iii) behavioural equivalence, where S and T are equivalent if for any query QS

over an instance IS of S there exists a transformation of S to T , of IS to an

instance of T , IT , and of QS to a query over IT , QT , such that QS and QT have

the same result; the converse should also hold for any query QT over an instance
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of S, IS.

In our context, we need to study the correctness of the SRA both at the schema

level and at the instance level. For this purpose, transformational equivalence is

not appropriate as it does not consider instances, while mapping equivalence is

not appropriate as it does not consider schemas. Behavioural equivalence is more

appropriate, since it is a query-based approach that considers both schema and

data transformations. However, in our context the source and target schemas

may not be equivalent, and so behavioural equivalence is too strict.

Therefore, we use the notion of behavioural consistency to study the correct-

ness of the SRA. This is a generalisation of the notion of behavioural equivalence

to the case that a source and a target schema may not, in general, have the same

information capacity. We say that a source and a target schema S and T are

behaviourally consistent if for any query QS over an instance IS of S there exists

a transformation of S to T , of IS to an instance of T , IT , and of QS to a query

over IT , QT , such that the results of QT are contained in the results of QS.

Figure B.1 illustrates our setting for studying the correctness of the SRA.

Given a bidirectional transformation pathway S ↔ T produced by the SRA, a

query QS over an instance IS of S is rewritten to a query QT on T using GAV

reformulation and the delete, contract and rename steps in pathway S → T , as

described in Chapter 3. In order to compare the results of QS and QT , we need

to evaluate QT over the (virtual or materialised) instance IT of T produced by

applying the add, extend and rename steps in S → T to IS, e.g. by using a GAV-

based XMLDSS materialisation algorithm1. This is equivalent to rewriting QT

to a query Q′

S on S using GAV reformulation and the delete, contract and rename

steps in the reverse pathway T → S and evaluating Q′

S on IS.2 Therefore, in

1Our XMLDSS materialisation algorithm, described in Section 4.4.2, cannot be used as-is
for this task. This is because, when materialising XMLDSS constructs, the algorithm does not
retain the instance-level identifiers of the source schema Element and Attribute constructs, but
instead renames them to match those of the constructs being materialised. A version of our
XMLDSS materialisation algorithm that retains the source instance-level identifiers is required
if it is to be used in the context of this correctness investigation.

2The two are equivalent because both GAV-based materialisation and GAV-based reformu-
lation of QS2 to Q′

S1
use the same primitive transformations and thus generate the same GAV

views.
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order to show that the SRA transforms S into T in such a way that S and T are

behaviourally consistent we need to show that the results of Q′

S are contained in

the results of QS. We note that all the transformations in the pathway S ↔ T

are used in this setting, and that this transformation pathway does not contain

any additional information that could be further exploited by LAV reformulation

techniques.

transformation
pathway

IS

S T

QS                  QT                   Q’S

IT

Figure B.1: Setting for Studying the Correctness of the Schema Restructuring
Algorithm.

To study the correctness of the SRA, we study the correctness of the main

operations of Phase I and Phase II. For each one of them, we consider queries

over S that are pertinent to the schema and data transformation performed by

that operation. Such queries are single-scheme queries comprising ElementRel or

Attribute constructs of S — we do not consider Element constructs of S, as their

extents are subsumed by the extents of the ElementRel and Attribute constructs.

We also do not need to consider any construct c that appears both in S and

in T , as its extent is not affected by the transformation pathway that the SRA

generates and so querying c in T will give the same results as querying c in S.

For each of the operations of Phase I and II, we will conclude either that

QS ≡ Q′

S, meaning that QS and Q′

S are list-equivalent, or that QS ⊇ Q′

S, meaning

that the results of Q′

S are list-contained in the results of QS, or that QS ⊆ Q′

S,
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meaning that the results of QS are list-contained in the results of Q′

S. In the case

that the SRA is not allowed to generate synthetic data, we would expect a number

of the operations performed by the SRA to be lossy with respect to information

content, i.e. that QS ⊇ Q′

S. In the case that the SRA is allowed to generate

synthetic data for some constructs, in order to avoid the loss of information from

their descendant constructs, we would expect that in some cases Q′

S may return

more data than QS, i.e. that QS ⊆ Q′

S .

B.2 Correctness Study

We now study the correctness of the main operations of Phase I and Phase II

when the SRA is applied on a source schema S and a target schema T .

Phase I is applied in the following three types of situations, where 〈〈A, B〉〉 is

an ElementRel construct of S: (i) 〈〈A〉〉 is an ancestor of 〈〈B〉〉 in T , (ii) 〈〈A〉〉 is a

descendant of 〈〈B〉〉 in T , and (iii) 〈〈A〉〉 and 〈〈B〉〉 located in different branches of

T . Phase II is applied in the following three types of situations, where 〈〈A, B〉〉

is an ElementRel construct of T : (i) 〈〈A〉〉 is an ancestor of 〈〈B〉〉 in S, (ii) 〈〈A〉〉 is

a descendant of 〈〈B〉〉 in S, and (iii) 〈〈A〉〉 and 〈〈B〉〉 located in different branches

of S. Since Case (i) for Phase I is the same as Case (i) for Phase II, and simi-

larly for Cases (ii) and (iii), we study the correctness of the three cases for both

phases together. In particular, Section B.2.1 studies the correctness of Case (i) for

Phases I and II (ancestor case), Section B.2.2 studies the correctness of Case (ii)

(descendant case) and Section B.2.3 studies the correctness of Case (iii) (different

branches case).

Phase II is also applied to situations where an Element construct in S is trans-

formed into an Attribute construct in T or vice versa. Section B.2.4 investigates

these two operations, which we termed element-to-attribute and attribute-to-

element transformations in Chapter 5.
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B.2.1 Ancestor Case

(i) Base Case

Consider the setting illustrated on the left of Figure B.2. We see that S

contains an ElementRel construct 〈〈1, A, B〉〉, whereas in T Element 〈〈A〉〉 is an an-

cestor of 〈〈B〉〉 and T contains constructs 〈〈K〉〉, 〈〈1, A, K〉〉 and 〈〈1, K, B〉〉 that do

not appear in S. Assuming synthetic extent generation is not allowed, the trans-

formation pathway produced by the SRA is given below. Transformations 247

and 248 are produced by operation addElementAndElementRel of Phase II,

and transformations 249 and 250 are produced by operation InsertElementRel

of Phase II.

247 add(〈〈K〉〉,Range Void Any)

248 add(〈〈1,A,K〉〉,Range Void Any)

249 add(〈〈1,K,B〉〉,Range Void Any)

250 delete(〈〈1,A,B〉〉,[{x, y}|{x, d1} ← 〈〈1,A,K〉〉; {d1, y} ← 〈〈1,K,B〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 250, QS is rewritten to the following query on T :

QT =[{x, y}|{x, d1} ← 〈〈1,A,K〉〉; {d1, y} ← 〈〈1,K,B〉〉]

Using transformations 248 and 249, QT is rewritten to Q′

S on S as follows

(assuming lower-bound querying):

Q′

S =Void

In this case, we see that, trivially, QS ⊇ Q′

S.

Assuming now that synthetic extent generation is allowed, the transformation

pathway S → T generated by the SRA is given below. Transformations 251-253

are generated by the application of Phase I on S, and transformation 254 is gen-

erated by operation InsertElementRel of Phase II.
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251 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′])

252 add(〈〈1,A,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′])

253 add(〈〈1,K,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′])

254 delete(〈〈1,A,B〉〉,[{x, y}|{x, d1} ← 〈〈1,A,K〉〉; {d1, y} ← 〈〈1,K,B〉〉])

Given the same query QS as before, and using transformation 254, QS is

rewritten to the following query on T :

QT =[{x, y}|{x, d1} ← 〈〈1,A,K〉〉; {d1, y} ← 〈〈1,K,B〉〉]

Using transformations 252 and 253, QT is rewritten to Q′

S as follows:

Q′

S =[{x, y}|{x, d1} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′];

{d1, y} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, y}|{x, d1, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′;

{x1, d1, y} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′] (1)

Since skolemiseEdge will always yield the same result given the same input,

and since the two generators in the above comprehension are joined on variable

d1, variables x and x1 must iterate through the same list of instances, and the

same applies for variables z and y. Therefore, x = x1 and z = y and so Q′

S can

be simplified to:

Q′

S =[{x, y}|{x, d1, y} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′]

or, since the first argument of each instance of skolemiseEdge is the initial query:

Q′

S =[{x, y}|{x, d1, y} ← skolemiseEdge QS
′K′ ′card2′] (2)

We know from the definition of skolemiseEdge that: (i) the first input argument

(in this case QS) is a query that defines a list of pairs, (ii) the function generates

as many instances as the number of instances of this list of pairs, (iii) the first

and third items in the triples produced by the function are the first and second

items in the input list of pairs without being altered. Since variable d1 is not

used within the comprehension above, Q′

S can be simplified to3:

Q′

S =[{x, y}|{x, y} ← QS]

3In general, given a comprehension containing a generator g of the form {x, y, z} ←
skolemiseEdge Q ′K′ ′c′ for some Element label K and some cardinality c, if y is not used
within the comprehension, then g can be replaced by generator {x, z} ← Q in that comprehen-
sion.
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Figure B.2: Correctness Study of the SRA: Ancestor Case.

In this case, we see that, trivially, QS ≡ Q′

S.

(ii) Generalisation

Without Synthetic Extent Generation: Consider the setting illustrated on

the right of Figure B.2. This is similar to the setting on the left, but in this case

in T Element constructs 〈〈A〉〉 and 〈〈B〉〉 are separated by two Element constructs,

〈〈K〉〉 and 〈〈L〉〉. Assuming that synthetic extent generation is not allowed, the

transformation pathway produced by the SRA is given below:

255 add(〈〈K〉〉,Range Void Any)

256 add(〈〈1,A,K〉〉,Range Void Any)

257 add(〈〈L〉〉,Range Void Any)

258 add(〈〈1,K,L〉〉,Range Void Any)

259 add(〈〈1,L,B〉〉,Range Void Any)

260 delete(〈〈1,A,B〉〉,[{x, y}|{x, d1} ← 〈〈1,A,K〉〉; {d1, d2} ← 〈〈1,K,L〉〉; {d2, y} ← 〈〈1,L,B〉〉])
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Given query QS = 〈〈1, A, B〉〉 on S, and using the same argument as before,

we can show that Q′

S =Void, and so QS ⊇ Q′

S.

With Synthetic Extent Generation: Assuming now that synthetic extent

generation is allowed, the transformation pathway S → T generated by the SRA

is given below. Transformations 261-267 are generated by the application of Phase

I on S, and transformation 268 is generated by the application of Phase II on T .

261 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′])

262 add(〈〈1,A,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′])

263 add(〈〈1,K,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′])

264 add(〈〈L〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′])

265 add(〈〈1,K,L〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′])

266 add(〈〈1,L,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′])

267 delete(〈〈1,K,B〉〉,Range Void Any)

268 delete(〈〈1,A,B〉〉,[{x, y}|{x, d1} ← 〈〈1,A,K〉〉; {d1, d2} ← 〈〈1,K,L〉〉; {d2, y} ← 〈〈1,L,B〉〉])

Using the same query QS as before, and using transformation 268, QS is rewrit-

ten to the following query on T :

QT =[{x, y}|{x, d1} ← 〈〈1,A,K〉〉; {d1, d2} ← 〈〈1,K,L〉〉; {d2, y} ← 〈〈1,L,B〉〉]

Using transformations 262, 265 and 266, QT is rewritten to Q′

S as follows:

Q′

S =[{x, y}|{x, d1} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′];

{d1, d2} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′];

{d2, y} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, y}|{x, d1, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′;

{d1, d2, z1} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′;

{x1, d2, y} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′]

Since skolemiseEdge will always yield the same result given the same input,

and since the two generators in the above comprehension are joined on variable

d2, the other two pairs of variables must be equal, i.e. d1 = x1 and z1 = y, and

so, Q′

S can be simplified to:
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Q′

S =[{x, y}|{x, d1, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′;

{d1, d2, y} ← skolemiseEdge 〈〈1,K,B〉〉 ′L′ ′card3′]

Using transformation 263, this is rewritten as follows:

Q′

S =[{x, y}|{x, d1, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′;

{d1, d2, y} ← skolemiseEdge

[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′] ′L′ ′card3′] (3)

Since variable d2 is not used within the above comprehension, Q′

S can be

simplified to:

Q′

S =[{x, y}|{x, d1, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′;

{d1, y} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, y}|{x, d1, z} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′;

{x1, d1, y} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′]

Since both occurrences of skolemiseEdge have the same input arguments, and

since the two generators in the above comprehension are joined on variable d1,

we can remove the second generator and simplify Q′

S to:

Q′

S =[{x, y}|{x, d1, y} ← skolemiseEdge 〈〈1,A,B〉〉 ′K′ ′card2′] (4)

or, since QS =〈〈1, A, B〉〉:

Q′

S =[{x, y}|{x, d1, y} ← skolemiseEdge QS
′K′ ′card2′]

This equivalence is identical to equivalence (2) given earlier and so QS ≡ Q′

S.

We have investigated the correctness of the SRA when an ElementRel 〈〈1, A, B〉〉

in the source schema is skolemised using a single Element construct (n = 1) and

also 〈〈A〉〉 is an ancestor of 〈〈B〉〉 in the target schema. We then investigated the

correctness of the SRA when n = 2, and we have shown the same conclusions as

for n = 1. This was achieved by eliminating the second and third generators in

Q′

S, thereby reducing the case of n = 2 to the case of n = 1. In general, for n > 1,

Q′

S will contain n generators, and it is clear that each generator after the first

one can be eliminated in the same way as when n = 2. Therefore our conclusions

for the general case of n > 1 are the same as those for the case of n = 1.
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B.2.2 Descendant Case

(i) Base Case

Consider the setting illustrated on the left of Figure B.3. In this setting, S

contains an ElementRel construct 〈〈1, A, B〉〉, whereas in T Element 〈〈A〉〉 is a de-

scendant of 〈〈B〉〉, and T contains constructs 〈〈K〉〉, 〈〈1, B, K〉〉 and 〈〈1, K, A〉〉 that do

not appear in S. Assuming synthetic extent generation is not allowed, the trans-

formation pathway produced by the SRA is given below. Transformations 270

and 271 are produced by operation addElementAndElementRel of Phase II,

and transformations269 and 272- 28 are produced by operation InsertElemen-

tRel of Phase II.

269 add(〈〈1, r,B〉〉,[{x, y}|{x, d1} ← 〈〈1, r,A〉〉; {d1, y} ← 〈〈1,A,B〉〉])

270 add(〈〈K〉〉,Range Void Any)

271 add(〈〈1,B,K〉〉,Range Void Any)

272 add(〈〈1,K,A〉〉,Range Void Any)

28 delete(〈〈1,A,B〉〉,[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, y} ← 〈〈1,K,A〉〉])

27 delete(〈〈1, r,A〉〉,[{x, y}|{x, d1} ← 〈〈1, r,B〉〉; {d1, d2} ← 〈〈1,B,K〉〉; {d2, y} ← 〈〈1,K,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 28 , QS is rewritten to the following query on T :

QT =[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, y} ← 〈〈1,K,A〉〉]

Using transformations 271 and 272, QT is rewritten to Q′

S as follows (assuming

lower-bound querying):

Q′

S =Void

In this case, we see that, trivially, QS ⊇ Q′

S.

Assuming now that synthetic extent generation is allowed, the transformation

pathway is as follows:
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29 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge Q1 ′K′ ′card2′])

30 add(〈〈1,B,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge Q1 ′K′ ′card2′])

31 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge Q1 ′K′ ′card2′])

32 add(〈〈1, r,B〉〉,[{x, y}|{x, d1} ← 〈〈1, r,A〉〉; {d1, y} ← 〈〈1,A,B〉〉])

34 delete(〈〈1,A,B〉〉,Q2)

33 delete(〈〈1, r,A〉〉,[{x, y}|{x, d1} ← 〈〈1, r,B〉〉; {d1, d2} ← 〈〈1,B,K〉〉; {d2, y} ← 〈〈1,K,A〉〉])

In transformations 29 - 31 , Q1 is the query produced by function getInver-

tedElementRelExtent(〈〈A〉〉,〈〈B〉〉), which returns a query that describes the extent

of ‘virtual’ ElementRel 〈〈1, B, A〉〉 and prevents the loss of any instances of 〈〈A〉〉 that

do not have any child instances of 〈〈B〉〉. In transformation 34 , Q2 is the query

produced by function getInvertedElementRelExtent(〈〈B〉〉,〈〈A〉〉). This function is

defined as follows4:

Panel 17: Function getInvertedElementRelExtent(〈〈ep〉〉,〈〈ec〉〉)

/* ****** Function getInvertedElementRelExtent(〈〈ep〉〉,〈〈ec〉〉) ****** */

let q be a path query from 〈〈ep〉〉 to 〈〈ec〉〉 projecting on 〈〈ep〉〉 and 〈〈ec〉〉;96

let Q1 := unnestCollection [Q2|x1← 〈〈ep〉〉], where Q2 is97

if(member [x|{x, y} ← q] x1)98

[{y, x1}|{x, y} ← q; x = x1]99

[{generateUID ′ec
′ [x1], x1}];100

return Q1;101

Let us assume first that in S there are no instances of 〈〈A〉〉 that do not have

child instances of 〈〈B〉〉. In such a setting, query Q1 in transformations 29 - 31

would generate the same extent as query [{y, x}|{x, y} ← 〈〈1,A,B〉〉], and query Q2

in transformation 34 would generate the same extent as query [{y, x}|{x, u1} ←

〈〈1,B,K〉〉; {u1, y} ← 〈〈1,K,A〉〉]. Therefore, let us assume that the pathway is as

follows:

4Function getInvertedElementRelExtent was initially defined in Chapter 5 to accept as input
two Element constructs 〈〈e1〉〉 and 〈〈e2〉〉, where 〈〈e1〉〉 is the parent of 〈〈e2〉〉. As discussed in
Chapter 5, it is trivial to extend the original definition for 〈〈e1〉〉 to be, in general, an ancestor
of 〈〈e2〉〉. The definition given here is the extension of the definition of Chapter 5.
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35 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′])

36 add(〈〈1,B,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′])

37 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′])

38 add(〈〈1, r,B〉〉,[{x, y}|{x, d1} ← 〈〈1, r,A〉〉; {d1, y} ← 〈〈1,A,B〉〉])

40 delete(〈〈1,A,B〉〉,[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, y} ← 〈〈1,K,A〉〉])

39 delete(〈〈1, r,A〉〉,[{x, y}|{x, d1} ← 〈〈1, r,B〉〉; {d1, d2} ← 〈〈1,B,K〉〉; {d2, y} ← 〈〈1,K,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 40 , QS is rewritten to the following query on T :

QT =[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, y} ← 〈〈1,K,A〉〉]

Using transformations 36 and 37 , QT is rewritten to Q′

S as follows:

Q′

S =[{y, x}|{x, u1} ← [{x, y}|{x, y, z} ← skolemiseEdge

[{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′];

{u1, y} ← [{y, z}|{x, y, z} ← skolemiseEdge

[{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{y, x}|{x, u1, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′;

{x1, u1, y} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′]

Since skolemiseEdge will always yield the same result given the same input,

and since the two generators in the above comprehension are joined on variable

u1, Q′

S can be simplified to:

Q′

S =[{y, x}|{x, u1, y} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′]

or, since QS =〈〈1, A, B〉〉:

Q′

S =[{y, x}|{x, u1, y} ← skolemiseEdge [{y, x}|{x, y} ← QS] ′K′ ′card2′] (5)

Since variable u1 does not contribute to the result of the comprehension,

and since skolemiseEdge does not alter the first and third items in the triples it

produces, Q′

S can be simplified as follows:

Q′

S =[{y, x}|{x, y} ← [{y, x}|{x, y} ← QS]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{y, x}|{y, x} ← QS]

Therefore, it is trivially the case that QS ≡ Q′

S.
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Figure B.3: Correctness Study of the SRA: Descendant Case.

We now drop the assumption made earlier and investigate the correctness

of the SRA when 〈〈A〉〉 in S contains one or more instances with no child in-

stances of 〈〈B〉〉. In this case, queries Q1 and Q2 in transformations 29 - 31 and

transformation 34 are not equivalent to the queries in transformations 35 - 37

and transformation 40 . In particular, Q1 generates the same pairs as query

[{y, x}|{x, y} ← 〈〈1,A,B〉〉] plus one pair for each instance of 〈〈A〉〉 with no child in-

stances of 〈〈B〉〉. Similarly, Q2 generates the same pairs as query [{y, x}|{x, u1} ←

〈〈1,B,K〉〉; {u1, y} ← 〈〈1,K,A〉〉] plus one pair for each instance of 〈〈B〉〉 with no de-

scendant instances of 〈〈A〉〉. Thus, given the pathway that consists of transforma-

tions 29 - 34 that uses function getInvertedElementRelExtent, we see that QS ⊆ Q′

S,

and so in this case the SRA is incorrect with respect to the notion of behavioural

consistency. However, we note that this is to be expected since we are generating

synthetic instances for some constructs in order to prevent the loss of data from

other constructs, and that the user is able to enable or disable this behaviour of

the SRA.
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(ii) Generalisation

Without Synthetic Extent Generation: Consider the setting illustrated on

the right of Figure B.3. This is similar to the setting on the left, but in this

case in T Element constructs 〈〈B〉〉 and 〈〈A〉〉 are separated by two Element con-

structs, 〈〈K〉〉 and 〈〈L〉〉. Assuming synthetic extent generation is not allowed,

the transformation pathway produced by the SRA is given below. Transforma-

tions 42 - 45 are produced by operation addElementAndElementRel of Phase

II, and transformations 41 and 46 - 48 are produced by operation InsertElemen-

tRel of Phase II.

41 add(〈〈1, r,B〉〉,[{x, y}|{x, d1} ← 〈〈1, r,A〉〉; {d1, y} ← 〈〈1,A,B〉〉])

42 add(〈〈K〉〉,Range Void Any)

43 add(〈〈1,B,K〉〉,Range Void Any)

44 add(〈〈L〉〉,Range Void Any)

45 add(〈〈1,K,L〉〉,Range Void Any)

46 add(〈〈1,L,A〉〉,Range Void Any)

48 delete(〈〈1,A,B〉〉,[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, u2} ← 〈〈1,K,L〉〉;

{u2, y} ← 〈〈1,L,A〉〉])

47 delete(〈〈1, r,A〉〉,[{x, y}|{x, d1} ← 〈〈1, r,B〉〉; {d1, d2} ← 〈〈1,B,K〉〉;

{d2, d3} ← 〈〈1,K,L〉〉; {d3, y} ← 〈〈1,L,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 48 , QS is rewritten to the following query on T :

QT =[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, u2} ← 〈〈1,K,L〉〉; {u2, y} ← 〈〈1,L,A〉〉]

Using transformations 43 , 45 and 46 , QT is rewritten to Q′

S as follows (as-

suming lower-bound querying):

Q′

S =Void

In this case, we see that, trivially, QS ⊇ Q′

S.

With Synthetic Extent Generation: Assuming now that synthetic extent
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generation is allowed, the transformation pathway is as follows:

49 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge Q1 ′K′ ′card2′])

50 add(〈〈1,B,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge Q1 ′K′ ′card2′])

51 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge Q1 ′K′ ′card2′])

52 add(〈〈L〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′])

53 add(〈〈1,K,L〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′])

54 add(〈〈1,L,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′])

55 delete(〈〈1,K,A〉〉,Range Void Any)

56 add(〈〈1, r,B〉〉,[{x, y}|{x, d1} ← 〈〈1, r,A〉〉; {d1, y} ← 〈〈1,A,B〉〉])

58 delete(〈〈1,A,B〉〉,Q2)

57 delete(〈〈1, r,A〉〉,[{x, y}|{x, d1} ← 〈〈1, r,B〉〉; {d1, d2} ← 〈〈1,B,K〉〉; {d2, y} ← 〈〈1,K,A〉〉])

In transformations 49 - 51 , Q1 is the query produced by function

getInvertedElementRelExtent(〈〈A〉〉,〈〈B〉〉), which returns a query that describes the

extent of ElementRel 〈〈1, B, A〉〉 and prevents the loss of any instances of 〈〈A〉〉 that

do not have any child instances of 〈〈B〉〉. In transformation 58 , Q2 is the query

produced by function getInvertedElementRelExtent(〈〈B〉〉,〈〈A〉〉).

As before, let us assume first that in S there are no instances of 〈〈A〉〉 that do

not have child instances of 〈〈B〉〉. Under this assumption, query Q1 in transforma-

tions 49 - 51 would generate the same extent as query [{y, x}|{x, y} ← 〈〈1,A,B〉〉],

and query Q2 in transformation 58 would generate the same extent as query

[{y, x}|{x, u1} ← 〈〈B,K〉〉; {u1, u2} ← 〈〈K,L〉〉; {u2, y} ← 〈〈L,A〉〉]. Therefore, let us as-

sume that the pathway is as follows:
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59 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′])

60 add(〈〈1,B,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′])

61 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′])

62 add(〈〈L〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′])

63 add(〈〈1,K,L〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′])

64 add(〈〈1,L,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′])

65 delete(〈〈1,K,A〉〉,Range Void Any)

66 add(〈〈1, r,B〉〉,[{x, y}|{x, d1} ← 〈〈1, r,A〉〉; {d1, y} ← 〈〈1,A,B〉〉])

68 delete(〈〈1,A,B〉〉,[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, u2} ← 〈〈1,K,L〉〉; {u2, y} ← 〈〈1,L,A〉〉])

67 delete(〈〈1, r,A〉〉,[{x, y}|{x, d1} ← 〈〈1, r,B〉〉; {d1, d2} ← 〈〈1,B,K〉〉; {d2, y} ← 〈〈1,K,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 68 , QS is rewritten to the following query on T :

QT =[{y, x}|{x, u1} ← 〈〈1,B,K〉〉; {u1, u2} ← 〈〈1,K,L〉〉; {u2, y} ← 〈〈1,L,A〉〉]

Using transformations 60 , 63 and 64 , QT is rewritten to Q′

S as follows:

Q′

S =[{y, x}|{x, u1} ← [{x, y}|{x, y, z} ← skolemiseEdge

[{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′];

{u1, u2} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′];

{u2, y} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{y, x}|{x, u1, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′;

{u1, u2, z1} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′;

{x1, u2, y} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′]

Since skolemiseEdge will always yield the same result given the same input,

and since last two generators in the above comprehension are joined on variable

u2, Q′

S can be simplified to:

Q′

S =[{y, x}|{x, u1, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′;

{u1, u2, y} ← skolemiseEdge 〈〈1,K,A〉〉 ′L′ ′card3′]

Using transformation 61 , this is rewritten as follows:

Q′

S =[{y, x}|{x, u1, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′;

{u1, u2, y} ← skolemiseEdge
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[{y, z}|{x, y, z} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′] ′L′ ′card3′]

We notice that Q′

S is similar to (3), except for the variable names and the

first input argument to the first and third occurrence of function skolemiseEdge.

Also, we have shown earlier that (3) can be simplified to (4). Therefore, using

the simplification of (3) to (4) as a simplification template, Q′

S can be rewritten

as follows:

Q′

S =[{y, x}|{x, u1, y} ← skolemiseEdge [{y, x}|{x, y} ← 〈〈1,A,B〉〉] ′K′ ′card2′]

or, since QS =〈〈1, A, B〉〉:

Q′

S =[{y, x}|{x, u1, y} ← skolemiseEdge [{y, x}|{x, y} ← QS] ′K′ ′card2′]

This equivalence is identical to (5), for which we know that QS ≡ Q′

S, and so

the same conclusion holds for this setting as well.

We now drop the assumption made earlier and investigate the correctness

of the SRA when 〈〈A〉〉 in S contains one or more instances with no child in-

stances of 〈〈B〉〉. In this case, queries Q1 and Q2 in transformations 49 - 51 and

transformation 58 are not equivalent to the queries in transformations 59 - 61

and transformation 68 . In particular, Q1 generates the same pairs as query

[{y, x}|{x, y} ← 〈〈1,A,B〉〉] plus one pair for each instance of 〈〈A〉〉 with no child in-

stances of 〈〈B〉〉. Similarly, Q2 generates the same pairs as query [{y, x}|{x, u1} ←

〈〈1,B,K〉〉; {u1, u2} ← 〈〈1,K,L〉〉; {u2, y} ← 〈〈1,L,A〉〉] plus one pair for each instance of

〈〈B〉〉 with no descendant instances of 〈〈A〉〉. Thus, given the pathway that consists

of transformations 49 - 58 that uses function getInvertedElementRelExtent, we see

that QS ⊆ Q′

S. Again, this is to be expected since we are generating synthetic

instances for some constructs in order to prevent the loss of data from other con-

structs.

We have investigated the correctness of the SRA when an ElementRel 〈〈1, A, B〉〉

in the source schema is skolemised using a single Element construct (n = 1) and

also 〈〈A〉〉 is a descendant of 〈〈B〉〉 in the target schema. We then investigated the

correctness of the SRA when n = 2, and we have derived the same conclusions as

for n = 1. This was achieved by eliminating the second and third generators in

Q′

S, thereby reducing the case of n = 2 to the case of n = 1. In general, for n > 1,
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Q′

S will contain n generators, and it is clear that each generator after the first

one can be eliminated in the same way as when n = 2. Therefore our conclusions

for the general case of n > 1 are the same as for the case of n = 1.

Finally, we note that the SRA handles the case when n = 0 using Phase II,

since no skolemisation takes place. However, Phase II uses function getInvert-

edElementRelExtent, and so the investigation is similar to the case when n = 1,

and reaches the same conclusions.

B.2.3 Different Branches Case

(i) Base Case

Consider the setting illustrated on the left of Figure B.4. In this setting,

〈〈A〉〉 and 〈〈B〉〉 share a parent-child relationship in S, but are located in different

branches in the T . Assuming synthetic extent generation is not allowed, the trans-

formation pathway S → T generated by the SRA is given below. Transformations

69 - 74 are generated by the application of Phase II on S, and transformations

75 - 76 are generated by the application of Phase II on T .

69 add(〈〈K〉〉,Range Void Any)

70 add(〈〈1,C,K〉〉,Range Void Any)

71 add(〈〈1,K,A〉〉,Range Void Any)

72 add(〈〈L〉〉,Range Void Any)

73 add(〈〈2,C,L〉〉,Range Void Any)

74 add(〈〈1,L,B〉〉,Range Void Any)

76 delete(〈〈1,A,B〉〉,[{x, z}|{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, y} ← 〈〈1,K,A〉〉];

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, y} ← 〈〈1,L,B〉〉]])

75 delete(〈〈1,C,A〉〉,[{x, y}|{x, d1} ← 〈〈1,C,K〉〉; {d1, y} ← 〈〈1,K,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 76 , QS is rewritten to the following query on T :

QT =[{x, z}|{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, y} ← 〈〈1,K,A〉〉];

281



{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, y} ← 〈〈1,L,B〉〉]]

Using transformations 70 , 71 , 73 and 74 , QT is rewritten to Q′

S on S as

follows (assuming lower-bound querying):

Q′

S =Void

In this case, we see that, trivially, QS ⊇ Q′

S.

Assuming now that synthetic extent generation is allowed, the transformation

pathway is as follows:

77 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

78 add(〈〈1,C,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

79 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

80 add(〈〈L〉〉,[y|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

81 add(〈〈2,C,L〉〉,[{x, y}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

82 add(〈〈1,L,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

84 delete(〈〈1,A,B〉〉,[{x, z}|{x, y} ← Q4;

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, y} ← 〈〈1,L,B〉〉]])

83 delete(〈〈1,C,A〉〉,[{x, y}|{x, d1} ← 〈〈1,C,K〉〉; {d1, y} ← 〈〈1,K,A〉〉])

where Q3 = [{x, z}|{x, y} ← 〈〈1,C,A〉〉; {y, z} ← 〈〈1,A,B〉〉] is a query that defines the

extent of ‘virtual’ ElementRel 〈〈1, C, B〉〉 in S so that 〈〈1, C, B〉〉 can be skolemised

using Element 〈〈L〉〉, and where Q4 is a query that defines the extent of ‘virtual’

ElementRel 〈〈1, A, C〉〉 in T using function getInvertedElementRelExtent.

Let us assume first that query Q4 in transformation 84 generates the same

extent as query [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, y} ← 〈〈1,K,A〉〉]. Therefore, let us

assume that the pathway is as follows:
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85 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

86 add(〈〈1,C,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

87 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

88 add(〈〈L〉〉,[y|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

89 add(〈〈2,C,L〉〉,[{x, y}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

90 add(〈〈1,L,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

92 delete(〈〈1,A,B〉〉,[{x, z}|{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, y} ← 〈〈1,K,A〉〉];

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, y} ← 〈〈1,L,B〉〉]])

91 delete(〈〈1,C,A〉〉,[{x, y}|{x, d1} ← 〈〈1,C,K〉〉; {d1, y} ← 〈〈1,K,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 92 , QS is rewritten to the following query on T :

QT =[{x, z}|{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, y} ← 〈〈1,K,A〉〉];

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, y} ← 〈〈1,L,B〉〉]]

Applying unnesting of list comprehensions, this simplifies to:

QT =[{x, z}|{y, u1} ← 〈〈1,C,K〉〉; {u1, x} ← 〈〈1,K,A〉〉;

{y, d1} ← 〈〈2,C,L〉〉; {d1, z} ← 〈〈1,L,B〉〉]

Using transformations 86 , 87 , 89 and 90 , QT is rewritten to Q′

S as follows:

Q′

S =[{x, z}|{y, u1} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′];

{u1, x} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′];

{y, d1} ← [{x, y}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′];

{d1, z} ← [{y, z}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, z}|{y, u1, z1} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{x1, u1, x} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{y, d1, z2} ← skolemiseEdge Q3 ′L′ ′card3′;

{x2, d1, z} ← skolemiseEdge Q3 ′L′ ′card3′] (6)

Since skolemiseEdge will always yield the same result given the same input,

and since the first and second generators in the above comprehension are joined

on variable u1, one of them can be removed, and the same applies for the third

and fourth generators, which are joined on variable d1. Therefore, Q′

S can be
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simplified to:

Q′

S =[{x, z}|{y, u1, x} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{y, d1, z} ← skolemiseEdge Q3 ′L′ ′card3′]

Since variable u1 is not used within the comprehension, the first generator

can be replaced by the generator {y, x} ← 〈〈1,C,A〉〉. Similarly, the body of the

second generator can be replaced by query Q3, which we know is [{x, z}|{x, y} ←

〈〈1,C,A〉〉; {y, z} ← 〈〈1,A,B〉〉]. Therefore, Q′

S is simplified to:

Q′

S =[{x, z}|{y, x} ← 〈〈1,C,A〉〉;

{y, z} ← [{x, z}|{x, y} ← 〈〈1,C,A〉〉; {y, z} ← 〈〈1,A,B〉〉]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, z}|{y, x} ← 〈〈1,C,A〉〉; {y, y1} ← 〈〈1,C,A〉〉; {y1, z} ← 〈〈1,A,B〉〉]

Clearly the second generator can be removed:

Q′

S =[{x, z}|{y, x} ← 〈〈1,C,A〉〉; {x, z} ← 〈〈1,A,B〉〉]

Since in S Element 〈〈C〉〉 is the parent of 〈〈A〉〉, and 〈〈A〉〉 is the parent of 〈〈B〉〉,

it is not possible for the first generator to produce an instance that cannot be

joined with an instance of the second generator (and therefore constrain it), so:

Q′

S =[{x, z}|{x, z} ← QS]

In this case, we see that, trivially, QS ≡ Q′

S.

We now drop the assumption made earlier and investigate the correctness of

the SRA when query Q4 in transformation 84 is not equivalent to the query in

transformation 92 . In particular, Q4 generates the same pairs as the query in

transformation 92 plus one pair for each instance of 〈〈C〉〉 with no child instances

of 〈〈A〉〉. Thus, given the pathway that consists of transformations 85 - 92 that

uses query Q4, we see that QS ⊆ Q′

S.

(ii) Generalisation

Without Synthetic Extent Generation: Consider the setting illustrated on

the right of Figure B.4. This is similar to the setting on the left, but in this case

in T Element constructs 〈〈C〉〉 and 〈〈A〉〉 are separated by two Element constructs,
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Figure B.4: Correctness Investigation of the SRA: Different Branches Case.

〈〈K〉〉 and 〈〈M〉〉, and similarly Element constructs 〈〈C〉〉 and 〈〈B〉〉 are separated by

two Element constructs, 〈〈L〉〉 and 〈〈N〉〉. Assuming synthetic extent generation is

not allowed, the transformation pathway S → T generated by the SRA is given

below. Transformations 93 -102 are generated by the application of Phase II on

S, and transformations 103-104 are generated by the application of Phase II on T .

93 add(〈〈K〉〉,Range Void Any)

94 add(〈〈1,C,K〉〉,Range Void Any)

95 add(〈〈M〉〉,Range Void Any)

96 add(〈〈1,K,M〉〉,Range Void Any)
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97 add(〈〈1,M,A〉〉,Range Void Any)

98 add(〈〈L〉〉,Range Void Any)

99 add(〈〈2,C,L〉〉,Range Void Any)

100 add(〈〈N〉〉,Range Void Any)

101 add(〈〈1,L,N〉〉,Range Void Any)

102 add(〈〈1,N,B〉〉,Range Void Any)

104 delete(〈〈1,A,B〉〉,[{x, z}|

{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, u2} ← 〈〈1,K,M〉〉; {u2, y} ← 〈〈1,M,A〉〉];

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, d2} ← 〈〈1,L,N〉〉; {d2, y} ← 〈〈1,N,B〉〉]])

103 delete(〈〈1,C,A〉〉,[{x, y}|{x, d1} ← 〈〈1,C,K〉〉; {d1, d2} ← 〈〈1,K,M〉〉; {d2, y} ← 〈〈1,M,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 104, QS is rewritten to the following query on T :

QT =[{x, z}|

{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, u2} ← 〈〈1,K,M〉〉; {u2, y} ← 〈〈1,M,A〉〉];

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, d2} ← 〈〈1,L,N〉〉; {d2, y} ← 〈〈1,N,B〉〉]]

Using transformations 94 , 96 , 97 , 99 , 101 and 102, QT is rewritten to Q′

S on

S as follows (assuming lower-bound querying):

Q′

S =Void

In this case, we see that, trivially, QS ⊇ Q′

S.

With Synthetic Extent Generation: Assuming now that synthetic extent

generation is allowed, the transformation pathway is as follows:

105 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

106 add(〈〈1,C,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

107 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

108 add(〈〈M〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′])

109 add(〈〈1,K,M〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′])

110 add(〈〈1,M,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′])

111 delete(〈〈1,K,A〉〉,Range Void Any)

112 add(〈〈L〉〉,[y|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])
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113 add(〈〈2,C,L〉〉,[{x, y}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

114 add(〈〈1,L,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

115 add(〈〈N〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′])

116 add(〈〈1,L,N〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′])

117 add(〈〈1,N,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′])

118 delete(〈〈1,L,B〉〉,Range Void Any)

120 delete(〈〈1,A,B〉〉,[{x, z}|

{x, y} ← Q5;

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, d2} ← 〈〈1,L,N〉〉; {d2, y} ← 〈〈1,N,B〉〉]])

119 delete(〈〈1,C,A〉〉,[{x, y}|{x, d1} ← 〈〈1,C,K〉〉; {d1, d2} ← 〈〈1,K,M〉〉; {d2, y} ← 〈〈1,M,A〉〉])

where Q3 = [{x, z}|{x, y} ← 〈〈1,C,A〉〉; {y, z} ← 〈〈1,A,B〉〉] is a query that defines the

extent of ‘virtual’ ElementRel 〈〈1, C, B〉〉 in S so that 〈〈1, C, B〉〉 can be skolemised

using Element 〈〈L〉〉, and where Q5 is a query that defines the extent of ‘virtual’

ElementRel 〈〈1, A, C〉〉 in T using function getInvertedElementRelExtent. Notice that

we use the same label for query Q3 as in the previous case, since the two queries

are the same.

Let us assume first that query Q5 in transformation 84 generates the same ex-

tent as query [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, u2} ← 〈〈1,K,M〉〉; {u2, y} ← 〈〈1,M,A〉〉].

Therefore, let us assume that the pathway is as follows:

121 add(〈〈K〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

122 add(〈〈1,C,K〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

123 add(〈〈1,K,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′])

124 add(〈〈M〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′])

125 add(〈〈1,K,M〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′])

126 add(〈〈1,M,A〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′])

127 delete(〈〈1,K,A〉〉,Range Void Any)

128 add(〈〈L〉〉,[y|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

129 add(〈〈2,C,L〉〉,[{x, y}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

130 add(〈〈1,L,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′])

131 add(〈〈N〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′])

132 add(〈〈1,L,N〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′])
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133 add(〈〈1,N,B〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′])

134 delete(〈〈1,L,B〉〉,Range Void Any)

120 delete(〈〈1,A,B〉〉,[{x, z}|

{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, u2} ← 〈〈1,K,M〉〉; {u2, y} ← 〈〈1,M,A〉〉];

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, d2} ← 〈〈1,L,N〉〉; {d2, y} ← 〈〈1,N,B〉〉]])

119 delete(〈〈1,C,A〉〉,[{x, y}|{x, d1} ← 〈〈1,C,K〉〉; {d1, d2} ← 〈〈1,K,L〉〉; {d2, y} ← 〈〈1,L,A〉〉])

Consider the following query on S, to return the extent of ElementRel 〈〈1, A, B〉〉:

QS = 〈〈1,A,B〉〉

Using transformation 120, QS is rewritten to the following query on T :

QT =[{x, z}|

{x, y} ← [{y, x}|{x, u1} ← 〈〈1,C,K〉〉; {u1, u2} ← 〈〈1,K,M〉〉; {u2, y} ← 〈〈1,M,A〉〉];

{y, z} ← [{x, y}|{x, d1} ← 〈〈2,C,L〉〉; {d1, d2} ← 〈〈1,L,N〉〉; {d2, y} ← 〈〈1,N,B〉〉]]

Applying unnesting of list comprehensions, this simplifies to:

QT =[{x, z}|{y, u1} ← 〈〈1,C,K〉〉; {u1, u2} ← 〈〈1,K,M〉〉; {u2, x} ← 〈〈1,M,A〉〉;

{y, d1} ← 〈〈2,C,L〉〉; {d1, d2} ← 〈〈1,L,N〉〉; {d2, z} ← 〈〈1,N,B〉〉]

Using transformations 122, 125, 126, 129, 132, 133 , QT is rewritten to Q′

S as

follows:

Q′

S =[{x, z}|{y, u1} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′];

{u1, u2} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′];

{u2, x} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′];

{y, d1} ← [{x, y}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′];

{d1, d2} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′];

{d2, z} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, z}|{y, u1, z1} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{u1, u2, z2} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′];

{x1, u2, x} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′];

{y, d1, z3} ← skolemiseEdge Q3 ′L′ ′card3′];

{d1, d2, z4} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′];

{x2, d2, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′]]

The second and third generators are joined on variable u2, and so one of
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them can be removed, and the same applies for the fifth and sixth generators.

Therefore, Q′

S can be rewritten as follows:

Q′

S =[{x, z}|{y, u1, z1} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{u1, u2, x} ← skolemiseEdge 〈〈1,K,A〉〉 ′M′ ′card4′;

{y, d1, z3} ← skolemiseEdge Q3 ′L′ ′card3′;

{d1, d2, z} ← skolemiseEdge 〈〈1,L,B〉〉 ′N′ ′card5′]

Since variables u2 and d2 are not used within the comprehension above, Q′

S

is simplified to:

Q′

S =[{x, z}|{y, u1, z1} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{u1, x} ← 〈〈1,K,A〉〉;

{y, d1, z3} ← skolemiseEdge Q3 ′L′ ′card3′;

{d1, z} ← 〈〈1,L,B〉〉]

Using transformations 123 and 130, Q′

S is rewritten as follows:

Q′

S =[{x, z}|{y, u1, z1} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{u1, x} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′];

{y, d1, z3} ← skolemiseEdge Q3 ′L′ ′card3′;

{d1, z} ← [{y, z}|{x, y, z} ← skolemiseEdge Q3 ′L′ ′card3′]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, z}|{y, u1, z1} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{x1, u1, x} ← skolemiseEdge 〈〈1,C,A〉〉 ′K′ ′card2′;

{y, d1, z3} ← skolemiseEdge Q3 ′L′ ′card3′;

{x2, d1, z} ← skolemiseEdge Q3 ′L′ ′card3′] (7)

This equivalence is identical to (6), for which we know that QS ≡ Q′

S, and so

the same equivalence holds in this setting as well.

We now drop the assumption made earlier and investigate the correctness of

the SRA when query Q5 transformation 120 is not equivalent to the query in

transformation 120. In particular, Q5 generates the same pairs as the query in

transformation 120 plus one pair for each instance of 〈〈C〉〉 with no child instances

of 〈〈A〉〉. Thus, given the pathway that consists of transformations 105-120 that

uses query Q5, we see that QS ⊆ Q′

S.
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We have investigated the correctness of the SRA when a source schema that

contains two Element constructs 〈〈A〉〉 and 〈〈B〉〉 that share a parent-child relation-

ship is transformed into a schema where 〈〈A〉〉 and 〈〈B〉〉 are located in different

branches and their common ancestor 〈〈C〉〉 is the same Element that is the parent

of 〈〈A〉〉 in S. In particular, we first investigated the case where a single Element

construct (n = 1) exists between 〈〈C〉〉 and each of these Element constructs in

the target schema. We then investigated the correctness of the SRA when n = 2,

and we have shown the same conclusions as for n = 1. This was achieved by

reducing the case of n = 2 to the case of n = 1. In general, it is clear that it

is possible to reduce each case where n > 1 to the case where n = 1, therefore

the conclusions for the general case of n > 1 are the same as those for the case

of n = 1. We also note that we would reach the same conclusions even if in T

the number of Element constructs between 〈〈C〉〉 and 〈〈A〉〉 is different than the

number of Element constructs between 〈〈C〉〉 and 〈〈B〉〉.

Finally, we note that the SRA handles the case when n = 0 using Phase II,

since no skolemisation takes place. However, Phase II uses function getInvert-

edElementRelExtent, and so the investigation is similar to the case when n = 1,

and reaches the same conclusions.

B.2.4 Element-to-attribute transformation

Consider the element-to-attribute transformation illustrated on the left of Fig-

ure B.5. Assuming that synthetic extent generation is not allowed, the transfor-

mation pathway produced by the SRA is given below. The transformations in

the pathway are a result of operations addAttribute and addElementAndEle-

mentRel of Phase II of the SRA.

121 addAtt(〈〈e, a〉〉,Range Void Any)

124 deleteER(〈〈1, a,Text〉〉,Range Void Any)

123 deleteER(〈〈1, e, a〉〉,Range Void Any)

122 deleteEl(〈〈a〉〉,Range Void Any)
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Consider the following query on S, to return the extent of Element 〈〈e〉〉 to-

gether with its associated 〈〈Text〉〉 instances:

QS =[{x, z}|{x, y} ← 〈〈1, e, a〉〉; {y, z} ← 〈〈1, a,Text〉〉]

Using transformations 123 and 124, QT and Q′

S result in Void (assuming lower-

bound querying), and so it is trivially the case that QS ⊇ Q′

S.

Now, assuming that synthetic extent generation is allowed, the transforma-

tion pathway S → T generated by the SRA is as follows. The transforma-

tions in the pathway are a result of operations Element2Attribute and At-

tribute2Element of Phase II of the SRA.

125 addAtt(〈〈e, a〉〉,[{x, z}|{x, y} ← 〈〈1, e, a〉〉; {y, z} ← 〈〈1, a,Text〉〉])

128 deleteER(〈〈1, a,Text〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′])

127 deleteER(〈〈1, e, a〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′])

126 deleteEl(〈〈a〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′])

Consider the following query on S, to return the extent of Element 〈〈e〉〉 to-

gether with its associated 〈〈Text〉〉 instances:

QS =[{x, z}|{x, y} ← 〈〈1, e, a〉〉; {y, z} ← 〈〈1, a,Text〉〉]

Using transformations 127 and 128, QS is rewritten to the following query on

T :

QT =[{x, z}|{x, y} ← [{x, y}|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′];

{y, z} ← [{y, z}|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′]]

Applying unnesting of list comprehensions, this simplifies to:

QT =[{x, z}|{x, y, z1} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′;

{x1, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′]

Since skolemiseEdge will always yield the same result given the same input,

and since the two generators in the above comprehension are joined on variable

y, QT can be simplified to:

QT =[{x, z}|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′]

Since variable y is not used within the above comprehension, QT can be sim-

plified to:

QT =[{x, z}|{x, z} ← 〈〈e, a〉〉]
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Using transformation 125, QT is rewritten to Q′

S on S as follows:

Q′

S =[{x, z}|{x, z} ← [{x, z}|{x, y} ← 〈〈1, e, a〉〉; {y, z} ← 〈〈1, a,Text〉〉]]

Applying unnesting of list comprehensions, this simplifies to:

Q′

S =[{x, z}|{x, y} ← 〈〈1, e, a〉〉; {y, z} ← 〈〈1, a,Text〉〉]

This is the original query QS, and so it is trivially the case that QS ≡ Q′

S.
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Figure B.5: Correctness Study of the SRA: Element-to-Attribute and Attribute-
to-Element Cases.

Finally, we note that the investigation of the attribute-to-element operation is

similar to that for the element-to-attribute operation, due to the bidirectionality

of BAV pathways and the fact that the element-to-attribute operation of the SRA

is the inverse of the attribute-to-element operation. To illustrate, the following

is the transformation pathway for the setting shown on the right of Figure B.5

when synthetic extent generation is not allowed:

129 addEl(〈〈a〉〉,Range Void Any)

130 addER(〈〈1, e, a〉〉,Range Void Any)

131 addER(〈〈1, a,Text〉〉,Range Void Any)

132deleteAtt(〈〈e, a〉〉,Range Void Any)

and we see that it is the reverse of the transformation pathway for the element-

to-attribute operation when synthetic data generation is not allowed (see trans-

formations 121-124).
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When synthetic extent generation is allowed, the transformation pathway is:

133 addEl(〈〈a〉〉,[y|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′])

134 addER(〈〈1, e, a〉〉,[{x, y}|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′])

135 addER(〈〈1, a,Text〉〉,[{y, z}|{x, y, z} ← skolemiseEdge 〈〈e, a〉〉 ′a′ ′1− 1′])

136deleteAtt(〈〈e, a〉〉,[{x, z}|{x, y} ← 〈〈1, e, a〉〉; {y, z} ← 〈〈1, a,Text〉〉])

and we see that it is the reverse of the transformation pathway for the element-

to-attribute operation when synthetic data generation is allowed (see transforma-

tion 125-128.

B.3 Discussion

We have studied the correctness of the main operations of our schema restructur-

ing algorithm (SRA) using the notion of behavioural consistency. We have shown

that when it does not generate synthetic data, the SRA is behaviourally consis-

tent but suffers from loss of data. When it does generate synthetic data, the SRA

is behaviourally consistent for the ancestor and element-to-attribute cases, but is

not behaviourally consistent for the descendant and different branches cases. In

all cases of synthetic extent generation, however, the SRA avoids the loss of data.

In conclusion, depending on the application setting, the user can choose be-

tween consistency and loss of data in some cases, or inconsistency in some cases

and preservation of data in all cases.
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Appendix C

Single Ontology Service

Reconciliation Files

This appendix provides some of the documents used for, or produced in, the

process of the reconciliation of the services of the workflow getIPIEntry →

getInterProEntry → getPfamEntry. In particular, we provide the documents

related to the outputs of the second and the third services; those related to the

inputs of the second and third services are included in the main text of the thesis.

We first list the documents related to the output of service getIPIEntry. Sec-

tion C.1 lists the output of service getIPIEntry given IPI accession IPI00015171,

i.e. a UniProt-style flat file representation of an IPI entry. Section C.2 lists the

XML version of Section C.1, produced by our IPI flat-file-to-XML format con-

verter, as discussed in Chapter 7. Section C.3 lists the XMLDSS schema au-

tomatically derived from the UniProt XML Schema at the time, version 1.27,

listed in Section C.4 (the latest version of this schema can be found at ftp:

//ftp.ebi.ac.uk/pub/databases/uniprot/knowledgebase/uniprot.xsd).

We then list the documents related to the output of service getInterProEntry.

Section C.5 lists the output of service getIPIEntry given InterPro accession

IPR003959, i.e. an XML file corresponding to the DTD listed in Section C.6.

This DTD is used to automatically derive the XMLDSS schema listed in Sec-

tion C.7.
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C.1 IPI Entry IPI00015171 (UniProt Flat-File

Version)

ID IPI00015171.4 IPI; PRT; 128 AA.

AC IPI00015171; IPI00784015;

DT 01-OCT-2001 (IPI Human rel. 2.00, Created)

DT 04-SEP-2005 (IPI Human rel. 3.10, Last sequence update)

DE SIMILAR TO AFG3-LIKE PROTEIN 1.

OS Homo sapiens (Human).

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;

OC Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

OX NCBI_TaxID=9606;

CC -!- CHROMOSOME: 16.

CC -!- START CO-ORDINATE: 88566495.

CC -!- END CO-ORDINATE: 88590519.

CC -!- STRAND: 1.

DR UniProtKB/Swiss-Prot; O43931; AFG31_HUMAN; -.

DR Vega; OTTHUMP00000080121; OTTHUMG00000072815; M.

DR ENSEMBL; ENSP00000373622; ENSG00000167540; -.

DR H-InvDB; HIT000013102; HIX0013375; -.

DR UniParc; UPI000059D3F9; -; -.

DR HGNC; 314; AFG3L1; -.

DR Entrez Gene; 172; AFG3L1; -.

DR UniGene; Hs.534773; -; -.

DR trome; HTR002494; -; -.

DR UTRdb; BB153156; -; 5’UTR.

DR UTRdb; BB281690; -; 5’UTR.

DR UTRdb; BB394662; -; 5’UTR.

DR RZPD; Hs.534773; -; Clones and other research material.

DR CleanEx; HS_AFG3L1; -; -.

DR InterPro; IPR003959; AAA_ATPase_core.

DR Pfam; PF00004; AAA; 1.

SQ SEQUENCE 128 AA; 13733 MW; B7335211CD58D03B CRC64;

MRPGRFHRQI YTGPPYIKGR SSIFKVHLRP LKLDKSLNKD TLARKLAVLT PGFPGVHHTP

GQGAPLRTVP APGAAALHPG AALRPHVHDA RGPGSRAAVL RVDHYGGSGR PEEGHPECLR

PGCAVWGE

//
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C.2 IPI Entry IPI00015171 (XML Version)

<uniprot>

<entry created="2001-10-01" modified="2005-09-04" version="3.10">

<accession>IPI00015171</accession>

<accession>IPI00784015</accession>

<organism key="1">

<name scientific="Homo sapiens"/> <name common="Human"/>

<lineage>

<taxon>Eukaryota</taxon>

<taxon>Metazoa</taxon>

<taxon>Chordata</taxon>

<taxon>Craniata</taxon>

<taxon>Vertebrata</taxon>

<taxon>Euteleostomi</taxon>

<taxon>Mammalia</taxon>

<taxon>Eutheria</taxon>

<taxon>Primates</taxon>

<taxon>Catarrhini</taxon>

<taxon>Hominidae</taxon>

<taxon>Homo</taxon>

</lineage>

<dbReference id="9606" key="2" type="NCBI_TaxID">

</dbReference>

</organism>

<!-- CHROMOSOME: 16. -->

<!-- START CO-ORDINATE: 88566495. -->

<!-- END CO-ORDINATE: 88590519. -->

<!-- STRAND: 1. -->

<dbReference id="O43931" key="3" type="Swiss-Prot">

<property type="entry id" value="AFG31_HUMAN"> </property>

<property type="master" value="0"> </property>

</dbReference>

<dbReference id="OTTHUMP00000080121" key="4" type="Vega">

<property type="gene id" value="OTTHUMG00000072815"> </property>

<property type="master" value="1"> </property>

</dbReference>
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<dbReference id="ENSP00000373622" key="5" type="ENSEMBL">

<property type="gene id" value="ENSG00000167540"/>

<property type="master" value="0"/>

</dbReference>

<dbReference id="HIT000013102" key="6" type="H-InvDB">

<property type="H-Inv cluster id" value="HIX0013375"/>

<property type="master" value="0"/>

</dbReference>

<dbReference id="UPI000059D3F9" key="7" type="UniParc">

</dbReference>

<dbReference id="HGNC:314" key="8" type="HGNC">

<property type="HGNC official gene symbol" value="AFG3L1"/>

</dbReference>

<dbReference id="172" key="9" type="Entrez Gene">

<property type="default gene symbol" value="AFG3L1"/></dbReference>

<dbReference id="Hs.534773" key="10" type="UniGene"/>

<dbReference id="HTR002494" key="11" type="trome"/>

<dbReference id="BB153156" key="12" type="UTRdb"/>

<dbReference id="BB281690" key="13" type="UTRdb"/>

<dbReference id="BB394662" key="14" type="UTRdb"/>

<dbReference id="Hs.534773" key="15" type="RZPD"/>

<dbReference id="HS_AFG3L1" key="16" type="CleanEx"/>

<dbReference id="IPR003959" key="17" type="InterPro">

<property type="entry name" value="AAA_ATPase_core"/>

<property type="master" value="0"/>

</dbReference>

<dbReference id="PF00004" key="18" type="Pfam">

<property type="method name" value="AAA"/>

<property type="number of hits" value="1"/>

</dbReference>

<sequence crc64="B7335211CD58D03B" length="128" mass="13733">

MRPGRFHRQIYTGPPYIKGRSSIFKVHLRPLKLDKSLNKDTLARKLAVLT

PGFPGVHHTPGQGAPLRTVPAPGAAALHPGAALRPHVHDARGPGSRAAVL

RVDHYGGSGRPEEGHPECLRPGCAVWGE

</sequence>

</entry>

</uniprot>
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C.3 UniProt XMLDSS

<uniprot>

<entry created="text" dataset="text" modified="text" version="text">

<accession> text </accession>

<name> text </name>

<protein evidence="text" type="text">

<name evidence="text" ref="text"> text </name>

<domain>

<name evidence="text" ref="text"> text </name>

</domain>

<component>

<name evidence="text" ref="text"> text </name>

</component>

</protein>

<gene>

<name/>

</gene>

<organism key="text">

<name/>

<dbReference evidence="text" id="text" key="text" type="text">

<property type="text" value="text"/>

</dbReference>

<lineage>

<taxon> text </taxon>

</lineage>

</organism>

<organismHost key="text">

<name/>

<dbReference evidence="text" id="text" key="text" type="text">

<property type="text" value="text"/>

</dbReference>

<lineage>

<taxon> text </taxon>

</lineage>

</organismHost>

<geneLocation evidence="text" type="text">

298



<name/>

</geneLocation>

<reference evidence="text" key="text">

<citation city="text" country="text" date="text"

db="text" first="text" institute="text"

last="text" name="text" number="text"

publisher="text" type="text" volume="text">

<title> text </title>

<editorList>

<person name="text"/>

<consortium name="text"/>

</editorList>

<authorList>

<person name="text"/>

<consortium name="text"/>

</authorList>

<locator> text </locator>

<dbReference evidence="text" id="text" key="text" type="text">

<property type="text" value="text"/>

</dbReference>

<citingCitation city="text" country="text" date="text"

db="text" first="text" institute="text"

last="text" name="text" number="text"

publisher="text" type="text" volume="text">

<title> text </title>

<editorList>

<person name="text"/>

<consortium name="text"/>

</editorList>

<authorList>

<person/>

<consortium/>

</authorList>

<locator> text </locator>

<dbReference/>

<citingCitation city="text" country="text" date="text"

db="text" first="text" institute="text"
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last="text" name="text" number="text"

publisher="text" type="text" volume="text">

<title> text </title>

<editorList>

<person/>

<consortium/>

</editorList>

<authorList>

<person/>

<consortium/>

</authorList>

<locator> text </locator>

<dbReference/>

<citingCitation city="text" country="text" date="text"

db="text" first="text" institute="text"

last="text" name="text" number="text"

publisher="text" type="text" volume="text">

<title> text </title>

<editorList/>

<authorList/>

<locator> text </locator>

<dbReference/>

<citingCitation/>

</citingCitation>

</citingCitation>

</citingCitation>

</citation>

</reference>

<comment error="text" evidence="text" locationType="text" mass="text"

method="text" name="text" status="text" type="text">

<text> text </text>

<absorption>

<max> text </max>

<text> text </text>

</absorption>

<kinetics>

<KM> text </KM>
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<Vmax> text </Vmax>

<text> text </text>

</kinetics>

<phDependence> text </phDependence>

<redoxPotential> text </redoxPotential>

<temperatureDependence> text </temperatureDependence>

<link uri="text"/>

<location sequence="text">

<begin position="text" status="text"/>

<end position="text" status="text"/>

<position position="text" status="text"/>

</location>

<event evidence="text" namedIsoforms="text" type="text">

text

</event>

<comment> text </comment>

<isoform>

<id> text </id>

<name/>

<sequence ref="text" type="text"/>

<note evidence="text"> text </note>

</isoform>

<interactant intactId="text">

<id> text </id>

<label> text </label>

</interactant>

<organismsDiffer> text </organismsDiffer>

<experiments> text </experiments>

<note> text </note>

</comment>

<dbReference/>

<keyword evidence="text" id="text"> text </keyword>

<feature description="text" evidence="text" id="text" ref="text"

status="text" type="text">

<original> text </original>

<variation> text </variation>

<location sequence="text">
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<begin position="text" status="text"/>

<end position="text" status="text"/>

<position position="text" status="text"/>

</location>

</feature>

<evidence attribute="text" category="text" date="text"

key="text" type="text"/>

<sequence checksum="text" length="text" mass="text"

modified="text" version="text">

text </sequence>

</entry>

<copyright>

text

</copyright>

</uniprot>
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C.4 UniProt XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<!--*****************************************************************************

UniProt Knowledgebase

Version: $Revision: 1.27 $

Date: $Date: 2006/05/24 13:37:45 $

Copyright (c) 2003 UniProt consortium

All rights reserved.

*******************************************************************************-->

<xs:schema targetNamespace="http://uniprot.org/uniprot"

xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://uniprot.org/uniprot"

elementFormDefault="qualified">

<!-- XML Schema definition for the UniProt XML format

Tested with:

-XSV (XML Schema Validator), http://www.ltg.ed.ac.uk/~ht/xsv-status.html

-SQC (XML Schema Quality Checker), http://www.alphaworks.ibm.com/tech/xmlsqc

-MSV (Multi-Schema XML Validator),

http://wwws.sun.com/software/xml/developers/multischema/

-XMLSpy, http://www.xmlspy.com/

-->

<!-- Name definition begins -->

<xs:complexType name="proteinNameType">

<xs:annotation>

<xs:documentation>The name type is used for protein names occuring in an

entry, which are represented in a flat file as DE lines.</xs:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

<xs:attribute name="ref" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>This is referring to a possible EC number

(ENZYME database cross reference).</xs:documentation>

</xs:annotation>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="geneNameType">

<xs:annotation>

<xs:documentation>The gene name type is used for gene information.

</xs:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="xs:string">
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<xs:attribute name="evidence" type="xs:string" use="optional"/>

<xs:attribute name="type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="primary"/>

<xs:enumeration value="synonym"/>

<xs:enumeration value="ordered locus"/>

<xs:enumeration value="ORF"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="organismNameType">

<xs:annotation>

<xs:documentation>The name type is used for source organism names.

</xs:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="common"/>

<xs:enumeration value="full"/>

<xs:enumeration value="scientific"/>

<xs:enumeration value="synonym"/>

<xs:enumeration value="abbreviation"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="statusType">

<xs:annotation>

<xs:documentation>The status attribute provides a known/unknown flag.

</xs:documentation>

</xs:annotation>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="status" use="optional" default="known">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="known"/>

<xs:enumeration value="unknown"/>
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</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<!-- Name definition ends -->

<!-- Definition of the protein begins -->

<xs:complexType name="proteinType">

<xs:annotation>

<xs:documentation>The protein element stores all the information found in

the DE line of a flatfile entry.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="name" type="proteinNameType" maxOccurs="unbounded"/>

<xs:element name="domain" minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>The domain list is equivalent to the INCLUDES

section of the DE line.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="proteinNameType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="component" minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>The component list is equivalent to the CONTAINS

section of the DE line.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="proteinNameType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="type">

<xs:simpleType>

<xs:restriction base="xs:NMTOKEN">

<xs:enumeration value="fragment"/>

<xs:enumeration value="fragments"/>

<xs:enumeration value="version1"/>

<xs:enumeration value="version2"/>

</xs:restriction>

</xs:simpleType>
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</xs:attribute>

<xs:attribute name="evidence" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>This contains all evidences that are connected

to the complete DE line.</xs:documentation>

</xs:annotation>

</xs:attribute>

</xs:complexType>

<!-- Definition of the protein ends -->

<!-- Definition of the geneLocation begins -->

<xs:complexType name="geneLocationType">

<xs:annotation>

<xs:documentation>Defines the locations/origins of the shown

sequence (OG line).</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="name" type="statusType" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="apicoplast"/>

<xs:enumeration value="chloroplast"/>

<xs:enumeration value="cyanelle"/>

<xs:enumeration value="hydrogenosome"/>

<xs:enumeration value="mitochondrion"/>

<xs:enumeration value="non-photosynthetic plastid"/>

<xs:enumeration value="nucleomorph"/>

<xs:enumeration value="plasmid"/>

<xs:enumeration value="plastid"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:complexType>

<!-- Definition of the geneLocation ends -->

<!-- Citation type section begins -->

<xs:complexType name="citationType">

<xs:annotation>

<xs:documentation>The citation type stores all information about a citation.

The equivalent information in the flatfile can be found in the RA (authors),

RT (title), RX (PubMed/MEDLINE/DOI IDs) and RL (citation location information

such journal name, volume numbers, pages, etc.) lines.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="title" type="xs:string" minOccurs="0">

<xs:annotation>
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<xs:documentation>The title of the citation. Stored in the RT line in

the flatfile format.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="editorList" type="nameListType" minOccurs="0">

<xs:annotation>

<xs:documentation>The editors of a book. Stored in the RL line in the

flatfile format. Only valid for books. Example:

RL (In) Magnusson S., Ottesen M., Foltmann B., Dano K.,

RL Neurath H. (eds.);

RL Regulatory proteolytic enzymes and their inhibitors, pp.163-172,

RL Pergamon Press, New York (1978).

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="authorList" type="nameListType" minOccurs="0">

<xs:annotation>

<xs:documentation>The authors of the citation. Stored in the RA line in

the flatfile format, except for citing citation where it is stored in

the RL line. Example (standard citation):

RA Galinier A., Bleicher F., Negre D., Perriere G., Duclos B.,

RA Cozzone A.J., Cortay J.-C.;

Example (citing citation):

RL Unpublished results, cited by:

RL Shelnutt J.A., Rousseau D.L., Dethmers J.K., Margoliash E.;

RL Biochemistry 20:6485-6497(1981).

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="locator" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>The location information of an electronic (or online)

article. It is in most cases the unprocessed RL line of an electronic

article. Examples:

RL (In) Plant Gene Register PGR98-023.

RL (In) Worm Breeder’s Gazette 15(3):34(1998).

</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="dbReference" type="dbReferenceType" minOccurs="0"

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation/>

</xs:annotation>

</xs:element>

<xs:element name="citingCitation" type="citationType" minOccurs="0">

<xs:annotation>
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<xs:documentation>Used by type: unpublished results.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

<xs:attribute name="type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="book"/>

<xs:enumeration value="journal article"/>

<xs:enumeration value="online journal article"/>

<xs:enumeration value="patent"/>

<xs:enumeration value="submission"/>

<xs:enumeration value="thesis"/>

<xs:enumeration value="unpublished observations"/>

<xs:enumeration value="unpublished results"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="date" use="optional">

<xs:simpleType>

<xs:union memberTypes="xs:date xs:gYearMonth xs:gYear"/>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="name" type="xs:string" use="optional"/>

<xs:attribute name="volume" type="xs:string" use="optional"/>

<xs:attribute name="first" type="xs:string" use="optional"/>

<xs:attribute name="last" type="xs:string" use="optional"/>

<xs:attribute name="publisher" type="xs:string" use="optional"/>

<xs:attribute name="city" type="xs:string" use="optional"/>

<xs:attribute name="db" type="xs:string" use="optional"/>

<xs:attribute name="country" type="xs:string" use="optional"/>

<xs:attribute name="number" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>Used by type: patent.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="institute" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>Used by type: thesis.</xs:documentation>

</xs:annotation>

</xs:attribute>

</xs:complexType>

<xs:complexType name="consortiumType">

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="personType">

<xs:attribute name="name" type="xs:string" use="required"/>
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</xs:complexType>

<xs:complexType name="nameListType">

<xs:choice maxOccurs="unbounded">

<xs:element name="person" type="personType"/>

<xs:element name="consortium" type="consortiumType"/>

</xs:choice>

</xs:complexType>

<!-- Definitions for SPTr’s additional citation information begins -->

<xs:complexType name="sourceDataType">

<xs:annotation>

<xs:documentation>Contains all information about the source this citation is

referring to (RC line). The used child-element names are equivalent to the

tokens used in the RC line. Examples:

RC STRAIN=Sprague-Dawley; TISSUE=Liver;

RC STRAIN=Holstein; TISSUE=Lymph node, and Mammary gland;

RC PLASMID=IncFII R100;

</xs:documentation>

</xs:annotation>

<xs:choice maxOccurs="unbounded">

<xs:element name="species">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="ref" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="strain">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="plasmid">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="transposon">
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<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="tissue">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:choice>

</xs:complexType>

<xs:group name="sptrCitationGroup">

<xs:annotation>

<xs:documentation>Groups the scope (RP lines) and source data (RC lines)

lists.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="scope" type="xs:string" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>Contains a scope regarding a citation. There is

no classification yet. (RP lines).</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="source" type="sourceDataType" minOccurs="0">

<xs:annotation>

<xs:documentation>Contains all information about the source this

citation is referring to (RC line).</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:group>

<!-- Definitions for SPTr’s additional citation information ends -->

<xs:complexType name="referenceType">

<xs:annotation>

<xs:documentation>Stores all information of the reference block in SPTr

(RN, RP, RC, RX, RA, RT and RL line).</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="citation" type="citationType"/>
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<xs:group ref="sptrCitationGroup"/>

</xs:sequence>

<xs:attribute name="evidence" type="xs:string" use="optional"/>

<xs:attribute name="key" type="xs:string" use="required"/>

</xs:complexType>

<!-- Citation type section ends -->

<!-- Comment definition begins -->

<xs:group name="bpcCommentGroup">

<xs:sequence>

<xs:element name="absorption" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="max" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="text" type="xs:string" minOccurs="0" maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="kinetics" minOccurs="0" maxOccurs="1">

<xs:complexType>

<xs:sequence>

<xs:element name="KM" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="Vmax" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="text" type="xs:string" minOccurs="0"

maxOccurs="1"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="phDependence" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="redoxPotential" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="temperatureDependence" type="xs:string" minOccurs="0"

maxOccurs="1"/>

</xs:sequence>

</xs:group>

<xs:complexType name="commentType">

<xs:annotation>

<xs:documentation>The comment element stores all information found in the

CC lines of the flatfile format. If there is a defined structure to the CC

comment, the extracted is displayed in the various defined attributes and

child-elements. See the documentation of these attributes/elements for more

details.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="text" type="xs:string" minOccurs="0" maxOccurs="1">

<xs:annotation>
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<xs:documentation>If a CC line type does not have a defined structure,

the text of this comment is stored in the element.</xs:documentation>

</xs:annotation>

</xs:element>

<xs:group ref="bpcCommentGroup"/>

<xs:choice minOccurs="0" maxOccurs="1">

<xs:sequence>

<xs:element name="link" minOccurs="0" maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>This stored the URIs defined in the WWW and

FTP tokens of the database (online information in the XML format)

CC comment type.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:attribute name="uri" type="xs:anyURI" use="required"/>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:sequence>

<xs:element name="location" type="locationType" minOccurs="0"

maxOccurs="unbounded">

<xs:annotation>

<xs:documentation>The information of the mass spectrometry comment

is stored in the attributes:

-molWeight (molecular weight)

-mwError (error of the molecular weight)

-msMethod (the method used for the mass spectrometry)

-range (which amino acids were messured. It’s not mentioned if the

complete sequence as shown in the entry was measured)

</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

<xs:sequence>

<xs:element name="event" type="eventType" minOccurs="1" maxOccurs="4"/>

<xs:element name="comment" type="xs:string" minOccurs="0" maxOccurs="1"/>

<xs:element name="isoform" type="isoformType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:sequence>

<xs:element name="interactant" type="interactantType" minOccurs="2"

maxOccurs="2"/>

<xs:element name="organismsDiffer" type="xs:boolean" minOccurs="1"

default="false"/>

<xs:element name="experiments" type="xs:integer" minOccurs="1"

maxOccurs="1"/>

</xs:sequence>
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</xs:choice>

<xs:element name="note" type="xs:string" minOccurs="0" maxOccurs="1">

<xs:annotation>

<xs:documentation>If a CC line type contains a "NOTE=", the text of

that note is stored in this element.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>States the name of the online information if there

is one.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="mass" type="xs:float" use="optional">

<xs:annotation>

<xs:documentation>First the molecular weight which has been

determined.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="error" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>The accuracy with which the molecular weight has been

measured.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="method" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>The method which has been used. Common values are

ELECTROSPRAY, MALDI, FAB and PLASMA DESORPTION.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="status" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>Some comments have a status reflecting their reliability.

Common values are BY SIMILARITY, POTENTIAL and PROBABLE.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="locationType" type="xs:string" use="optional">

<xs:annotation>

<xs:documentation>Defines the type of the location where RNA editing takes

place. Common values are "Displayed", "Not_applicable" and "Undetermined".

</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="type" use="required">

<xs:annotation>
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<xs:documentation>Stores the type of a comment. These are simply lower case

conversions of the flatfile CC comment topics, with two exceptions.

&quot;PTM&quot; is an abbreviation and stands for &quot;posttranslational

modification&quot; and the CC topic &quot;DATABASE&quot; is translated to

&quot;online information&quot;, which is a more accurate description of the

content of this comment.</xs:documentation>

</xs:annotation>

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="allergen"/>

<xs:enumeration value="alternative products"/>

<xs:enumeration value="biotechnology"/>

<xs:enumeration value="biophysicochemical properties"/>

<xs:enumeration value="catalytic activity"/>

<xs:enumeration value="caution"/>

<xs:enumeration value="cofactor"/>

<xs:enumeration value="developmental stage"/>

<xs:enumeration value="disease"/>

<xs:enumeration value="domain"/>

<xs:enumeration value="enzyme regulation"/>

<xs:enumeration value="function"/>

<xs:enumeration value="induction"/>

<xs:enumeration value="miscellaneous"/>

<xs:enumeration value="pathway"/>

<xs:enumeration value="pharmaceutical"/>

<xs:enumeration value="polymorphism"/>

<xs:enumeration value="PTM"/>

<xs:enumeration value="RNA editing"/>

<xs:enumeration value="similarity"/>

<xs:enumeration value="subcellular location"/>

<xs:enumeration value="subunit"/>

<xs:enumeration value="tissue specificity"/>

<xs:enumeration value="toxic dose"/>

<xs:enumeration value="online information"/>

<xs:enumeration value="mass spectrometry"/>

<xs:enumeration value="interaction"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:complexType>

<xs:complexType name="eventType">

<xs:annotation>

<xs:documentation>This element stores information about events that cause

an alternative product.</xs:documentation>

</xs:annotation>

<xs:simpleContent>
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<xs:extension base="xs:string">

<xs:attribute name="type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="alternative splicing"/>

<xs:enumeration value="alternative initiation"/>

<xs:enumeration value="alternative promoter"/>

<xs:enumeration value="ribosomal frameshifting"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="namedIsoforms" type="xs:int" use="optional"/>

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="isoformType">

<xs:annotation>

<xs:documentation>Contains all information on a certain isoform including

references to possible features defining the sequence.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="id" type="xs:string" maxOccurs="unbounded"/>

<xs:element name="name" maxOccurs="unbounded">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

<xs:element name="sequence">

<xs:complexType>

<xs:attribute name="type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="not described"/>

<xs:enumeration value="described"/>

<xs:enumeration value="displayed"/>

<xs:enumeration value="external"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="ref" type="xs:string" use="optional"/>

</xs:complexType>

</xs:element>
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<xs:element name="note" minOccurs="0">

<xs:complexType>

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

</xs:element>

</xs:sequence>

</xs:complexType>

<!-- Comment definition ends -->

<!-- DB reference definition begins -->

<xs:complexType name="dbReferenceType">

<xs:annotation>

<xs:documentation>Database cross-references, equivalent to the flatfile

format’s DR line.</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="property" type="propertyType" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="type" type="xs:string" use="required">

<xs:annotation>

<xs:documentation>The name of the database this cross-reference is

referring to.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="id" type="xs:string" use="required">

<xs:annotation>

<xs:documentation>The ID referred to.</xs:documentation>

</xs:annotation>

</xs:attribute>

<xs:attribute name="evidence" type="xs:string" use="optional"/>

<xs:attribute name="key" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="propertyType">

<xs:attribute name="type" type="xs:string" use="required"/>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>

<!-- DB reference definition ends -->

<!-- Feature definition begins -->

<xs:complexType name="positionType">

<xs:attribute name="position" type="xs:unsignedLong" use="optional"/>

<xs:attribute name="status" use="optional" default="certain">

<xs:simpleType>

<xs:restriction base="xs:string">
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<xs:enumeration value="certain"/>

<xs:enumeration value="uncertain"/>

<xs:enumeration value="less than"/>

<xs:enumeration value="greater than"/>

<xs:enumeration value="unknown"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

<xs:complexType name="locationType">

<xs:annotation>

<xs:documentation>A location can be either a position or have

both a begin and end.</xs:documentation>

</xs:annotation>

<xs:choice>

<xs:sequence>

<xs:element name="begin" type="positionType" minOccurs="1"/>

<xs:element name="end" type="positionType" minOccurs="1"/>

</xs:sequence>

<xs:element name="position" type="positionType"/>

</xs:choice>

<xs:attribute name="sequence" type="xs:string" use="optional"/>

</xs:complexType>

<xs:group name="interactantGroup">

<xs:sequence>

<xs:element name="id" type="xs:string" minOccurs="1"/>

<xs:element name="label" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:group>

<xs:complexType name="interactantType">

<xs:group ref="interactantGroup" minOccurs="0"/>

<xs:attribute name="intactId" type="xs:string" use="required"/>

</xs:complexType>

<xs:complexType name="featureType">

<xs:annotation>

<xs:documentation>Currently there is only one basic feature type, but

this will change in future with enhancement of the FT line parsers.

</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="original" type="xs:string" minOccurs="0"/>

<xs:element name="variation" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="location" type="locationType"/>
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</xs:sequence>

<xs:attribute name="type" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="active site"/>

<xs:enumeration value="binding site"/>

<xs:enumeration value="calcium-binding region"/>

<xs:enumeration value="chain"/>

<xs:enumeration value="coiled-coil region"/>

<xs:enumeration value="compositionally biased region"/>

<xs:enumeration value="cross-link"/>

<xs:enumeration value="disulfide bond"/>

<xs:enumeration value="DNA-binding region"/>

<xs:enumeration value="domain"/>

<xs:enumeration value="glycosylation site"/>

<xs:enumeration value="helix"/>

<xs:enumeration value="initiator methionine"/>

<xs:enumeration value="lipid moiety-binding region"/>

<xs:enumeration value="metal ion-binding site"/>

<xs:enumeration value="modified residue"/>

<xs:enumeration value="mutagenesis site"/>

<xs:enumeration value="non-consecutive residues"/>

<xs:enumeration value="non-terminal residue"/>

<xs:enumeration value="nucleotide phosphate-binding region"/>

<xs:enumeration value="peptide"/>

<xs:enumeration value="propeptide"/>

<xs:enumeration value="region of interest"/>

<xs:enumeration value="repeat"/>

<xs:enumeration value="selenocysteine"/>

<xs:enumeration value="sequence conflict"/>

<xs:enumeration value="sequence variant"/>

<xs:enumeration value="short sequence motif"/>

<xs:enumeration value="signal peptide"/>

<xs:enumeration value="site"/>

<xs:enumeration value="splice variant"/>

<xs:enumeration value="strand"/>

<xs:enumeration value="topological domain"/>

<xs:enumeration value="transit peptide"/>

<xs:enumeration value="transmembrane region"/>

<xs:enumeration value="turn"/>

<xs:enumeration value="unsure residue"/>

<xs:enumeration value="zinc finger region"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="status" type="xs:string" use="optional"/>

<xs:attribute name="id" type="xs:string" use="optional"/>
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<xs:attribute name="description" type="xs:string" use="optional"/>

<xs:attribute name="evidence" type="xs:string" use="optional"/>

<xs:attribute name="ref" type="xs:string" use="optional"/>

</xs:complexType>

<!-- Feature definition ends -->

<!-- Organism definition begins -->

<xs:complexType name="organismType">

<xs:sequence>

<xs:element name="name" type="organismNameType" maxOccurs="unbounded"/>

<xs:element name="dbReference" type="dbReferenceType" maxOccurs="unbounded"/>

<xs:element name="lineage" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="taxon" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="key" type="xs:string" use="required"/>

</xs:complexType>

<!-- Organism definition ends -->

<!-- Keyword definition begins -->

<xs:complexType name="keywordType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="evidence" type="xs:string" use="optional"/>

<xs:attribute name="id" type="xs:string" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<!-- Keyword definition ends -->

<!-- sequence definition ends -->

<xs:complexType name="sequenceType">

<xs:simpleContent>

<xs:extension base="xs:string">

<xs:attribute name="length" type="xs:integer" use="required"/>

<xs:attribute name="mass" type="xs:integer" use="required"/>

<xs:attribute name="checksum" type="xs:string" use="required"/>

<xs:attribute name="modified" type="xs:date" use="required"/>

<xs:attribute name="version" type="xs:integer" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<!-- sequence definition ends -->

<!-- Evidence definition begins -->

<xs:complexType name="evidenceType">

<xs:annotation>
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<xs:documentation>The evidence element is equivalent to the actual evidence

(**EV line).</xs:documentation>

</xs:annotation>

<xs:attribute name="category" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="curator"/>

<xs:enumeration value="import"/>

<xs:enumeration value="program"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="type" use="required" type="xs:string"/>

<xs:attribute name="attribute" type="xs:string" use="optional"/>

<xs:attribute name="date" type="xs:date" use="required"/>

<xs:attribute name="key" type="xs:string" use="required"/>

</xs:complexType>

<!-- Evidence definition ends -->

<!-- Entry type definition ends -->

<xs:element name="entry">

<xs:annotation>

<xs:documentation>A (public) SPTr entry</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="accession" type="xs:string" maxOccurs="unbounded"/>

<xs:element name="name" type="xs:string" maxOccurs="unbounded"/>

<xs:element name="protein" type="proteinType"/>

<xs:element name="gene" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="geneNameType" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="organism" type="organismType" maxOccurs="unbounded"/>

<xs:element name="organismHost" type="organismType" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="geneLocation" type="geneLocationType" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="reference" type="referenceType" maxOccurs="unbounded"/>

<xs:element name="comment" type="commentType" nillable="true" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="dbReference" type="dbReferenceType" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="keyword" type="keywordType" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="feature" type="featureType" minOccurs="0" maxOccurs="unbounded"/>
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<xs:element name="evidence" type="evidenceType" minOccurs="0"

maxOccurs="unbounded"/>

<xs:element name="sequence" type="sequenceType"/>

</xs:sequence>

<xs:attribute name="dataset" use="required">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="Swiss-Prot"/>

<xs:enumeration value="TrEMBL"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="created" type="xs:date" use="required"/>

<xs:attribute name="modified" type="xs:date" use="required"/>

<xs:attribute name="version" type="xs:integer" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="copyright" type="xs:string"/>

<!-- Definition of the content of the root element "uniprot" -->

<xs:element name="uniprot">

<xs:annotation>

<xs:documentation>Contains a collection of SPTr entries.</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element ref="entry" maxOccurs="unbounded"/>

<xs:element ref="copyright" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
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C.5 InterPro Entry IPR003959

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE interprodb SYSTEM "http://srs.ebi.ac.uk/interpro.dtd">

<InterProEntrySet>

<interpro id="IPR003959" type="Domain" short_name="AAA_ATPase_core" protein_count="7917">

<name>AAA ATPase, core</name>

<abstract>&lt;p&gt;AAA ATPases (ATPases Associated with diverse cellular Activities)

form a large, functionally diverse protein family belonging to the AAA+ superfamily

of ring-shaped P-loop NTPases, which exert their activity through the energy-

dependent unfolding of macromolecules <cite idref="PUB00014778" />,

<cite idref="PUB00014779" />. These proteins are involved in a range of processes,

including protein degradation, membrane fusion, microtubule severing, peroxisome

biogenesis, signal transduction and the regulation of gene expression.

&lt;/p&gt;&lt;p&gt;AAA ATPases assemble into oligomeric assemblies (often hexamers)

that form a ring-shaped structure with a central pore. These proteins produce a

molecular motor that couples ATP binding and hydrolysis to changes in conformational

states that can be propagated through the assembly in order to act upon a target

substrate, either translocating or remodelling the substrate

<cite idref="PUB00033933" />. &lt;/p&gt; &lt;p&gt; AAA ATPases contain one or two

conserved ATP-binding domains, which contain two conserved motifs, A and B. These

ATP-binding domains are often attached to various other functional domains. The

functional variety seen between AAA ATPases is in part due to their extensive number

of accessory domains and factors, and to their variable organisation within

oligomeric assemblies, in addition to changes in key functional residues within the

ATPase domain itself.&lt;/p&gt; &lt;p&gt;More information about these proteins can

be found at Protein of the Month: AAA ATPases <cite idref="PUB00033938"/>.&lt;/p&gt;

</abstract>

<class_list>

<classification id="GO:0005524" class_type="GO">

<category>Molecular Function</category>

<description>ATP binding</description>

</classification>

</class_list>

<example_list />

<pub_list>

<publication id="PUB00014778">

<author_list>Koonin E.V., Aravind L., Leipe D.D., Iyer L.M.</author_list>

<title>Evolutionary history and higher order classification of AAA+ ATPases.</title>

<db_xref db="PUBMED" dbkey="15037234" /><journal>J. Struct. Biol.</journal>

<location firstpage="11" lastpage="31" volume="146" issue="1-2" />

<year>2004</year></publication>

<publication id="PUB00014779">

<author_list>Lupas A.N., Frickey T.</author_list>

<title>Phylogenetic analysis of AAA proteins.</title>

<db_xref db="PUBMED" dbkey="15037233" /><journal>J. Struct. Biol.</journal>

<location firstpage="2" lastpage="10" volume="146" issue="1-2" />
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<year>2004</year>

</publication>

<publication id="PUB00033933">

<author_list></author_list>

<title>Proteasomes and their associated ATPases: A destructive combination.</title>

<db_xref db="PUBMED" dbkey="16919475" /><journal>J. Struct. Biol.</journal>

<year>2006</year>

</publication>

<publication id="PUB00033938">

<author_list></author_list><title>Protein of the Month AAA ATPases.</title>

<url>http://www.ebi.ac.uk/interpro/potm/2006_8/Page1.htm</url><year>2006</year>

</publication>

</pub_list>

<parent_list><rel_ref ipr_ref="IPR003593" /></parent_list>

<contains><rel_ref ipr_ref="IPR003960" /></contains>

<found_in>

<rel_ref ipr_ref="IPR000470" /><rel_ref ipr_ref="IPR000641" />

<rel_ref ipr_ref="IPR001270" /><rel_ref ipr_ref="IPR001984" />

<rel_ref ipr_ref="IPR004605" /><rel_ref ipr_ref="IPR004815" />

<rel_ref ipr_ref="IPR012178" /><rel_ref ipr_ref="IPR012763" />

<rel_ref ipr_ref="IPR013461" /><rel_ref ipr_ref="IPR014232" />

<rel_ref ipr_ref="IPR014251" /><rel_ref ipr_ref="IPR014252" />

</found_in>

<member_list>

<db_xref protein_count="7917" db="PFAM" dbkey="PF00004" name="AAA" />

</member_list>

<external_doc_list>

<db_xref db="PANDIT" dbkey="PF00004" />

</external_doc_list>

<structure_db_links>

<db_xref db="PDB" dbkey="1s3s" /><db_xref db="PDB" dbkey="1r7r" />

<db_xref db="PDB" dbkey="1r6b" /><db_xref db="PDB" dbkey="1qzm" />

<db_xref db="PDB" dbkey="1qvr" /><db_xref db="PDB" dbkey="1oz4" />

<db_xref db="PDB" dbkey="1njg" /><db_xref db="PDB" dbkey="1njf" />

<db_xref db="PDB" dbkey="1lv7" /><db_xref db="PDB" dbkey="1ksf" />

<db_xref db="PDB" dbkey="1jr3" /><db_xref db="PDB" dbkey="1jbk" />

<db_xref db="PDB" dbkey="1j7k" /><db_xref db="PDB" dbkey="1iy2" />

<db_xref db="PDB" dbkey="1iy1" /><db_xref db="PDB" dbkey="1iy0" />

<db_xref db="PDB" dbkey="1ixz" /><db_xref db="PDB" dbkey="1ixs" />

<db_xref db="PDB" dbkey="1ixr" /><db_xref db="PDB" dbkey="1iqp" />

<db_xref db="PDB" dbkey="1in8" /><db_xref db="PDB" dbkey="1in7" />

<db_xref db="PDB" dbkey="1in6" /><db_xref db="PDB" dbkey="1in5" />

<db_xref db="PDB" dbkey="1in4" /><db_xref db="PDB" dbkey="1hqc" />

<db_xref db="PDB" dbkey="1e32" /><db_xref db="CATH" dbkey="3.40.50.300" />

<db_xref db="CATH" dbkey="1.10.8.60" /><db_xref db="SCOP" dbkey="c.37.1.20" />

</structure_db_links>

<taxonomy_distribution>
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<taxon_data name="Fungi" proteins_count="832" />

<taxon_data name="Human" proteins_count="132" />

<taxon_data name="Mouse" proteins_count="132" />

<taxon_data name="Virus" proteins_count="52" />

<taxon_data name="Archaea" proteins_count="277" />

<taxon_data name="Metazoa" proteins_count="1807" />

<taxon_data name="Bacteria" proteins_count="4407" />

<taxon_data name="Chordata" proteins_count="567" />

<taxon_data name="Nematoda" proteins_count="45" />

<taxon_data name="Eukaryota" proteins_count="3179" />

<taxon_data name="Fruit Fly" proteins_count="83" />

<taxon_data name="Rice spp." proteins_count="179" />

<taxon_data name="Arthropoda" proteins_count="287" />

<taxon_data name="Green Plants" proteins_count="696" />

<taxon_data name="Unclassified" proteins_count="2" />

<taxon_data name="Cyanobacteria" proteins_count="310" />

<taxon_data name="Plastid Group" proteins_count="1214" />

<taxon_data name="Other Eukaryotes" proteins_count="125" />

<taxon_data name="Arabidopsis thaliana" proteins_count="189" />

<taxon_data name="Caenorhabditis elegans" proteins_count="45" />

<taxon_data name="Synechocystis PCC 6803" proteins_count="12" />

<taxon_data name="Saccharomyces cerevisiae" proteins_count="35" />

</taxonomy_distribution>

<sec_list><sec_ac acc="IPR001939" /></sec_list>

</interpro>

</InterProEntrySet>

324



C.6 InterPro DTD

<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by ALEX KANAPIN

(EMBL OUTSTATION THE EBI) -->

<!-- Root element of InterPro database-->

<!ELEMENT interprodb (release | interpro+ | deleted_entries)*>

<!-- Release infromation-->

<!ELEMENT release (dbinfo)+>

<!--The dbinfo block is used to store release information about the referenced databases,

either member databases such as PFAM, or databases that are used in the production of

InterPro such as TrEMBL. At least one of the release or date attributes should be

present.-->

<!ELEMENT dbinfo EMPTY>

<!ATTLIST dbinfo

dbname NMTOKEN #REQUIRED

version CDATA #IMPLIED

entry_count CDATA #IMPLIED

file_date CDATA #IMPLIED

>

<!--The abstract, a manually curated free text area containing a summary of the current

state of knowledge about the patterns that make up this InterPro entry. Layout markup

within this block is converted to XML literal characters during the post-processing of

the Oracle dump.-->

<!ELEMENT abstract (#PCDATA | cite | db_xref | taxon | reaction)*>

<!ELEMENT author_list (#PCDATA)>

<!ELEMENT book_title (#PCDATA)>

<!ELEMENT category (#PCDATA)>

<!ELEMENT child_list (rel_ref)+>

<!ELEMENT cite EMPTY>

<!ATTLIST cite

idref CDATA #REQUIRED

>

<!ELEMENT class_list (classification+)>

<!--Represents classification in the Gene Ontology (www.geneontology.org), a heirarchical

classification of gene product location, encapsulation and function.-->

<!ELEMENT classification (category, description)>

<!ATTLIST classification

id CDATA #REQUIRED

class_type CDATA #REQUIRED

>

<!ELEMENT contains (rel_ref)+>

<!ELEMENT db_xref EMPTY>

<!ATTLIST db_xref

db (BLOCKS | CATH | CAZY | COG | COMe | EC | GO | INTERPRO | IUPHAR | MEROPS |

MSDsite | PANDIT | PDB | PFAM | PIRSF | PRINTS | PRODOM | PROFILE | PROSITE |

PROSITEDOC | PUBMED | SCOP | SMART | SMODEL | SSF | SWISSPROT | TIGRFAMs |

TREMBL | PANTHER | GENE3D) #REQUIRED
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version CDATA #IMPLIED

dbkey CDATA #IMPLIED

name CDATA #IMPLIED

protein_count CDATA #IMPLIED

>

<!--This element contains the accession number of a single deleted InterPro entry.-->

<!ELEMENT del_ref (description)*>

<!ATTLIST del_ref

id CDATA #REQUIRED

>

<!--If present, this contains a list of deleted IPRs-->

<!ELEMENT deleted_entries (del_ref)+>

<!--Generic description node, just contains a block of text. Meaning depends upon

relative context.-->

<!ELEMENT description (#PCDATA)>

<!ELEMENT example_list (example)*>

<!ELEMENT example (#PCDATA | db_xref)*>

<!--Examples of this InterPro entry hitting proteins from SWISS-PROT and TrEMBL.-->

<!ELEMENT external_doc_list (db_xref)+>

<!ELEMENT structure_db_links (db_xref)+>

<!ELEMENT taxonomy_distribution (taxon_data)+>

<!ELEMENT taxon_data (#PCDATA)>

<!ELEMENT found_in (rel_ref)+>

<!ELEMENT interpro (name | sec_list? | abstract | class_list? | example_list | pub_list |

external_doc_list? | member_list | parent_list? | child_list? |

contains* | found_in* | structure_db_links* | taxonomy_distribution*)+>

<!ATTLIST interpro

id CDATA #REQUIRED

type NMTOKEN #REQUIRED

short_name CDATA #REQUIRED

protein_count CDATA #REQUIRED

>

<!ATTLIST taxon_data

name CDATA #REQUIRED

proteins_count CDATA #REQUIRED

>

<!ELEMENT journal (#PCDATA)>

<!ELEMENT location EMPTY>

<!ATTLIST location

firstpage CDATA #IMPLIED

lastpage CDATA #IMPLIED

volume CDATA #IMPLIED

issue CDATA #IMPLIED

>

<!ELEMENT member_list (db_xref)+>

<!--This is actually a description of the entry, and not the name. The short name is held

in the attribute list of the ’interpro’ element in order to make parsing through the
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file for a given name more efficient.-->

<!ELEMENT name (#PCDATA)>

<!--Note - changed name of node from ’parlist’ to ’parent_list’-->

<!ELEMENT parent_list (rel_ref)>

<!ELEMENT protein EMPTY>

<!ATTLIST protein

id CDATA #REQUIRED

>

<!--A list of publications used within this InterPro entry.-->

<!ELEMENT pub_list (publication)*>

<!--Represents a single published source of data used by the InterPro entry. It is

referenced by the ’cite’ tag within the abstract and various other places. This

replaces the over-loaded publication tag that we had before and allows a much cleaner

looking schema.-->

<!ELEMENT publication (author_list | title? | db_xref? | journal? | book_title? |

location? | url? | year)+>

<!ATTLIST publication

id CDATA #IMPLIED

>

<!ELEMENT reaction (#PCDATA)>

<!--This is a reference to another InterPro entry-->

<!ELEMENT rel_ref EMPTY>

<!ATTLIST rel_ref

ipr_ref CDATA #REQUIRED

type CDATA #IMPLIED

>

<!--This block stores information that is specific to this release of the XML file.-->

<!ELEMENT sec_ac EMPTY>

<!ATTLIST sec_ac

acc CDATA #REQUIRED

>

<!--Secondary accession numbers are stored in this list.-->

<!ELEMENT sec_list (sec_ac+)>

<!ELEMENT taxon (#PCDATA)>

<!ATTLIST taxon

tax_id CDATA #IMPLIED

>

<!ELEMENT title (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!--This should contain a URL for an online resource relevent to the given publication.

Note that the type is now restricted to the w3c schema uriReference, and that any

contents must therefore comply with the definition for this type.-->

<!ELEMENT url (#PCDATA)>

<!ELEMENT year (#PCDATA)>
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C.7 InterPro XMLDSS

<interprodb>

<release>

<dbinfo dbname="text" entry_count="text" file_date="text"

version="text"/>

</release>

<interpro id="text" protein_count="text" short_name="text" type="text">

<name>text</name>

<contains>

<rel_ref ipr_ref="text" type="text"/>

</contains>

<parent_list>

<rel_ref ipr_ref="text" type="text"/>

</parent_list>

<child_list>

<rel_ref ipr_ref="text" type="text"/>

</child_list>

<found_in>

<rel_ref ipr_ref="text" type="text"/>

</found_in>

<member_list>

<db_xref db="text" dbkey="text" name="text"

protein_count="text" version="text"/>

</member_list>

<external_doc_list>

<db_xref db="text" dbkey="text" name="text"

protein_count="text" version="text"/>

</external_doc_list>

<example_list>

<example>

text

<db_xref db="text" dbkey="text" name="text"

protein_count="text" version="text"/>

text

</example>

</example_list>
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<pub_list>

<publication id="text">

<location firstpage="text" issue="text" lastpage="text"

volume="text"/>

<author_list>text</author_list>

<url>text</url>

<year>text</year>

<book_title>text</book_title>

<db_xref db="text" dbkey="text" name="text"

protein_count="text" version="text"/>

<journal>text</journal>

<title>text</title>

</publication>

</pub_list>

<abstract>

text

<taxon tax_id="text">text</taxon>

text

<db_xref db="text" dbkey="text" name="text"

protein_count="text" version="text"/>

text

<reaction>text</reaction>

text

<cite idref="text"/>

text

</abstract>

<structure_db_links>

<db_xref db="text" dbkey="text" name="text"

protein_count="text" version="text"/>

</structure_db_links>

<sec_list>

<sec_ac acc="text"/>

</sec_list>

<class_list>

<classification class_type="text" id="text">

<description>text</description>

<category>text</category>
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</classification>

</class_list>

<taxonomy_distribution>

<taxon_data name="text" proteins_count="text">

text</taxon_data>

</taxonomy_distribution>

</interpro>

<deleted_entries>

<del_ref id="text">

<description>text</description>

</del_ref>

</deleted_entries>

</interprodb>
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