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Abstract

In this dissertation, we study the problem of how search engines can be

improved by making use of classification. Given a user query, traditional search

engines output a list of results that are ranked according to their relevance to

the query. However, the ranking is independent of the topic of the document. So

the results of different topics are not grouped together within the result output

from a search engine. This can be problematic as the user must scroll though

many irrelevant results until his/her desired information need is found. This

might arise when the user is a novice or has superficial knowledge about the

domain of interest, but more typically it is due to the query being short and

ambiguous.

One solution is to organise search results via categorization, in particular, the

classification. We designed a target testing experiment on a controlled data set,

which showed that classification-based search could improve the user’s search

experience in terms of the numbers of results the user would have to inspect

before satisfying his/her query. In our investigation of classification to organise

search results, we not only consider the classification of search results, but also

query classification. In particular, we investigate the case where the enrichment

of the training and test queries is asymmetrical. We also make use of a large

search engine log to provide a comprehensive topic specific analysis of search

engine queries. Finally we study the problem of ranking the classes using some

new features derived from the class.

The contribution of this thesis is the investigation of classification-based

search in terms of ranking the search results. This allows us to analyze the
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effect of a classifier’s performance on a classification-based search engines along

with different user interaction models. Moreover, it allows the evaluation of

class-based ranking methods.
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Chapter 1

Introduction

1.1 Current State of the Art in Search

Searching is an inherent instinct of human behavior. Every search activity

is accompanied by a goal. We all have such experiences, for example, you may

be looking for a restaurant to have lunch or searching for the best deal to buy a

new mobile phone. A good search process can facilitate the attainment of such

goals. In this thesis, we will discuss the search process over information stored

in digital media.

A related scenario of our topic is searching for books in a library. Librarians

have a long history of organising books so that the user can easily identify

his/her book of interest using a library catalogue, facilitated by a library card

system. The library card can be regarded as metadata describing the title, the

author and the category the book belongs to. This is a traditional model of

searching for information.

Since the World Wide Web was invented at the end of the last century, infor-

mation has experienced exponential growth. Twenty years after the inception

of the Web, information seeking on the Web has become one of the most im-

portant parts in our daily lives. In contrast to traditional information search

in a library, the Web is not a physical “entity” that exists in a specific “place”.
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It is a virtual “space” in which information can exist. Furthermore, the World

Wide Web provides a digitalised format for documents, which can easily be ac-

cessed and analyzed by its users. With the popularity of the World Wide Web,

searching via the Web, or the so called “information retrieval on the Web” has

become an important subarea of Computer Science.

One of the core characteristics of the Web is that it is a distributed, pub-

lic information space that is freely accessible; there is no central authority to

control the distribution of content, which results in some major challenges for

information seeking, such as maintaining the quality of information. There-

fore, to perform a search over the Web requires mature computational tools.

Amongst these, two approaches have been widely adopted.

1. Web directory services, and

2. Search engine services.

A web directory organises web content in a hierarchical structure, which is

analogous to the traditional library system, where each document belongs to one

or more topics and subtopics. If the user wants to search for certain information

related to a single topic, he/she only requires to seek the documents within

the category they are interested in rather than searching through all available

information. However, the main limitation of web directories is obvious: they

are expensive to build and have low coverage. They generally require humans

to compile the list, and thus can only cover a small portion of the whole Web.

For example, the Open Directory Project 1 contained 4,529,334 web sites as

of 2010. However, according to [60], the size of the searchable Web indexes

acquired at least 11.5 billion pages by the end of January 2005. Google even

claimed that their index reached the size of 1 trillion in July 2008 2. Searching

through browsing is also limited from a usability perspective, as the user may

not be familiar with his/her target category.

Search engines are web portals for finding information on the Web. They

index a large portion of the Web and store the information in databases. Unlike a
1http://www.dmoz.org
2http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
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web directory, the operation of a search engine is carried out automatically. The

underlying technology of search engines is information retrieval. The obvious

question in information retrieval is how to find the relevant documents for each

user query. This is the main issue we try to address (we will discuss retrieval

models in Chapter 2). In general, search engines seem to successfully attract

a significant amount of search activities. According to comScore, 13.8 billion

searches were performed in September 2009 in America, and approximately 460

million web queries were submitted daily, which implies that on average, 5,324

queries were carried out on search engines every second.

Given a user query, search engines typically return a ranked list of web docu-

ments. The rank is measured by relevance or the probability of relevance, which

is attained by a search engine retrieval model. The first conventional search en-

gines were keyword-based and relevance was determined by the frequency the

search terms occurred in the page. Since there is no central authority to control

the distribution of the documents, this caused a serious bias for ranking a web

page, for example, due to search engine spam. As a result, Google adopted the

analysis of human-generated links with the use of PageRank [94] to overcome

this problem. It assumes that web pages linked from many important pages are

also likely to be important, and each link contributes a vote to the linked page

regarding its importance. PageRank is thought to correlate well with human

concepts of importance. In addition to PageRank, Google also uses over 200 fea-

tures to calculate the relevance score of a web page. A rich model together with

many relevant features contribute to Google’s success in web search market.

Apart from the above approach, there is another machine learning technique

called learning to rank [86], which has been gaining much attention recently.

The idea is to make use of the user search log, and analyse the correlation be-

tween the query and clickthrough data, in order to learn the connection between

them, and produce a new ranking model matching the user’s information need.

The underlying assumption in this case is that the clickthrough data should

be ranked higher than the non-clickthrough data. However, a clickthrough is a

coarse indicator of relevance, and other refined features can also be integrated

into the learning algorithm, such as the duration time the user stays on a page,

and the position of the clickthrough [2]. The learning to rank approach improves

3



the performance of ranking algorithms and, as far as we know, Microsoft has

adopted this method within Bing, their flagship search engine.

1.2 What is Lacking in Search

Search is not all about discovering information, it is a means to an end. In

order to provide a better service to its customers, it is necessary to conduct

exploratory conversations to better understand the customers’ requirement and

the reason behind that requirement. The customer who looks for a local map

may be on the way to a tube station, which may be closed for maintenance.

In this case, finding the information need does not help for his/her final goal.

To achieve the final goal via searching is a challenging issue, in this thesis, we

decompose this problem into small solvable subproblems and we will investigate

one approach to a single subproblem.

On the web, a user will typically express his/her information need with only

three terms or less, and thus due to a gap in knowledge, the searcher is often

not able to generate the correct query. Therefore, several search engines have

allowed the user to specify his/her domain of interest or to describe his/her

interest in a profile [56] to assist the search. Such approaches are domain lim-

ited, non-universal and not every user will be able or willing to provide such

information.

One way to address the above issues is federated search. Commercial search

engines achieve a broad coverage, but nevertheless there is an absence of ‘deep

web’ information, which refers to the vast number of online databases and other

web resources that are not directly accessible by traditional search engines.

Moreover vertical search engines have the capability of understanding specific

domains much better than general search engines and returning more relevant

results for domain related queries. By combining different databases with deep

knowledge, federated search may overcome the limitation of commercial search

engines.

Yet another approach to (partially) address the above issue is to provide

advanced visualisation [65], or presentation of search results. Commercial search

4



engines return a ranked list of results, and this has been proven to be one of the

most effective methods; however, it is not the only way to present search results.

Grouping similar results into categories is another way to present the results.

The intuition is that the user can identify the category he/she is interested in.

With this method, many irrelevant results can be filtered out, and to support

this assumption, researchers had demonstrated the benefits of such a strategy

[66, 31].

To summarise, in order to achieve an enhanced user search experience, users

prefer to go through smaller result set [93]. Firstly, for informational queries,

rather than search through many results within a variety of topics, it is desirable

to return a small number of focused and relevant results; this can be achieved

by focusing on one domain-specific source of information related to the query

rather than the whole web [8]. However, it is challenging to find the right domain

to perform the search over without having background knowledge of the user’s

specific information need. In such cases where users may be satisfied with one

relevant result, it is preferable to present top results covering as many topics as

possible so that it can meet the requirements of the user population. This leads

to result diversification, which we will briefly discuss in Chapter 2. Secondly,

there is the approach of grouping similar results together and assigning the

class labels to them so that the user can ignore the irrelevant categories and

search in a focused subset of results. In this thesis, we will focus on the second

approach of grouping, and more specifically on the automatic classification of

search results.

1.3 Classification as a Way to Organise Search

Results

Organising search results into groups can facilitate the user’s search behavior.

This is related to the cluster hypothesis. The cluster hypothesis proposed by

van Rijsbergen [117] can be stated as follows:

Closely associated documents tend to be relevant to the same request.
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There are several criteria to facilitate grouping, depending on the definition

of “closeness”. Different definitions have led researchers to take different direc-

tions within the information retrieval community. When “closeness” refers to

data point distribution, i.e., common term co-occurrences in search results, it is

called clustering.

Although the cluster hypothesis does not explicitly mention clusters, “closely

associated” documents tend to exist in the same cluster.

In this thesis, we will address search result grouping from another perspec-

tive, i.e., from that of classification. The classification process is a technology

with a long history and is applied widely in practice. More details about classifi-

cation algorithms will be given in Chapter 2. Librarians applied this methodol-

ogy in library systems successfully. Supermarkets also organise goods according

to a classification structure to facilitate their customers in item finding. Ac-

cording to the cluster hypothesis, undoubtingly the clusters and classes can be

beneficial to web users. The terms “closely associated” in the cluster hypothesis

can be understood as belonging to the same topic of the results assigned by the

classifier [117]. In this thesis, we investigate the advantage of the classification

quantitatively in both synthetic and realistic cases.

We believe that classification and clustering are two different approaches for

tackling the same problem. There is no simple answer to the question which

is better. The discrepancy not only lies in the algorithmic aspect, but also

in the problem setting. In general, clustering is a light-weight approach as it

usually does not require training data. However, in order to achieve improved

clustering results, in particularly the problem of assigning reasonable cluster

labels, additional information may be necessary [120]. Conversely, classification

requires training data associated with an explicit class ontology. In order to

produce a reasonable classifier, sufficient training data is needed. However it

avoids the problem of label generation. Another issue is how deep should the

class ontology be. This is particularly important for specific queries whose re-

sults are contained in a small number of classes. In such cases, one layer of class

structure may not be sufficient. Two possible approaches exist to address this

issue. First, we can adopt some hierarchical structure as a Web directory and

train a multi-level classifier [122]. This approach has been applied in query clas-
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sification [23]. Secondly, we can adopt a hybrid system, i.e., in the second layer,

we could use clustering technology. This thesis will mainly focus on ambiguous

queries and adapt a flat class structure.

1.4 Outline of the Thesis

This thesis is organised as follows. Chapter 2 introduces the background

knowledge about information retrieval and machine learning needed for the the-

sis. Foundational concepts and the tasks of information retrieval are described.

The main issues faced in information retrieval are discussed, followed by re-

trieval models and evaluation criteria. In the machine learning section, we

describe three components: the input space, the output space and the hypoth-

esis space. Here we mainly focus on the input space and the hypothesis space.

Although in recent years the output structure has become popular, it is beyond

the scope of the thesis to deal with this aspect in detail. Supervised learning

and unsupervised learning are also studied. For the former, we mainly consider

the k -nearest neighbour classifier and Support Vector Machines (SVM). For the

latter, we simply explain k -means algorithm and agglomerative clustering. We

conclude Chapter 2 with applications of supervised and unsupervised learning

in information retrieval.

Chapter 3 introduces a model for a classification-based search engine. We

first explain the problems encountered in traditional search engines, then present

a framework for a classification-based search engine, and finally define some

related concepts. Following that we describe our experimental methodology

and experiment design. The experimental results are presented, which compare

classification-based systems to the traditional ranked-list systems.

Query classification is studied in Chapter 4, which is related to one of the

key questions faced by every search engine, i.e., understanding the user query.

We review some approaches to tackle the different aspects of this problem. The

main problem we study is the impact of the classifier, when the training and

test data are asymmetric. This scenario occurs often, as offline training data

can be rich, while online test data is usually limited. Experimental results are
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then reported. Thereafter, we apply the trained classifier to a large MSN search

engine query log. Topic specific analysis of search queries is also performed and

reported on.

When we apply the classification to search results, we derive the new features

for each class. In Chapter 5, we investigate the effect of these new features on

ranking classes. We then review the related methods from the literature, and

present a model for ranking classes. We suggest six ranking methods derived

from this model. Experiments are conducted and the class-based ranks are

compared with the traditional list ranks.

Finally, in Chapter 5, a Proof of Concept for a classification-based search

engine is presented next. Some practical implementation issues are discussed

and a prototype search engine is also described.

In Chapter 6, we summarise the contributions and discuss future work arising

from the thesis.

In this thesis, we address the problems arose from ambiguous queries. Clas-

sification is presented as one approach to handle this problem. Ranking classes

is also discussed. The main novelties of our work are as follows:

• We propose several class-based rank methods in Chapter 3. Previous

user studies confirmed that a category based interface can improve user

search in terms of search time. In this case users may be satisfied with

one relevant result, such ranking criteria are correlated with users’ search

time.

• We propose six user interaction models to describe the user search behavior

when they are using a category based interface in Chapter 3.

• In Chapter 3 we analyze the correlation between the performance of the

classifier and the performance of a classification-based IR system. To our

knowledge, this research has not been carried out before.

• In Chapter 4, we investigate the query classification problems by making

use of various enrichment strategies, which leads to topic specific analysis

of search queries.
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• We propose a class ranking model based on Bayesian theory in Chapter 5,

and investigate it by using a query log, therefore our results were drawn

from an analysis of medium scale data.

Our work has its limitation, as we mainly focus on a known-item search task,

i.e., the queries seek a single relevant web page. This is one type of task on the

web search scenario. In practise, search task can be more complex than the

known-item search. For example, some queries may have many relevant results.

But our work does not cover this aspect. Our experiments did not involve any

user testing. However, it would be useful to conduct a user test and to compare

it with the known-item test carried out in this thesis.
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Chapter 2

Background

2.1 Web Information Retrieval

Searching over the Web is becoming a daily activity in current society for

many people. This activity is typically carried out via search engines. The

underlying science of search engines is based on Information Retrieval (IR).

One definition of information retrieval might be:

Information retrieval (IR) is finding material (usually documents) of an un-

structured nature (usually text) that satisfies an information need from within

large collections (usually stored on computers) [36].

From this definition, we can see that a basic information retrieval problem

is as follows. There exists a document collection stored on a computer, which is

the set of documents searching will be performed over. A document consists of

a sequence of words, for example an email message, a Microsoft Word document

or a single web page. A user expresses his/her specific information need in a few

terms, which is called a query, to communicate with the computer that retrieves

the documents. A term is the smallest unit used in information retrieval and it

is normally a word. An information need is the topic the user desires to know

more about, and the retrieved documents constitute the result set. The relevant

documents are what the user is looking for, which contains valuable information
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to the user with respect to his/her personal information need.

The task of information retrieval is to retrieve search results in response to

the user query and present them in order of their relevance to the user’s request,

therefore helping users to find things faster and satisfying their information

needs as quickly as possible. When relevance is interpreted as a probability, the

ranking of results is called the probability ranking principle from a probabilistic

perspective [103]. Robertson [103] and Van Rijsbergen [117] have demonstrated

that such a principle leads to minimal decision-theoretic loss associated with

retrieving a set of n top-ranked documents.

Research in information retrieval can be dated back to 1950’s. Since then,

the application of information retrieval has moved from library systems to gen-

eral purpose search engines. Commercial search engines have existed since the

inception of the Web and have had a huge impact on our society. However,

there are still some unresolved issues. One important issue is that of the inter-

pretation of relevance. The concept of relevance serves as the foundation for the

field of information retrieval. Generally speaking, relevance is a representation

of the user’s informational requirement, a reflection of what they are seeking.

However, as a scientific concept it is required to have a strict formalism. Re-

searchers have studied relevance from a variety of perspectives, for example,

when the relevance is exclusively determined by the relation between a set of

keywords of query terms and the keywords set from documents, this is called

system-oriented relevance. Such an approach includes BM25 [102]. In contrast

to system-oriented relevance, user-oriented relevance introduce the user’s state

of knowledge into the definition. It is claimed that the nature of relevance to

a large degree depends on the person who is making the judgement [77]. In

most definitions, relevance is regarded as a binary decision, i.e., either relevant

or not. Cooper treated relevance as a real number and applied a measure of

utility to the particular task [40]. Zhai [127] extended this view by modeling the

user preferences as loss functions in a probabilistic framework, thus the whole

retrieval process was re-casted as a risk minimisation problem.

Let us review the user’s search process according to [90]; the user is in a

“problematic situation”, that needs information for being solved. The Real In-
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formation Need (RIN) defines the information that will truly help the user solve

the problem. However, the user might not be fully aware of what constitutes

his/her real information need in the first stage, instead he perceives the RIN

and builds the Perceived Information Need (PIN). Then the user will express

the PIN in a request, usually in natural language, and finally they will formalise

the request in a query, a representation of the request in a ‘system’ language,

which can be recognised by a search engine. This procedure is represented in

Figure 2.1. The above process is usually required to perform iterations as the

Figure 2.1: Real information need, perceived information need, request, and

query [90]

user refines his/her query based on the current state of knowledge. During the

search process, the user typically expresses his/her request in two to three terms,

known as the user’s request or query; however one concept can be expressed in a

variety of distinct ways. So simply comparing query terms to the representation

of documents will result in many relevant documents being missed, due to the

absence of the query terms in that document, this is called the term mismatch

problem. We will discuss some possible solutions to this problem shortly. An-

other problem is related to polysemy, particularly in the absence of a context.

This is due to the fact that a query typically comprises of only two to three

terms and this will result in vague concepts or ambiguity in terms of the user

information need. One example is the query “jaguar team”; we cannot dis-

tinguish whether the information the user requires is regarding the Jaguar car

team or the Jacksonville Jaguar football team. This kind of relevance is called

“topical relevance”. This thesis mainly focuses on improving topical relevance.
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In contrast to “topical relevance”, “user relevance” refers to the user’s subjec-

tive judgement. For example, given a query “Samsung CLP-310 Colour Laser

Printer”, one user may be interested in the price of the printer, while others

may look for the drivers of the printer. Not only may the users convey different

information needs using the same or similar queries, but the users may interpret

relevance differently based on their individual knowledge and the state of this

knowledge.

To achieve the goal of information retrieval, researchers have proposed a

variety of models in the last sixty years. A good retrieval model should find

the relevant documents meeting the user’s information need. We will discuss

retrieval models in Section 2.1.1.

Another important issue is the evaluation of an information retrieval system.

The user expresses his/her information need as the user’s query to communicate

with the system. However, we know there is a gap between the user’s query and

the user’s information need. The user’s query is a representation of the under-

lying information need in the form of keyword list and is observable and readily

available to the system and other users. Moreover, the information need is an

abstract concept which is only fully understood by the user who issued the query.

The retrieved documents may perfectly match the user’s query on the subject

level, but they may not satisfy the user’s underlying information need. There-

fore, relevance is user-dependent in practice; one more straightforward way is

to conduct user testing when comparing the retrieval models. To evaluate rel-

evance, user testing is typically carried out on a small scale as it is expensive

and time consuming. Search engine log data can be an alternative source for

evaluation by assuming clickthroughs are more relevant than non-clickthroughs.

The problem of search log data is that it is biased towards highly ranked doc-

uments. Nevertheless, it is a valuable and large resource. Another method to

evaluate an IR system is to make use of a standard test collection comprising of

selected documents, together with relevant judgements for the known informa-

tion needs. In addition to the design setting, the evaluation metrics are essential

for the evaluation process. The two basic measures are precision and recall. We

will discuss them in Section 2.1.2.
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When the user specifies his/her information need through a query which

initiates a search (executed by the information system) for documents which are

likely to be relevant to the user, this retrieval task is called ad-hoc retrieval [10].

A search engine is a kind of ad-hoc retrieval machine. If the corpus is dynamic,

e.g. news web sites, and the user query is static, this is called filtering. The goal

of filtering is to detect and provide information based on the user’s preference;

one example is that of topic-based RSS feeds. Other applications related to

IR include categorisation and query answering systems. Categorisation assigns

a set of pre-defined labels to documents. The Open Directory Project is an

example of categorisation. Query answering is similar to ad-hoc retrieval, but it

provides more specific results in response to the user query, than a list of ranked

documents.

Although we will mainly focus on text retrieval, and particularly on web

document retrieval, there are other aspects of information retrieval, such as

image retrieval and video retrieval.

2.1.1 Retrieval Models

Before we discuss retrieval models, we will first introduce some notation. We

assume there is a document collection D = {D1, D2, ...DN}, where Di is a text

document; and we let T = {t1, t2, ...tM} be the vocabulary set and ti is a term.

We denote a document as Di = (di1, di2, ...din) and a query as Q = (q1, q2, ...qm),

where dij and qj represent the terms occurring in the document and query

respectively, that are the subsets of T . Conventional retrieval models seek a

function R(Di, Q), where the result of this function implies the relevance level

of the document in response to the query. The models can be roughly categorised

as query-dependent models and query-independent models.

2.1.1.1 Query-Dependent Models

These models are based on the presence of query terms in the documents.

One of the earliest such models is the boolean retrieval model, also known as the

exact-match retrieval model. Boolean models will only make a binary decision
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about the relevance of the document by matching the query specification to the

document. It does not involve any ranking as it assumes the retrieved set are

equivalent in terms of relevance. Thus, the absence of the degree of relevance

is the main limitation of this model. However, it has recently been recapturing

researchers’ interests again, with the proposal of faceted search, which provides

more effective information-seeking support to users than best-first search by

combining faceted navigation with text search [116]. To model the relevance

degree, the Vector Space Model [108] has been proposed.

2.1.1.2 Vector Space Model

The Vector Space Model (VSM) has become a standard tool in IR systems

since its introduction over three decades ago [16]. One of the advantages of the

VSM is its support of relevance ranking with respect to queries over documents

of heterogeneous format.

In the Vector Space Model, a vector is used to represent each document in

a collection. Each component of the vector represents a term that occurred

in the document. The value of a component indicates the importance of the

term within the given document. Thus this formulation can be used to measure

the similarity between two vectors, one representing a document, and another

representing a query.

Here we need to determine a weight (value) for each term (In the Boolean

model, the weight is 1 if the term is present, otherwise 0). If one term occurs

multiple times in a document, it indicates that an increased significance of this

term to the document is more likely. So incorporating the term frequency into

weights seems a straightforward form of a weighted representation. We use tft,d

to denote the frequency of a term t occurring in a document d. Term frequency

can reflect how well the term describes the document, but it cannot reflect the

importance of the term in the collection of documents. Thus, we define the

inverse document frequency of a term t and a scaling of its weights as follows:

idft = log
N

dft

where N is the total number of documents in the collection, and the document
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frequency dft is the number of documents containing the term t. From this

definition we can see that the more documents that a term occurs in, the less

discriminative power the term possesses, and the less useful it is for a retrieval

model.

One formula of document term weighting schemes in the Vector Space Model

is given in Equation 2.11 as follows:

dij = tf(j, i) ∗ log
N

dfj
(2.1)

In this model, a document can be thought of as one point in a high dimensional

space, the same as the query. The standard approach to quantify the distance

between two vectors is by Euclidean distance (Equation 2.21). However, it

suffers from a drawback: two documents that share similar content can differ

significantly, simply because one document is much longer than the other and

tends to have large term frequencies. To compensate for this problem, cosine

similarity between two document di, dj is commonly used as follows:

sim(di,dj) =
di · dj

|di||dj | (2.2)

So the relevance score can be measured as:

R(Di, Q) = sim(di,q) (2.3)

VSM makes the assumption of independence between terms, and it suffers

from the term mismatch problem we mentioned earlier, as it cannot capture

the semantic information between two or more related terms or between related

documents. The generalised VSM (GVSM) has been proposed to solve the

semantic similarity problem.

The main idea of GVSM is that if two terms are semantically related, they

will co-occur in the same documents frequently. The document vector can be

represented by

di = dT
i DT , (2.4)

1There exists other forms which scale tf-idf factor differently, i.e.,dij =
(log(tf(j,i))+1)log(N/dfj)√∑t

k=1[(log(tf(k,i))+1)log(N/dfk)]2
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where D is the document-term matrix of the collection. So the relevance score

is given by:

R(Di, Q) = dT
i DT Dq (2.5)

Machine learning can also be employed to learning the term correlation ma-

trix W , and the score function is

R(Di, Q) = dT
i Wq (2.6)

Here W is the term correlation matrix that can be learnt using polynomial

semantic indexing [11]. Other approaches to handle the term mismatch problem

include semantic networks [51] and Latent Semantic Indexing [44].

2.1.1.3 Other Query-Dependent Models

In addition to the Vector Space Model, there are other popular models used

in information retrieval, such as the probabilistic model. Given a query, the

probability of a document being relevant to the query, can be regarded as a

classification problem. The most well known probability model is BM25 [102].

On the other hand, Language Models [97] directly model the likelihood of the

document to generate the query. A survey of these models can be found in [59]

and [36].

2.1.1.4 Query-Independent Models

There are other models whose ranking are based on features, which are query

independent. Amongst them, the most successful model is PageRank [94], which

measures the importance of each page based on link structure derived from

web pages. Furthermore, there are many other link analysis methods, such as

TrustRank [61].

2.1.2 Evaluation Metric

In the previous sections, we introduced various retrieval models for an IR

system. In order to compare such models, evaluation metrics of effectiveness

need to be defined.
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The most common effectiveness measures are precision and recall, which

were introduced in the Cranfield study [119]. Given a document collection and

a few queries, it is assumed that assessors can provide relevance judgements,

mapping each query to all the relevant documents in the collection, which is

practical in small collections. To compare the performance, those queries are

issued to the competing retrieval models, result sets are respectively retrieved,

and the results can be either relevant or non-relevant. We denote the relevant

set of documents for the query by A, all retrieved set of documents for the query

by B, Ā by the non-relevant set and B̄ by the non-retrieved set.

Relevant Non-Relevant

Retrieved A ∩ B Ā ∩ B

Non-Retrieved A ∩ B̄ Ā ∩ B̄

Table 2.1: Different possible outcomes in the collection.

If we regard the Relevant as Positive and Non-Relevant as Negative, A ∩ B

is true positive (TP) as the retrieved results are relevant, Ā ∩ B is false positive

(FP) because the retrieved results are non-relevant, A ∩ B̄ is false negative

(FN) as relevant data is considered non-relevant by the system and Ā ∩ B̄ is

called true negative (TN) because non-relevant data is correctly recognized by

the system. Precision and recall are defined as:

Precision =
|A ∩B|
|B| =

|TP |
|TP |+ |FP | (2.7)

Recall =
|A ∩B|
|A| =

|TP |
|TP |+ |FN | (2.8)

In this scenario, a retrieval model can be viewed as a binary classifier which can

distinguish between relevant and non-relevant results from the whole collection.

Precision and recall are widely used in practice when evaluating the performance

of a binary classifier.

For the multi-class problem, microaveraged and macroaveraged metric are

used. The microaveraged precision is defined as:

Microprecision =
∑|C|

i=1 |TP |i∑|C|
i=1 |TP |i +

∑|C|
i=1 |FP |i

, (2.9)
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The microaveraged recall is defined as:

Microrecall =
∑|C|

i=1 |TP |i∑|C|
i=1 |TP |i +

∑|C|
i=1 |FN |i

, (2.10)

where |C| is the number of the classes, |TP |i is the number of true positives for

positive class i, |FP |i is the number of false positives for positive class i and

|FN |i is the number of false negatives for positive class i.

The definition of macroaveraged is as follows:

Macroprecision =
∑|C|

i=1 Precisioni

|C| , (2.11)

Macrorecall =
∑|C|

i=1 Recalli
|C| , (2.12)

Here precision and recall are defined in the usual way. The difference between

microaveraged and macroaveraged metric is that for the former, it gives equal

weight to each per-document classification decision, whereas macroaveraged

gives equal weight to each class. Therefore, for microaveraged, the accuracy

can be poor for classes with few positive examples without affecting the overall

numbers much.

In certain cases, a single metric is used to summarise the overall performance

of the system. The F measure proposed by Jardine and Rijsbergen [91] measures

the harmonic mean of precision and recall, which is defined as follows.

Fβ =
(β2 + 1)RP

(R + β2P )
, (2.13)

where R and P represent recall and precision respectively, and β is a parameter

between 0 to 1. In practice, the most common Fβ measure is F1, i.e.,

F1 =
2RP

R + P
(2.14)

Similarly, the microaveraged and macroaveraged F1 is defined as follows:

MicroF1 =
2×Microprecision×Microrecall

Microprecision + Microrecall
, (2.15)

MacroF1 =
∑|C|

i=1 F1i

|C| , (2.16)

Both recall and precision are defined with respect to a set of retrieved results.
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Another common evaluation metric is accuracy. The definition of it is as

follows:

Accuracy =
|TP |+ |TN |

|TP |+ |FP |+ |TN |+ |FN | (2.17)

A further measure of document retrieval system performance is called “ex-

pected search length” [39]. Given a list of ranked results, search length measures

the number of irrelevant results until the first relevant result is encountered.

Such an ordering is called “simple ordering” by William Cooper. Nevertheless,

a retrieved set of documents can be divided into multiple levels, each level con-

tains a subset of documents. For example, if a query contains 5 words, one

subset could be the documents having all 5 words, another subset could be the

documents containing only 4 words and so on. If we assume the documents

within each level are randomly ordered, expected search length is defined as

the average number of documents that must be examined to retrieve a given

number of relevant documents.

For a single search engine, the number of retrieved documents can be ex-

tremely large. So we need to choose a cut-off point to compute the precision
2. For example, precision at top 10, measures the accuracy within the top 10

retrieved documents. However, it does not take the document position into ac-

count. A model which ranks relevant documents in higher positions is better

than a model that ranks them in the lower positions. However, precision at the

top 10 can not distinguish between such models. To compare two ranked lists

more accurately, average precision is proposed as follows:

averprec =
1
k

k∑

i=1

Precision(ri), (2.18)

where ri is the set of ranked retrieved results from the top ranks until document

di and Precision(ri) is the precision in the top i results.

In recent years, mean average precision (MAP) has been used in many re-

search papers, which is the mean of average precision over all queries in the

test set. Other measures include the normalised discounted cumulative gain

(NDCG) [69], which is based on two assumptions:

2It is usually impossible in practice to measure recall because there is lack of knowledge of

the full relevant set for one query.
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• Highly relevant documents are more useful than marginally relevant doc-

uments.

• The lower the ranked position of a relevant document, the less useful it is

for the user, since it is less likely to be examined.

The discounted cumulative gain (DCG) is the total gain accumulated at a par-

ticular rank p. It is defined as:

DCGp = rel1 +
p∑

i=2

reli
log2i

(2.19)

where reli is the graded relevance level of the document retrieved at rank i

[24]. For the perfect ranking of one given query, the DCG value will be maxi-

mized. This maximized DCG value is called ideal DCG value. The normalised

discounted cumulative gain (NDCG) for a given query can be defined as:

NDCGp =
DCGp

IDCGp
(2.20)

where IDCG is the ideal DCG value for the query.

2.1.3 Text Analysis Process

In the previous section, we introduced retrieval models and evaluation met-

rics. In retrieval models, term vectors are used to represent documents and

queries, which are associated with a text corpus. In addition, we describe the

use of term frequency and inverse document frequency to compute the weight

associated with each term. In this section, we will simply go through the text

analysis process, which will be encountered in the implementation of information

retrieval systems.

A typical text analysis process is shown in Figure 2.2.

Figure 2.2: Text analysis process

From Figure 2.2, we can see that there are four steps involved in the text

analysis process:
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1. Tokenization - Parse a stream of text into meaningful elements, called

tokens (terms).

2. Normalisation - Convert the terms to lowercase.

3. Elimination of stop words - Eliminate terms that appear very often and

do not have any discriminative ability, such as “the”, “a”.

4. Stemming - Reduce the terms to their root form, e.g. remove plurals and

strip off suffixes.

Many stemming algorithms exist, and in our work, we use the snowball stemmer

(http://snowball.tartarus.org/texts/introduction.html).

2.2 Machine Learning

Machine learning can be mainly divided into three topics: supervised learn-

ing (classification and regression), unsupervised learning and reinforcement learn-

ing [5]. Here we will focus on the first two kinds of learning as they are related

to this research.

In supervised learning, one typically wishes to learn models from labeled

data; the learnt models, if successful, will make predictions on future data.

On the other hand, unsupervised learning, which does not require any label,

typically requires us to make a useful description of the data by dividing the

data into groups (clusters).

Before we explain the algorithms, we will first introduce the feature types

of the instances that can be used as input. In general, there are four types of

feature values at the measurement level.

• Nominal. The value of a nominal instance is one of a different collection of

names; i.e., nominal values provide only information that can distinguish

one instance from another. A class label is one example of a nominal

feature.

• Ordinal. The value of an ordinal feature provides information to the order
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of an instance. Document rank from a search engine is one example of an

ordinal feature.

• Interval. For interval features, the difference between values are meaning-

ful. Calendar dates are an example of an interval feature.

• Ratio. For ratio features, both differences and ratios are meaningful. Term

frequency in a document is a form of ratio data.

More often, nominal and ordinal features are called qualitative features while

interval and ratio features are called quantitative features. In this thesis, we will

focus on quantitative features because they appear most often in our research

and can be the input to the machine learning function below.

A machine learning problem can be characterised by the following compo-

nents:

• The input space contains instances or objects under investigation: The

objects in our context are usually documents. They can be represented

by a vector, where each element of the vector indicates one feature of the

object. The data in the input space cannot usually feed into the learn-

ing machine algorithm directly and preprocessing is required to achieve a

desired performance.

• The output space contains the learning target with respect to the input

objects. For example, given a web page, the output space can be either

yes or no indicating whether or not it belongs to sports category. However,

the output space is not limited to a single decision or a scalar number,

rather it may have structure.

• The hypothesis space defines the function space for mapping the input

to the output. In order to find the optimal hypothesis, training data is

necessary to tune the model. One principle approach to evaluate tuning

is to define a loss function (or equivalently a likelihood function3) based

on the predicted output in comparison to the true output. Thereafter
3In Gaussian distribution, maximising the likelihood is the same as minimising the loss

function
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optimisation methods are applied to find the optimal results. However,

empirical results show that if we only optimise a model for the training

data, the tuned model can work perfectly for training data, yet make

poor predictions for the test data; this is called over-fitting. To achieve

a better generalization ability, regularisation [34] may be adopted into

the loss function. The main idea of regularisation is to introduce the

trade-off between the empirical loss and model complexity to the problem.

There are at least three different ways of regularization: 1) Explicitly

via constraints on model complexity. 2) Implicitly through incremental

building of the model. 3) Implicitly through the choice of robust loss

functions. Another approach is called the Bayesian model, in this case, loss

minimisation corresponds to the likelihood function and the regularisation

can be regarded as a prior on the model. One advantage of the Bayesian

model is that it can support nonparametric inference [52], thus the model

is less restricted than a parametric model.

2.2.1 Unsupervised Learning

Unsupervised learning is also called clustering or exploratory data analysis.

In clustering there is no labeled data available for training. The goal of clustering

is to make use of data similarity to separate a finite, unlabeled data set into a

finite, discrete set of hidden groups or clusters.

Given a data set, the first problem we should address is how to measure the

distance between a pair of instances.

We will now present some proximity measures commonly used in clustering.

Perhaps the most commonly used distance metric is the Euclidean distance,

defined as

D(xi,xj) =
( d∑

l=1

|xil − xjl|2
)1/2

. (2.21)

Euclidean distance can be generalized to a family of metrics, called the Lp

norm, defined as,

D(xi,xj) =
( d∑

l=1

|xil − xjl|p
)1/p

, (2.22)
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when p = 2, it is the Euclidean distance.

The cosine similarity (Equation 2.2) is a useful measure in information re-

trieval.

Clustering algorithms can be categorised as flat clustering (as in K-means)

or hierarchical clustering (as in agglomerative hierarchical clustering).

The K-means algorithm [53] is one of the best known and most popular

clustering algorithms. It seeks an optimal partition of the data into K clusters

by, for example, minimising the sum of the squared distance between each data

point to the mean of the corresponding data points in its cluster. It involves an

iterative optimisation procedure to seek an optimal solution, which often leads

to a local minimum rather than a global one.

Agglomerative clustering belongs to the category of hierarchical clustering.

It starts with n clusters, each of which includes exactly one data point, then

a series of merge operations is carried out until all clusters are merged into

the same cluster. The merge operation occurs between two clusters with the

highest intercluster similarity. Finally it collapses down to as many clusters as

requested. This kind of clustering is widely used in document clustering and

other IR applications [121].

Although clustering is different from classification, it is possible to incor-

porate clustering into classification to enhance its performance, e.g. K-means

classifier [63].

Unlike classification, to evaluate cluster validity is problematic due to the

absence of ground truth knowledge. In this case, it is possible to use the objec-

tive function to evaluate the clustering quality, i.e., the objective function is the

one that should be minimised by the clustering algorithm.

2.2.2 Supervised Learning

Supervised learning refers to the machine learning task of inferring a func-

tion from supervised training data. Based on the type of output space, it can

generally be divided into two problems. If the output is a real value, this kind of
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learning model is essentially a regression problem. If the output is one of a finite

set of discrete values, it is called classification. We will focus on classification

problems.

The traditional problem setting for classification is as follows: consider in-

dependent and identically distributed data pairs (X1, Y1),...,(Xn, Yn) we have:

Xi = (Xi1, ..., Xid) ∈ X ⊂ Rd,

where Rd is a d -dimensional real vector and Yi is a discrete value in some finite

set Y. The task of classification is to discover a function h : X → Y, which will

make as few errors as possible on further data. When we observe a new input

X, we predict Y to be h(X).

In classification, it is typically assumed that (X,Y ) is a pair of random vari-

ables with some joint probability density P (X, Y ). The classification problem

can then be formally characterised as finding a function h which minimises the

error rate defined as

L(h) = P({h(X) 6= Y }).

In practice, we use empirical error rate, that is

L̂(h) =
1
n

n∑

i=1

I(h(X) 6= Y ),

where I(·) is the indicator function.

Amongst all classification models, k-nearest neighbour (KNN) is one of the

simplest and effective methods. KNN is an instance based learning method. It

makes use of the observations in the training set closest to the new input x to

predict Ŷ . Specifically, the KNN model is defined as follows:

Ŷ =
1
k

∑

xi∈Nk(x)

yi, (2.23)

where Nk(x) contains the k closest neighbours to the new input instance x in

the training set. There is only one parameter in this method, the number of

neighbours k; this parameter is usually estimated by cross-validation.

Computing the closeness, or equivalently the distance between two instances

can be problematic. For multivariate data points, the standard Euclidean dis-

tance (Equation 2.21) can be used. However, it assumes that the features are
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normalised and are of equal importance. One of the major problems is how to

adjust the weights to reflect the different significance of the features. In the

information retrieval area, the cosine distance is widely used to measure the

distance between two documents.

k-nearest neighbour does not build any model in advance; it only makes a

prediction when it receives a new instance. To find the k nearest neighbours for

a new instance, it is necessary to calculate the distances from the new instance

to every instance in the training set and select the closest. This procedure is

linear in the number of training instances. To make the search more efficient,

KD-trees [54] and Ball-trees [84] were proposed that make use of spatial data

structures to avoid searching all instances. Another approach to alleviate the

computation burden is to do approximate KNN [85].

KNN estimates the label of the new input based on the labels of its k nearest

neighbours. The decision boundary is arbitrary based on its local features. We

can also force the decision boundary to be smooth, and this leads to a global

discriminative model.

Amongst these discriminative models, the linear model is widely used be-

cause of its simplicity and interpretability. Such models include least squared

linear regression, linear discriminant analysis, logistic regression, perceptrons

and Support Vector Machines. A good survey of these methods can be found

in [63].

Here we will focus on Support Vector Machines.

If these data points are linearly separable, we can define the decision func-

tion:

h(x) = wT x + b, (2.24)

where w is a d -dimensional vector, b is a bias term, and for i = 1, ...n

wT xi + b =





> 0 for yi = 1,

< 0 for yi = -1.

(2.25)

Any such discriminant function defines a linear decision boundary in the feature

space that bisects the two training classes, and is characterised by h(x) = 0.

However, Figure 2.3 shows that there are many such hyperplanes separating the
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two classes. To select the hyperplane best suited to the task, SVMs maximise

the distance (margin) between the decision hyperplanes and the training points

closest to it. In Figure 2.3, the filled points are the closest data points to the

Figure 2.3: Optimal separating hyperplane in a two-dimensional space

decision hyperplane and the optimal hyperplane maximises the margin; these

points are called support vectors. It is easy to show that maximising the distance

is equivalent to solving:

min
w,b

1
2
wT w

subject to yi(wT xi) + b ≥ 1 ∀i = 1, . . . , n

(2.26)

In practice, the classes in the training data are not always separable. To handle

the general case, we must relax the inequalities in Equation 2.26 using slack

variables and modify the object function to penalise any failure to meet the

original inequalities. Then Equation 2.26 becomes [41]:

min
w,b

1
2
wT w + C

∑

i

ξi

subject to yi(wT xi) + b ≥ 1− ξi ∀i = 1, . . . , n

and ξi ≥ 0 ∀i = 1, . . . , n.

(2.27)

The constant parameter C controls the trade-off between the margin maximi-

sation and the misclassification error minimisation.
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The Lagrange (primal) function is then

Lp =
1
2
wT w + C

∑

i

ξi −
∑

i

αi[yi(wtxi) + b− (1− ξi)]−
∑

i

µiξi, (2.28)

which we minimise with respect to w, b and ξi. Setting the respective derivatives

to zero, we get

w =
∑

i

αiyixi, (2.29)

∑

i

αiyi = 0, and (2.30)

αi + µi = C. (2.31)

Thus substituting Equation 2.29 to Equation 2.31 to Equation 2.27, we obtain

the following dual problem. Maximise

L(α) =
n∑

i

αi − 1
2

n∑

i,j=1

αiαjyiyjxT
i xj , (2.32)

subject to the constraints
n∑

i=1

yiαi = 0, C ≥ αi ≥ 0 for i = 1, . . . , n. (2.33)

The decision function is then given by

h(x) =
∑

i∈S

αiyixT
i x + b, (2.34)

where S is the set of support vectors. This maximum margin problem in essence

is a quadratic optimisation problem, and for large scale data sets it is solved us-

ing a decomposition strategy followed by some additional optimisation methods

[96].

When the training data is not linearly separable, the obtained classifier may

not yield high generalisation ability even if we introduce slack variables. To

handle this problem, the original input space is usually mapped to a high-

dimensional feature space. Note that Equation 2.34 requires the inner product

of the two original instances. This implies that the inner product of the feature

spaces are required. We can define the feature function g(x) = (g1(x), . . . , gl(x))T

that maps the p-dimensional input vector x into an l -dimensional feature space.

Thus, the linear decision function in the features space is:

h(x) =
∑

i∈S

αiyig(xi)T g(x) + b. (2.35)
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For text categorisation, the data is in a rich dimensional feature space, and

in this case, the performance is similar with or without a mapping. We refer to

the case without using a mapping, a linear SVM.

In the Vector Space Model, a uni-gram model considers each term inde-

pendently, which will cause information loss. To partially solve this problem,

we can combine every two consecutive terms into an additional new feature,

which leads to a bi-gram model. In this way, we can achieve better results by

incorporating additional features. We call this model bi-gram SVM.

To solve the Support Vector Machine equation in the dual case, we have to

estimate the Lagrange parameter α, and several methods such as the sequential

minimal optimisation technique (SMO) [96], the cutting plane algorithm [74]

and the dual coordinate descent method [67] have been proposed to solve this

problem.

SVM can also be extended to solve other problems, such as ranking docu-

ments, using a method called ranking SVM [73], or structured prediction [115].

Other well known classifiers include Naive bayes, Rocchio and Decision Trees.

Empirical experiments show that Support Vector Machines achieve competitive

performance compared to other classifiers [72]. A comprehensive survey of clas-

sifiers for text classification can be found in [109].

To evaluate the performance of classifiers, we can use precision, and recall

or F1 as mentioned in Section 2.1.2. For multi-class classification problems, one

approach is to decompose the problem into several binary class problems and

then compute the performance on these sub-problems. There are two methods

to measure the results: Macroaveraging and Microaveraging. Macroaveraging

calculates the simple average over classes, whereas Microaveraging pools per-

document decisions across classes, and then computes an effectiveness measure

on the pooled contingency table. Please refer to Section 2.1.2 for details.
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2.3 Web Content Clustering and Classification

Clustering and classification have been widely applied to web content. We

will discuss web content clustering in Section 2.3.1, followed by web content

classification in Section 2.3.2 and end with a review of previous research of

search results classification in Section 2.3.3.

2.3.1 Web Content Clustering

Clustering is an approach to organise web information that has been re-

searched in the information retrieval community. The cluster hypothesis [117]

states that closely associated documents tend to be relevant to the same request,

which suggests that if one document from a cluster is relevant to a information

request, other documents in the cluster are likely to be more relevant as well.

This hypothesis has been justified in several experiments in the information

retrieval community.

There are several applications of clustering in IR:

1. Search results clustering. In [66], the authors presented a cluster-based

document browsing method, called Scatter/Gather, and validated the clus-

ter hypothesis that relevant documents tend to form clusters. The Grouper

system, described in [125], is one of the first systems for which an em-

pirical comparison was presented between web search behaviour using a

standard ranked-list approach versus a clustered approach. Their results

demonstrated the substantial difference in the patterns of use of clustered

presentation and standard ranked-list presentation. Clustering methods

typically extract key phrases from the search results for grouping purposes,

and attach to each group a candidate cluster label [92, 126]. The search

results are treated as a bag of words/phrases, which are ranked accord-

ing to the statistical features that have been found in them. Two cluster

based search engines available on the Web, are Clusty (www.clusty.com)

and Carrot-Search (search.carrotsearch.com/carrot2-webapp/search). A

survey of clustering search engines results can be found in [29].
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2. Collection clustering. In this approach the whole collection is clustered

first, and then presents the results to users hierarchically. It is effective

for exploratory browsing. Google news is one such example.

3. Cluster-based retrieval. It is similar to collection clustering, however, it

aims at improving retrieval rather than browsing. Given a query, it first

finds the closest cluster and then performs document search. This method

can improve retrieval performance in certain cases.

4. Language modeling. Clustering can provide a benefit to language mod-

eling. In [87], the authors incorporated the clusters into the smoothing

function and it was shown to outperform traditional document based re-

trieval in terms of precision and recall.

2.3.2 Web Content Classification

Classification has been widely applied in information retrieval. As web

searchers are subject to information overload, it is necessary, in our opinion,

to organise information according to one or more ontologies, so that the in-

formation is presented in a more controllable way for users to understand and

browse. However, it is infeasible for us to manually assign labels to all pages

on the Web. Therefore, automatic classification and clustering techniques are

required to handle this problem.

The general problem of web page classification can be divided into more spe-

cific problems: subject classification, functional classification, sentiment classi-

fication and other types of classification [98]. For example, assigning a relevant

topic, i.e., sports or entertainment to a document is considered to be subject

classification. Functional classification deals with the role of web pages. For

example, deciding whether a page is a “personal homepage” or a “course page”

is an instance of functional classification. In query classification, which is anal-

ogous to query type classification, each query is classified as an informational,

navigational or transactional query. Sentiment classification focus on the opin-

ion presented in a Web page [95].

In addition to the conventional text classification issues, such as high dimen-
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sionality, sparsity, Web page classification has some special characteristics:

• Web pages are semi-structured documents mostly written in HTML, where

the information is enclosed between tags. We can remove the tags to

convert a semi-structured document to an unstructured representation,

but those tags embed useful information for the user. For example, the

text between <title> tags usually has more weight attached to it than the

text between <p> tags.

• Web pages also contain topological information about the link graph. The

underlying assumption is that hyperlinks contain information about hu-

man judgements pertaining to the linked document. This feature is not

present in typical text classification problems.

We will describe a number of applications of classification in web information

retrieval.

• Classification of search results. Refer to Section 2.3.3.

• Ranking functions in IR. The probabilistic model assumes that informa-

tion retrieval is a classification problem, and in the simple case the judge-

ment of a document’s relevance is binary. For example, BM25 makes use

of the query term frequency in one document to estimate the relevance

score of the document [102]. More recently learning to rank [86] has be-

come popular in information retrieval. One strategy is to estimate pairwise

preferences from training data. Ranking SVM is one method that builds a

classifier to predict the preference for retrieved results, which is then used

for a final ranking.

• Focused crawling. In many cases a search engine is required to be fo-

cused on particular topics that are of interest to specific groups of users;

such a search engine is called a vertical search engine. Chakrabarti et al.

proposed focused crawling as an approach with which the crawler only

collects the documents of interest as measured by a classifier [30].

• Query classification. The user typically issues short queries when seeking

information. To find the exact information need is one of the core chal-
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lenges for search engines, and query classification may be useful in this

sense. Query classification can also be used for ad placement, and query

routing [114]. The task of the KDD-Cup 2005 competition was to classify

800,000 web user’s search queries into 67 predefined categories in conjunc-

tion with 111 manually labeled queries which act as examples [81]. Shen

et al [110] built an SVM classifier with the aid of the Open Directory,

and made use of relevance feedback to enrich the query terms providing

additional test data, to supplement the three categories involved in search

engines to achieve the best results in the competition [110].

• Classification is also useful for query answering systems [123], and web

content filtering [33].

Classification and clustering are methods that organise documents according

to certain criteria. However, there are significant differences between them.

• Classification requires training data while clustering does not.

• Classification is based on fixed taxonomy, while clustering is not. Clus-

tering is more flexible in this sense, but the cluster may not have a clear

interpretation as given by the generated cluster labels.

2.3.3 Search Results Classification

Many main commercial search engines present search results in a ranked list.

The ranks of the documents are determined by the relevance to the correspond-

ing query. This relevance measure is described in Section 2.1.1. Unfortunately,

those models cannot fully understand the user’s intention. Meanwhile, most

queries are short, making the query ambiguous or vague. This results in a low

precision in the retrieved results and forces the user to sift through the list to

find the relevant documents, in particular for informational queries. It will be

ideal if current search engines can separate the irrelevant documents from the

relevant documents. However, the ranked list interface of search engines cannot

solve this issue even ranking algorithms become perfect since users could have

different information needs when they issue the same query. Moreover, where
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users may be satisfied with one relevant result, i.e., for navigational queries or

queries in a question answering system, result diversification can be adopted,

which will benefit the user population overall within the ranked list interface.

Result diversification will be discussed later.

Search Result Classification has been proposed as a solution to this problem.

We will review the previous research on this topic.

Chen and Dumais [31] developed a system called SWISH in which the search

results were automatically classified into shallow hierarchical categories, where

only the top-two-level categories of a Web taxonomy ware used. They collected

web pages from LookSmart’s Web directory, which consists of 13 top-level cat-

egories and 150 second-level categories. A Support Vector Machines (SVM)

algorithm was used as the classifier [47]. The reported accuracy of SVM in

their work was about 70%. Then they conducted a user study to compare

the category-based interface (referred to as “Category Interface” henceforth)

with the conventional search interface where pages are arranged in a ranked

list (referred to as “List Interface”). They deliberately designed the user in-

terface to assist the search, i.e., presenting additional category information and

summaries of the web pages as hover text on the limited screen estate, using

heuristics to selectively present a small portion of the most useful information

on the screen for each category. The results convincingly demonstrated that

the category interface was superior to the list interface in both subjective and

objective measures.

Dumais et al. further evaluated seven interfaces for integrating semantic

category information with web search results. A automatic classifier was used

to categorize the search results. The seven interfaces include: 1) List interface

with hover summary. 2) List interface with summary inline. 3) List interface

with category names. 4) Category interface with hover summary. 5) Category

interface with summary inline. 6) Category interface with no category names.

7) Category interface with no page titles. A user study was conducted and

the results confirmed that Category interfaces were faster than List interfaces.

Even the List presentation with Category Names interface contains the same

information as the Category interface, the performance was much slower with
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the list. Also Inline summaries were more effective than summaries presented

as Hover text in spite of the fact that more scrolling was required. Offer Drori

[45] conducted a similar user study on list interfaces. The search results were

mostly manually assigned. He found that even in a list interface, displaying the

categories provided some benefit.

CatS [100] is a meta-search engine that utilized text classification techniques

to improve the presentation of search results. The taxonomy was based on the

top 2 levels of the Open Directory Project, while many categories of the second

level were merged or discarded. A NaiveBayes classifier was trained using web-

page titles and descriptions from the data of the Open Directory Project. Some

key aspects of the system (including HTML parsing, classification and displaying

of results) were described and five text classification algorithms were compared

in the experiments. However, the authors did not provide any utility analysis

of the system and no experiment confirmed the benefits of the system.

The above research focused on shallow hierarchical categories. Dikan Xing

et al. thought that it may be too coarse for users to browse. To solve this issue,

a deep classifier [122] was proposed. A user query was first issued to a web

directory, for example to the Open Directory, and the corresponding categories

of the results were used to prune the original hierarchy into a decent size while

reserving the hierarchical structure and depth. Then sufficient training data

were collected to build reliable classifiers (Naive Bayes Classifier) for classifying

the retrieved search results. Therefore, this system can provide more informative

class labels for users’ browsing. Although their approach can improve the system

in terms of the accuracy and the speed, the authors did not demonstrate the

advantage of the deep classifier in terms of users’ search behavior.

Search results classification is related to another two research directions.

• Query performance prediction.

• Search results diversification.

Query performance prediction [64, 43, 128] is an interesting and important topic

in Information Retrieval. Amati et al. [6] showed that the use of query per-

formance predictors allowed to devise a selective decision methodology to avoid
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the failure of query expansion. The basic idea is that a query whose highly

ranked documents are about a single topic has a model characterized by un-

usually large probabilities for a small number of topical terms, so such queries

will have a high score. If a query returns a mix of articles about different top-

ics, the articles have a model that is smoother and more like the model of the

collection as a whole, therefore those low-coherence queries would get a low

score. Cronen-Townsend et al. define the measure related to the lack of am-

biguity called clarity score [43]. The score for the query is typically measured

by Kullback-Leibler divergence [18] between the query and collection language

models [43]. In the absence of topics for retrieved results, those work resort to

the approach to measure the divergence between the terms distribution from a

query language model or highly ranked documents and the collection models. In

our work, the topic information of each retrieved document is available through

the classification. Then we can estimate the clarity score based on the distribu-

tion of the topics, i.e., if most of the retrieved results are in the same class, such

a query will have a high clarity score. So we do not require the information of

the collection to measure the clarity score, but one training data set is necessary

for the classifier.

As user queries are short and sometimes ambiguous, the users will have

various desired information needs even when they issued the same query. Con-

ventional search engines will return one set of retrieved results depending on

the users’ queries, not the user. Result diversification had been proposed for

this problem [57] when users may be satisfied with one relevant result, i.e., nav-

igational queries. Ideally, the document ordering for the query should properly

account for the interests of the overall user population [37]. Result diversi-

fication is usually carried out by similarity functions or conditional relevance

distributions defined over documents [127, 32] or by user feedback [99]. Zhai

[127] formalized this problem within a risk minimization framework and pro-

posed two loss functions that lead to a selection of diverse results. Chen et

al [32] proposed the idea that documents should be selected sequentially ac-

cording to the probability of the document being relevant conditioned on the

documents that came before. More recently, Davood Rafiel et al [101] model the

problem as a constrained expectation maximization and estimate the correla-
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tion between pages based on the past search data and textual contents. Rakesh

Agrawal et al [3] study this problem in a similar approach to our work. They

selected documents sequentially based on marginal utility, which is a measure

of the probability that the selected document satisfies the user given that all

documents that come before it fail to do so. More specifically, they select the

diverse documents based on a probability distribution of categories for the query

(which is a query classification question in our work) and the quality value of

the documents, which is the probability that a document satisfies a user who

issued the query with the intended category. Although previous research is

related to our work when considering the relationship of retrieved documents,

there are explicit distinctions. Result diversification focuses on the reranking of

the search results in a list interface. Our work makes use of a category-based

interface. Result diversification will consider the trade-off between relevance

and novelty of the documents given the limited user interface; Our approach

presents the retrieved documents in term of categories, so the space limitation

is not an issue. Moreover, our approach can also benefit informational queries

and poor navigational queries.

In addition to the search results classification, there is another issue - ranking

categories. Demartini et al. [55] investigated this problem recently. They

conducted a user study on a small scale and found that the average similarity

between the user query and the documents within each category yields the best

category ranking.

Another way to organize the search results is by clustering. Like classifi-

cation, it aims at partitioning a dataset into subsets that bear similar charac-

teristics. However, it is different for classification. Clustering is unsupervised

learning, which does not require training data, i.e., it does not assume any prior

knowledge. Clustering does not assume a fix taxonomy, although it seems to

be flexible, in practice, it can cause some issues. For example, in the context

of search result categorization, clustering should provide a reasonable label for

each subset to help users understand the topic of such subset. However, such

labels are generated on the fly and users may not understand its underlying

meaning [31]. To generate a meaningful label is still an on-going research prob-

lem in information retrieval. Classification does not suffer from this issue. This
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is because it has an explicit fixed class structure and class labels. Moreover,

such labels are well defined. The user can gain a better understanding of such

labels through practice even if they are not familiar with the labels.
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Chapter 3

A Model for

Classification-Based Search

Engines

In this section, we will discuss the problem of traditional search engines and

present a model for classification-based search. In addition, metrics are defined

to measure the performance of the system.

3.1 Problem Description

Search engines play a crucial role in information retrieval on the web. Given

a query, search engines, such as Google, Yahoo! and Bing, return a ranked list

of results, referred to as the result set. For many queries, the result set includes

documents on a variety of topics, rather than a single topic. This variation

is often due to the fact that a typical query contains about only two to three

terms, which is insufficient to locate the desired information unambiguously.

For example, the query “Jaguar” will often return documents referring to both

the car and the animal. While the user is only interested in one topic, it is

not possible for a search engine to know which topic is relevant based on the
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query alone. Moreover, the standard ranking of the documents in the result set

is independent of the topic. Thus, the rank-ordered result set has an arbitrary

topic ordering. Referring to the “Jaguar” example, this means that a user must

scroll through a ranked list in which many documents may be irrelevant.

In Chapter 2 we reviewed how grouping strategy can assist the user by or-

ganising the documents in the result set into groups, all documents within a

group referring to a common topic. Intuitively, for the case that users may be

satisfied with one relevant result, we would expect grouping to substantially

reduce search time [76], where search time is measured by the number of docu-

ments a user must examine before finding the desired document. For the query

“Jaguar”, a user might be shown two distinct groups of documents: one referring

to the animal and the other referring to the car brand. A user can immediately

ignore the non-relevant topic and focus his attention to only the relevant topic.

For this simple example, this grouping may, on average, halve the number of

documents the user must examine.

Although previous researchers have evaluated their prototype systems, there

has been no attempt, to our knowledge, of formulating a generic user interac-

tion model for a retrieval system, which allows the benefits of grouping to be

quantified in comparison to a standard retrieval system which does not group

its results.

3.2 Classification-Based Search Engines

We describe the architecture and ranking methods of a classification-based

IR system that we have been developing. We assume the existence of a standard

retrieval system that, given a query, returns a ranked list of documents as the

result set. Web search engines such as Google, Bing and Yahoo! satisfy this

assumption.

Given a ranked set of documents, it is necessary in our proposed system

to classify the documents into their respective classes. Figure 3.1 provides a

conceptual view of the classification-based information retrieval system we have

developed. Figure 3.1a depicts the ranked set of documents provided by a
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(a) Standard IR model (b) Classification-based IR model

(c) Results in class B

Figure 3.1: Conceptual illustration of a classification-based IR system

standard IR system. Our system classifies these documents into a number of

classes, ranks the classes and then displays a ranked list of classes to the user, as

depicted in Figure 3.1b. When a user clicks on a particular class, the ranked set

of documents in this class is then displayed to the user, as shown in Figure 3.1c.

We now provide a more formal framework for our system. We assume that

there are |D| documents in the original result set, D, and we denote the standard

IR rank of a document, dk ∈ D as s(dk); we refer to this rank as the list rank

(LR). For convenience of presentation we assume that the documents are ordered

such that document dk has list rank s(dk) = k. According to eye tracking
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experiments1 and [75], the position in the list can be approximated by the time

it takes to find a result. Thus, in the remaining work, rank will be used as a

proxy for the search time.

3.2.1 Class Rank

After performing classification on the original result set returned by the

standard IR system, the documents are grouped into |C| top-level classes. Each

class, ci, consists of a set of documents, di,j , where 1 ≤ j ≤ |ci|, and |ci| denotes

the number of documents in a class, ci. Classification hierarchies will be briefly

discussed in Section 3.4.

Given the set of classes, C, a rank ordering of the classes is necessary. For

a document, di,j , let ψ(i, j) = k denote the corresponding index of the same

document in the initial result set as output by the standard IR system. For

each document, di,j in class i, we associate a score t(di,j) = k. Each class, Ci,

is then assigned a score

φ(ci) = −min(t(di,j)) for 1 ≤ j ≤ |ci|,

where φ(ci) outputs the score for each class; and in order to maximize the

score for each class, we take the negative of the min function. In our case, the

score of each class, which determines the class rank, is based on the document

with highest list rank within the class. For notational convenience, we assume

the classes to be ordered such that class ci has rank i.

The result is illustrated in Figure 3.2. On the left part of Figure 3.2 is the

retrieved results set, we assume the asterisked document is the target document,

in this case, it is document 5. The results are classified into 3 classes as shown

in the middle part. The ranking is illustrated in the right panel and it is ordered

by the class score, which is determined by the top ranked document within the

class, i.e., d1, d3 and d4 respectively.

We believe that this simple method of ranking classes is novel and, more

importantly, minimises the affects of the ranking method on the performance
1http://www.useit.com/alertbox/reading pattern.html
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Figure 3.2: The Illustration of Ranks

of the classification-based system. Conversely, if we had developed a more so-

phisticated ranking system for classes and documents within classes (see Sec-

tion 3.2.2), then it becomes increasingly difficult to determine whether differ-

ences in performance compared with a standard IR system are due to classi-

fication, or the new ranking algorithm. We will leave the discussion of other

advanced class ranking methods to Chapter 5.

3.2.2 Document Rank

Having ranked each class, it is now necessary to rank the documents, di,j ,

within each class, ci. To do so, we assume the existence of a function, ϕ(di,j),

that outputs a score for each document. Here we adopt one of the most popular

methods, the list ranks of the documents, t(dk), as output by the standard

IR system, as a score for each document and rank the documents accordingly.

Thus, the score for document, di,j , in class, ci is given by ϕ(di,j) = −t(dψ(i,j)).

Documents within the class are then ranked according to their scores, the

highest score being ranked first, as in traditional search engines. For notational

convenience, we assume the documents to be ordered such that document di,j

has rank j in class ci.
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3.2.3 Scrolled-Class Rank (SCR)

As we shall see shortly, it is often useful to talk about the scrolled class

rank, denoted by s(di,j), which we define as the total number of classes and

documents a user must examine to find document di,j by sequentially scrolling

through each class and its associated documents in rank order.

In this case, the user will look at i classes, and all of the documents in the

previous i-1 classes together with the first j documents of the last class. Thus,

the scrolled-class rank of document, di,j is given by

s(di,j) = i +
i−1∑

k=1

|ck|+ j. (3.1)

Referring to Figure 3.2, the target document is d2,2 and the scrolled-class

rank is

s(d2,2) = 2 + 3 + 2 = 7. (3.2)

3.2.4 In-Class Rank (ICR)

When a user selects a class, it may or may not contain the target document.

When the document is present in the class, we refer to this as the in-class rank.

The in-class rank measures the number of class labels and documents that the

user examines, when the target document, dk = di,j is in class, ci. The in-class

rank is

r(di,j) = i + j, (3.3)

since the user must look at the first i-ranked class descriptions and then the

first j-ranked documents within the known class.

Therefore, for target document in Figure 3.2, the in-class rank is

r(d2,2) = 2 + 2 = 4. (3.4)

However, in general, a classification-based IR system introduces a small over-

head. If the target document is ranked high, then this overhead may be notice-

able. For example, when the target document with a list rank of 1, i.e., it is the

top ranked document, the in-class rank is 2 because we must first look at the

class before finding the target document.
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3.2.5 Out-Class/Scrolled-Class Rank (OSCR) and Out-

Class/Revert Rank (ORR)

If the target document is not within the selected class, then the user must

perform additional work. We refer to this situation as the “Out-Class”. Upon

failing to acquire the target document in the chosen class, the user may choose

to either:

(i) scroll through the classes and the documents in each class in rank order,

or

(ii) revert to the standard IR display and sequentially scroll through the

ranked result set.

The out-class/scrolled-class rank and out-class/revert rank are, respectively,

the number of documents the user must then examine in order to find the target

in case (i) and (ii) above. We now formalise these notions.

The out-class/scrolled-class rank, p(di,j), is the total number of class labels

and documents that a user must examine in order to find the document for case

(i), where the users chooses to scroll through the classes and documents in rank

order, after not finding the target in the selected class. Let ce denote the class

the user erroneously selects. Then the out-class/scrolled-class rank is given by

p(di,j) =





(e + |ce|) + s(di,j) if e > i,

e + s(di,j) if e < i.
(3.5)

In Figure 3.2, if the user first selects class 3, i.e., e = 3, the out-class/scrolled-

class rank is

p(d2,2) = 3 + 2 + 7 = 12. (3.6)

If the user first selects class 1, then the out-class/scrolled-class rank is

p(d2,2) = 1 + 7 = 8. (3.7)

The out-class/revert rank, q(di,j), is the total number of class labels and

documents that a user must examine in order to find the document for case (ii),
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where the user reverts to the standard result set, i.e. no classification is used in

the second phase of the search. The out-class/revert rank is given by

q(di,j) = (e + |ce|) + t(dψ(i,j)) = (e + |ce|) + t(dk) = (e + |ce|) + k, (3.8)

where ψ(i, j) = k. Note that the out-class/revert rank is a hybrid search

strategy that begins with a classification-based strategy and reverts to a ranked-

list strategy if the document is not present in the first class selected. This hybrid

strategy is different from the presentation in cluster-based search engines, where

the user is presented with the ranked listing in a main window and the clusters

in another.

If we assume the user selects the class 1 and then revert to standard IR

display, the out-class/revert rank in our example is

q(d2,2) = 1 + 3 + 5 = 9. (3.9)

3.2.6 Classification

We have, until now, ignored how classification is performed. In the experi-

ments of Section 3.4 we assume two cases.

In the first case we assume we have an oracle based on 12 top level categories

of the Open Directory that correctly classifies the documents. Of course, in

practice, this is not possible. However, analysis of this case provides us with

valuable information regarding the best-case performance of the system. Any

other system in which classification errors occur will perform worse.

In the second case, we assume classification is performed based on a k -

nearest neighbour (KNN) classifier [46]. That is, after removing the stop word

and stemming, all training data and the corresponding class labels are indexed

using Lucene2. Given a test document, dj , one query is automatically generated

based on term frequency. Then we issue it to training data and we retrieve its

k most similar documents. The class label with majority vote is assigned to

the test document as its class label. The similarity is calculated based on the
2http://lucene.apache.org
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following default scoring formulae [1]:

scored =
∑
t∈q

(tf(t in d)× idf(t)2 × boost(t.field in d)×

lengthNorm(t.field in d))× coord(q, d)× queryNorm(q)

(3.10)

where scored is the score for document d.
∑

t∈q represents sum for all terms t

occurred in query, tf(t in d) is Term frequency factor for the term (t) in the doc-

ument (d). idf(t) is invert document frequency of the term. boost(t.field in d)

is field and document boost. lengthNorm(t.field in d) is the normalization

value of a field, given the number of terms within the field. coord(q, d) is Co-

ordination factor, based on the number of query terms the document contains.

queryNorm(q) is normalization value for a query, given the sum of the squared

weights of each of the query terms. For details we refer to [58] and online java

document. Based on our experiments, we found that using 15 most frequent

words as a query and selecting 15 nearest neighbours can obtain the best results.

In the remaining section, we will use 15 words as a query and retrieve 15 nearest

neighbours. Note here the scoring method is a variant of cosine similarity in

vector space model as we mentioned in Chapter 2. Although in vector space

model, the weights can be boolean value, i.e., 1 if the word occurred in the

document and 0 otherwise, or term frequency value, tf-idf weighting scheme is

adopted in the experiment and it is believed to produce search results of high

quality. For the comparison of other weighting schemes, we refer to Gerard

Salton’s paper [106].

We believe that the KNN classifier may not be the best classifier and it

can be improved further, but it is simple to be applied to our experiment. The

performance of the classifier is an important factor in classification-based search

systems; however, our target is to evaluate the performance of classification-

based search and our evaluation methodology can be applied to any kind of

grouping system, no matter how good the grouper is.
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3.3 Experimental Methodology

In this section, we will describe the experimental methodology, in particular

how we design the target testing experiment, how we generate the query and

user/machine models for the respective ranks.

3.3.1 Target Testing

The experimental methodology simulates a user performing a known-item

search, also referred to as target testing [42].

In our context we make use of target testing to evaluate the performance

of a classification-based retrieval system. The motivation is that target testing

allows us to evaluate the system automatically without users, and is a precursor

to user testing. Additionally, target testing allows us to evaluate the system

on numerous queries at a minimal cost in comparison to user testing. However,

target testing has some drawbacks in that the queries generated for target testing

do not necessarily simulate “real” user queries. Moreover, good performance

of the system for target testing does not guarantee similar performance when

testing the system with “real” users.

3.3.2 Automatic query generation

For a given document repository, in our case extracted from the Open Di-

rectory, we randomly select documents as targets. For each target document,

a user query is automatically generated by selecting a number of words from

the target document. This can be performed in a variety of ways (cf. [9, 118]).

However, the exact procedure is not important. We only require that queries

can be generated so that the target document appears in retrieved result set

within a designated range of list rank. This allows us to simulate a range of

good (high ranking) to poor (low ranking) queries.
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3.3.3 User/Machine models

Table 3.1 summarises the models and corresponding user strategies we de-

scribed in section 3.2. The three user models are (i) the user knows the class

(cases 1 and 4); (ii) the user does not know the class (cases 2 and 5) and, (iii)

the user thinks he knows the class (cases 3 and 6). Note that there are two cases

associated with each user model, because there are two machine models (cor-

rect/incorrect classification of the target document). In Table 3.1, we assume

that the user employs the search strategies we introduced in Section 3.2.

simulated user/target correctly classified misclassified

knows the class Case 1 : ICR
Case4a : OSCR

Case4b : ORR

does not know the class
Case2a : SCR Case5a : SCR

Case2b : LR Case5b : LR

thinks knows the class
Case3a : OSCR Case6a : OSCR

Case3b : ORR Case6b : ORR

Table 3.1: Summary of the operating conditions and the number of classes and

documents examined in each case.

Notation Meaning

LR List rank

SCR Scrolled-Class Rank

ICR In-Class Rank

OSCR Out-Class/Scrolled-Class Rank

ORR Out-Class/Revert Rank

Table 3.2: Summary of the notations used in Table 3.1.

Table 3.2 summarizes the notations used in Table 3.1. Refer to Section 3.2

for details.
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3.4 Experiments

The dataset used in our experiments is derived from the Open Directory

Project (ODP), a comprehensive human edited directory of the Web, compiled

by a global community of volunteer editors.

We have selected the following 12 top-level classes to construct our testset:

Arts, Business, Computers, Games, Health, Kids and Teens, Society, Science,

Shopping, Home, Sports and Recreation.

We downloaded all the documents from these 12 top-level classes during

September 2006. After removing noisy and trivial data3, we divided the re-

maining 792,030 documents into a training set (500,430 documents) and a test

set (291,600 documents). The training set was used for classification using a

k-nearest neighbour classifier.

We randomly selected 600 target documents from the test set, and for each

target document we generated 10 queries. The queries were designed so that

the list rank of the target document retrieved by the standard IR system fell

into one of 10 intervals of rank, namely 1-5, 6-10, 11-15, 16-20, 21-25, 26-30,

31-35, 36-40, 41-45, and 46-50. Thus, for each target document, we used a set of

10 queries that ranged from “very good” (list rank between 1-5) to “very poor”

(list rank 36-50). The experimental results were averaged over all 600 target

documents.

The underlying IR system is based on the open-source search software,

Lucene. For stemming we make use of the open-source stemmer, Snowball
4. The default document ranking algorithm from Lucene was used.

3.4.1 Experimental results

We performed three groups of experiments. In the first two, we restricted

searches to documents contained only in the Open Directory. In our first experi-

ment, we are therefore able to use the Open Directory as an oracle to classify the
3Any document of length less than 50 bytes was removed. Any document that consisted

of images, pdf, excel and word was also removed.
4http://snowball.tartarus.org
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result set. The second experiment used a k-nearest neighbour classifier trained

on a subset of the Open Directory to classify the result set. In the final set

of experiments, documents were retrieved from Google, and classification was

performed using the k -nearest neighbour classifier.

3.4.1.1 Classification Based on Random Classifier

A random classifier serves as a base line for our system. Given 12 classes,

a random classifier will predict each document with equal probability of being

one of the 12 classes. Therefore, the prediction is data independent. Hence,

the distribution of the number of class selected and the distribution of class size

follows a certain distribution for a random classifier. More specifically,

• For each query, the number of classes selected for retrieved result set is

proportional to the number of ways to select k classes and the number of

ways to assign the retrieved result set into the k classes.

• For each class, the number of documents in that class is also a binomial

distribution [17].

The number of classes selected is as follows:
(

12
k

) ∑

k1,...kk

(
n

k1, ..., kk

)
, subject to k1 + ... + kk = k and ki > 0

Where
(
12
k

)
is the number of ways to select k classes. The sum of multinomial

coefficient measures the number of ways to assign the retrieved result set into

k classes. This is due to the fact that to assign n documents into k classes is

equivalent to assign n different ball into k different boxes and it is a classical

combinational problem, the standard solution is multinomial coefficient.

For each class, the probability of one document being classified into it is
1
12 , and the probability of the document not being in the class is 11

12 . For one

document, this is one Bernoulli trial. If we carry on a sequence of independent

Bernoulli trials, which means we try to predict a sequence of assignments of

documents into classes, we obtain a binomial distribution [17],
(

n

r

)
(

1
12

)r(
11
12

)n−r,
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where n is the number of retrieved results, r is the random variable that measures

the number of results in one class.

We simulate the case that each result is randomly classified into one of the

12 classes, and the target document will be correctly classified into the correct

class with a probability of 11
12 . Figure 3.3a shows the performance of a random

classifier. The probability of the target document being one class is uniform

across all ranks. So the cumulative distribution increases linearly from 0 to 1.

Moreover, the random classifier perform worse than all other classifiers except

Scrolled-Class Rank (worst case) when initial list rank is greater than 27.

3.4.1.2 Classification Based on an Oracle

Each of the 600 documents has been manually classified into one of the 12

classes. Thus, Open Directory provides us with an oracle with which to classify

all documents in the original result set. This allows us to first examine the

best-case performance of our classification-based IR system, i.e. when there are

no machine classification errors and the simulated user knows the correct class

(case C1 in Table 3.1).

We can also introduce and control error rates for both the user and the ma-

chine classifier. Note that, from Table 3.1, user errors and machine classification

errors both result in the same search length (cases C3, C4, and C6). Moreover,

the two cases where the user is aware that they do not know the class (cases

C2 and C5) are unaffected by the machine misclassification. Thus, when we re-

port error rates, we do not distinguish between human and machine error rates.

Rather, the error rate represents the combination of the two.

Figure 3.3a summarises the results for these cases. It shows the cumulative

probability of finding the target document as a function of the rank of the target

document. We note that for the standard IR system, the rank corresponds to the

list rank (LR). For the error-free case, the rank corresponds to the in-class rank

(ICR). For non-zero error rates, the rank corresponds to the ranks summarised

in Table 3.1.

For the standard IR system, the list rank (LR) is a straight line, since the
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list rank is evenly distributed within the 10 intervals described above. We see

that for the error-free case (ICR), the classification-based IR system performs

significantly better than the standard IR system (LR). In particular, we observe

that approximately 60% of all target documents have a rank of 10 or less. That

is, for an ideal user and no machine misclassification (case C1), the user must

look at no more than 10 classes and documents in order to locate the target

document.

The oracle also allows us to control the misclassification rate. The rates we

describe can best be thought of as the combined user and machine error rates.

We introduced an error rate of x% as follows: for x% of the 600 queries, the

user randomly selects a class that does not contain the target document, and

then uses the out-class/revert (ORR) ranking strategy to locate the document.

For the remaining (100− x)% of queries, the user chooses the correct class and

the target document is found using the in-class ranking (ICR) strategy. Thus,

the curves for non-zero error rates represent a combination of two strategies,

ICR and ORR.

For an overall error rate of 15%, we observe a decline in performance, as

expected. However, at this error rate, the classification-based IR system still

performs significantly better than the standard system. For example, over 50%

of all target documents have a rank of 10 or less. As the overall error rate in-

creases, the performance degrades. However, this degradation is rather smooth

and even with an error rate of 30%, the performance remains significantly better

than that of the standard IR system.

Finally, for completeness, Figure 3.3a also shows the cumulative distribution

for the scrolled-class rank (SCR). This curve is significantly worse than the list

rank of the standard IR system. Figure 3.3a shows that in cases C2 and C5,

when the user does not know the class, he is best advised to abandon the

classification-based IR system and immediately return to the standard system,

i.e. follow the second strategy of list-rank (LR) in Table 3.1. Moreover, in cases

C3, C4 and C6, where we have either a user or machine error, if the user does

not find the target in the class he knows or thinks is the correct class, the advice

is the same, i.e., revert to the standard system following the second strategy of
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out-class/revert (ORR) in Table 3.1. That is, a hybrid-based search strategy

performs better than either a category-based or ranked-listing alone.

It is important to recognise that the cumulative distribution does not present

the full story. Figure 3.3b plots the median search length as a function of the

list rank. Note that here we use the median search length distribution since the

search length is highly biased by a small number of outliers, while the median

is more robust to this bias. It is clear that for target documents with a low list

rank (less than 5), the median search length using a classification-based system

is slightly longer, on average, due to the overhead of inspecting the class de-

scription or when an error occurs. Thus, for very good queries, a classification

based system actually increases the search length slightly. Conversely, for poorer

queries, the median rank of the target document in the classification-based sys-

tem is always shorter, on average. Interestingly, both the standard IR system

and the classification-based system have regions of superior performance. Only

when the initial query is poorer, i.e. the list rank is below a certain threshold,

does the classification-based system offer superior performance.

Figure 3.3b also shows, as expected, that this threshold increases as the

misclassification rate increases and it is more evident for poor queries. Thus,

for example, for a misclassification rate of 25%, the list rank must be greater

than 7 before a classification-based system is superior.

It is also worth noting that in Figure 3.3b the quality of the initial queries is

uniformly distributed, by design. Thus, 10% of queries have an initial list rank

between 1-5, another 10% between 6-10, and so on. In practice, the distribu-

tion of queries is a function of (i) the user, (ii) the distribution of documents

in the database, and (iii) the document scoring function [118]. Thus the bene-

fits of a classification-based system will depend strongly on the distribution of

the queries. It is interesting to note that a number of studies, such as [13, 113],

that have reported poor correlations between user judgments of document rank-

ings and those produced by search engines, suggesting that classification-based

systems may be useful in practice.
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3.4.1.3 k-Nearest Neighbour Classification

The experiments of the previous section show that very good performance

can be expected from a classification-based system, especially for poorer queries.

The definition of a “poorer query”, is a query for which the list rank is larger

than a given threshold, varies with the misclassification rate. Simulated mis-

classification rates of 15-30% suggest that (i) performance degrades gracefully

as the error rate increases, and (ii) useful performance improvements can still

be obtained with relatively large error rates.

To investigate what the misclassification rate we could expect from a classi-

fier, we implemented a simple non-disjoint k-nearest neighbour (KNN) classifier.

The repository of documents remains the same, permitting us to measure the

misclassification rate at 16%. Figures 3.4a and 3.4b show the cumulative distri-

bution and median search length, respectively, in this case. Clearly, even at this

error rate, significant improvements can be obtained, depending on the query

distribution.

3.4.1.4 k-Nearest Neighbour Classification in a More Realistic Sce-

nario

To investigate what misclassification rate expected from a classifier in a

realistic scenario, we implemented a k-nearest neighbour classifier over a real

search engine. Due to the absence of an oracle for retrieved results, we can

only estimate the classifier’s accuracy based on the target document, not on all

retrieved documents. It may not fully reflect the performance of our classifier,

but this measure can be used to approximate our system’s performance.

Compared to the previous results shown in Figure 3.4a, Figure 3.5a shows

that the misclassification rate of the k-nearest neighbour is about 30%, which is

worse than the previous results. The performance degeneration is due to the fact

we classify the target document using snippets generated from Google, rather

than the full document in previous experiment. However, we are still able to

see that these results are consistent with the previous conclusions. Moreover,

for this more realistic case the classifier trained from Open Directory snippets
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reduces the misclassification rate to about 28%, which is slight better than

that trained on the full text of web pages. Figure 3.5b shows that for poor
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Figure 3.5: Results for the KNN classifier in real case

queries, the combined class rank will achieve a better performance than list

rank. However, the trend in the curve is not as clear as the previous curve in

Figure 3.4b. It is also evident that the curve has high variance. Nevertheless,

our general conclusion that the hybrid-based search strategy performs better

than a category-based or ranked-list alone, is still valid.
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3.5 Discussion

We have examined how a hybrid model of an IR system might benefit a user.

Our study was based on several novel ideas and assumptions.

In order to investigate the best-case performance, in Section 3.4 we con-

structed a system using a subset of the Open Directory. All documents in this

subset have been manually classified and therefore provide “ground truth” for

comparison. The advantage of our approach to rank classes is two-fold. It is

simple, however, more importantly, this ranking closely approximates the list

rank, thus allowing comparison between the class rank and list rank. In ad-

dition, we identified three classes of simulated users and rational user search

strategies. By basing our evaluation using known-item search, we are able to

simulate a very large number of user searches and therefore provide statistically

significant experimental results. We acknowledge that real users may perform

differently, and the experiments in Chapter 5 imply the correlation between our

simulations, which provide an empirical upper bound on performance for real

users and the behavior of real users.

Our experimental results in Section 5.3.3 not only demonstrate the advan-

tage when the user correctly identifies the class and there is no machine error,

but also suggest the strategy that the user should take to achieve the optimal

performance when the user does not know the class or when there are user and

machine errors.

Using the Open Directory, we were also able to control the error rates of

both the user and the machine classification. Simulation results showed that

the performance degrades gracefully as the error rate increases, and that even

for error rates as high as 30%, significant reductions in search time can still be

achieved. However, these reductions only occur when the query results in the

target document having an initial list rank above a minimum rank, and this

minimum rank increases with the error rate. In practice, a better classification

performance can be achieved by incorporating classification at the stage of in-

dexing web pages. Moreover, user error can be reduced when the user gains a

better understanding of the system.
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We believe that a category-based system may be more beneficial for informa-

tional queries [22] in terms of reducing the click distance [125], where the user

will probably inspect several relevant search results. But for the case users may

be satisfied with one relevant result, our experiments justified its advantage.
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Chapter 4

Query Classification

Understanding the meaning of web search queries is a key task which is at the

heart of web search research. However, it is one of the most difficult problems

in information retrieval. A related issue is to understand the topics of web

search queries, or the query classification problem, which is one component of

our classification-based search engine. We will make use of query classification

for class ranking in Chapter 5. The topics of web search queries can facilitate

the understanding of general search queries, but classification of users’ queries

is also a challenging task due to the fact that queries are usually short and often

ambiguous. One common solution is to enrich the query with external data. In

this chapter, we will first explain the various data sources that can be used to

enrich the query, followed by the classifier setup, experimental results will be

presented next, and following that we will present a topic-specific analysis of

search queries.

4.1 Introduction

There are various applications that motivate the research of query classi-

fication. These include paid placement advertising, classification/clustering of

query results, query expansion, personalised search, and federated search. Query

classification is a difficult task since queries usually consist of only a few terms,
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often leading to significant ambiguity.

To alleviate the problem of short queries, it is common to enrich the query

with supplementary keywords, during both the training and testing phases. The

supplementary keywords are derived from one of two broad sources. The first

source is a form of pseudo-relevance feedback [104], in which it is assumed that

the top-n documents retrieved in response to the query are relevant. Typically,

the snippets associated with the top-n documents, and provided as part of the

retrieved results, are used as the source of enrichment. This is discussed in more

detail in Section 4.3. The second source of enrichment data comes from related

information such as a thesaurus, or co-occurrence information present in search

engine query logs.

Previous work [14] and our own experiments indicate that better perfor-

mance is achieved based on the method of pseudo-relevance feedback. However,

in some applications it may be desirable to perform query classification prior to,

or in parallel with retrieval. For example, for paid placement advertising, it may

be useful to perform query classification and the associated auction in parallel

with the search. In addition to this, for federated search, if query classification

is used to select which databases to access, then classification cannot be based

on retrieval results. The motivation for our work is to study the performance of

query classification in the absence of pseudo-relevance feedback when deploying

the classifier.

In this chapter we investigate the performance of a query classification al-

gorithm that uses a secondary source of information, namely Yahoo’s suggested

keywords, for query enrichment during testing. The main novelty of this work is

the use of pseudo-relevance feedback data only during the training phase. That

is, during training, we use retrieved Google snippets to enrich the query (pseudo-

relevance feedback), but during testing/deployment, we use Yahoo’s suggested

keywords for query enrichment. In addition, we also adopt Yahoo! Explore Con-

cepts to enrich queries, which can be regarded as pseudo-relevance feedback but

with fewer terms of high quality. Section 4.3 describes the procedure in detail,

while section 4.4 describes the SVM classifier used. The experimental results

(see Section 4.5.3) indicate an improvement in performance over a symmetric
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learning strategy. Note specifically, if we train and test using Yahoo’s suggested

keywords, (symmetric training and testing), we achieve a classification accu-

racy rate of 44%. In contrast, if we train using pseudo-relevance feedback and

testing using Yahoo’s suggested keywords, we achieve an improved classification

accuracy rate of 46%.

4.2 Related Work

There are three broad research themes within the query classification com-

munity. The first theme relates to the acquisition of training data. In many

cases, labelled training data is sparse and/or expensive to acquire. To allevi-

ate this issue, researchers have investigated using alternative sources of training

data [110, 23]. This kind of alternative training data may not be optimal due

to the absence of a direct mapping between the class structures. For example,

some researchers have included training data from the Open Directory Project

or the Yahoo! Web Directory, which has been used in web page classification

tasks; However, their class structure may not be consistent with the one we are

using.

The second theme relates to various different ways to enrich queries. There

have been many proposals, some of which use pseudo-relevance feedback [110,

23], while others use secondary information sources [70]. Empirical results indi-

cate that query enrichment can significantly improve performance [14]. Query

enrichment based on pseudo-relevance feedback is usually superior to enrichment

based on secondary sources. However, despite this superiority, there is a need to

perform query classification prior to performing the retrieval, which precludes

the use of enrichment based on pseudo-relevance feedback. Pseudo-relevance

feedback is one type of relevance feedback. Relevance feedback modifies the

query by making use of partial knowledge of known relevant and nonrelevant

documents in order to improve search. The Rocchio algorithm is a relevance

feedback mechanism introduced in and popularized by Salton’s SMART system

around 1970 [105]. The Rocchio algorithm generates a modified query ~qm as
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follows [107],

~qm = α~q0 + β
1
|Dr|

∑

~dj∈Dr

~dj − γ
1

|Dnr|
∑

~dj∈Dnr

~dj , (4.1)

where Dr and Dnr are the set of known relevant and nonrelevant documents.

~dj represent document vectors, and |Dr|, |Dnr| is the corresponding Euclidian

vector length of relevant document set and nonrelevant document set. The orig-

inal query vector is q0, and α, β, γ are the weights attached to each document.

There are two possibilities in using query expansion [107],

• Full query expansion, where all terms contained in the previously retrieved

relevant items are added to formulate the new feedback query.

• Partial query expansion, where only some of the terms present in the

previously identified relevant items are incorporated into the query.

The partial query expansion is a feature selection strategy in order to remove

the noise and Harman showed that adding only selected terms from retrieved

relevant documents was more effective than adding all the terms, at least for the

collections used in [62]. However, the user seldom provides a system with the

relevance judgement needed in relevance feedback, pseudo-relevance feedback is

proposed [35]. In pseudo relevance feedback, a small set of documents (usually

the top n retrieved documents) are assumed to be relevant. Then a certain

number of terms and phrases are added according to their weights in the relevant

document set. However, even the top-ranked documents are not possible to

cover the search topic exactly, and this incoherence characteristic of the top-

ranked documents will cause query drift. Some research have been conducted

to improve automatic query expansion for this problem[89].

The third theme relates to the number of classes in the query classification

taxonomy. In many cases, the goal has been to classify a query into one or more

of several broad classes. In this case the number of classes is typically less than

100. For example, Beitzel et al. [15] classify test queries into 18 classes , while

for the 2005 KDDCUP, there were 67 predefined categories [110]. In contrast,

other work, motivated by paid placement advertising, requires a much larger

number of classes. For example, the taxonomy used in [23] has 6000 classes.
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Our work focuses on the second theme, i.e., query enrichment. Our data set

is derived from the same source (AOL) as that used in Beitzel et al’s research

[15]. Their method made use of a computational linguistics approach, called

selectional preferences, combined with perceptron training and exact matching,

which they call the pre-retrieval approach, since it does not require pseudo-

relevance feedback. In a later refinement [14], they found that enriching the

queries with snippets from search engine results outperformed their pre-retrieval

solution, increasing the F1 score by 15%. As the experimental conditions of [14]

are similar to ours, we compare our results to theirs in Section 4.5.3.7.

4.3 Query Enrichment

In this section, we describe two strategies for query enrichment. The first

is based on pseudo-relevance feedback, (see Section 4.3.1), using Google snip-

pets and Yahoo! Explore Concepts. The second is query enrichment based on

Yahoo’s suggested keywords (see Section 4.3.2).

4.3.1 Pseudo-Relevance Feedback

Pseudo-relevance feedback is a commonly employed approach for enrichment.

It assumes that the top-n documents in the retrieved result set are relevant to

a user’s information need; here the documents refer to snippets or full web

pages of retrieved URLs and are represented within the Vector Space Model

(Section 4.4.1). We assume that the retrieved documents are snippets returned

as part of the search engine result set. Note that the work of [110] used a similar

methodology.

4.3.1.1 Yahoo! Explore Concepts

In addition to direct employment of pseudo relevance feedback, there are

other more refined versions of pseudo relevance feedback. Yahoo! provides

a resource called Yahoo Search Assist1, which contains several pre-computed
1http://tools.search.yahoo.com/newsearch/searchassist
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concepts related to the original user query called Explore Concepts. For example,

if we search for “data mining”, Yahoo! will suggest related concepts such as

“OLAP”, “knowledge discovery” and “business intelligence”. Explore Concepts

is a source of high quality information related to the query that we can make

use of.

Explore Concepts are generated in the following manner [7]:

• A concept dictionary is built from concept-rich sources such as query logs,

web sites and entity name feeds. The majority of these concepts are either

short noun phrases or proper names such as people and places.

• A term vector (metadata) is pre-computed when the search engine in-

dexes crawl web pages; the term vector contains co-occurrences of terms

appearing in the concept dictionary and in indexed web pages, which are

intended to capture the key concepts represented in the document.

• The weights of the terms in the term vectors of the top-n retrieved results

are averaged, and the top-m terms with the highest weights are retained

in a result set term vector.

• Similar phrases are generated with the aid of a large search engine log to

extend the initial set of candidate phrases.

• The result set term vector and the similar phrases together yield a set of

candidate similar terms and are compared to the original query term via

the cosine similarity measure based on their own result set term vector,

which is used to rank the final similar phrases.

Thus, Yahoo! Explore Concepts can be regarded as a keyword extraction

method of pseudo-relevance feedback. On average, Yahoo! displays about 15

related phrases associated with a query and we use those related phrases to

enrich original queries. In the asymmetrical learning set up in Section 4.5.3.7,

our experimental results indicate that Yahoo! Explore Concepts provides better

results.
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4.3.2 Term Co-occurrence from Secondary Sources

User query logs provide a valuable source for query classification, in partic-

ular, they provide different aspects of original queries. For example, “machine

learning” is strongly correlated to “machine learning algorithm” and “machine

learning research” found in query logs. The correlated terms serve as an alter-

native method for query enrichment. Rather than compute the co-occurrence

information directly from a query log, we used Yahoo’s related suggestions2,

which are based on query logs, as the secondary source of enrichment. In prac-

tice, term co-occurrence information can be performed prior to search, while

pseudo-relevance feedback can only be performed after performing the search.

4.4 The SVM Query Classifier

Section 4.4 describes the classifier used in our experiments. Section 4.4.1

then describes the data representation and Section 4.4.2 describes details re-

lating to the use of support vector machines for multi-label multi-class classifi-

cation. Section 4.4.3 describes our evaluation criteria, based on microaveraged

precision, recall and F1.

Support Vector Machines (SVM) provide a state-of-the-art classification

technique, which has successfully been applied to many text classification prob-

lems. In this work we apply SVM to query classification, and make use of

the Liblinear3 toolkit, which is an open-source package for solving large-scale

regularised linear classification problems [50].

4.4.1 Data representation

We represent a document by the vector

−→
di = (log(1 + tf(1, i)) ∗ idf1, . . . , log(1 + tf(n, i)) ∗ idfn), (4.2)

2http://developer.yahoo.com/search/web/V1/relatedSuggestion.html
3http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
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where tf(j, i) is the frequency of term tj in document di, and idfj is defined by

idfj = log(
N

dfj
),

where dfj is the number of documents in the collection which contain the term

tj and N is the cardinality of the document collection.

In the basic model, known as a uni-gram model, each feature represents a

single term and is independent of other features. We can extend the uni-gram

model by using pairs of adjacent terms as additional features, to obtain a model

known as a bi-gram model. This leads to the bi-gram SVM (BSVM), which we

use here. (In our experiments a bi-gram model includes uni-gram data.)

Each user query gives rise to a collection of snippets, which leads to two

possible ways of representing an enhanced query vector, i.e.

−→q =
∑N

i=1

−→
di

N
(4.3)

and
−→q =

N∑

i=1

−→
di , (4.4)

where N is the number of snippets, and
−→
di is the document vector for the ith

snippet. Equation 4.3, which averages the vectors, is denoted by AS, while

Equation 4.4, which sums the vectors, is denoted by SS. The enhanced query

vector −→q conveys the information of original query in vector space model and is

used as the input for our classifier.

Equation 4.3 is directly related to the Rocchio algorithm, i.e., Equation 4.3

is equivalent to Equation 4.1 when setting β to 1, and α, γ to 0. Setting γ to

0 means irrelevant documents are discarded and setting α to 0 means ignoring

the original queries. Here we use the full query expansion as we mentioned

in Section 5.1.1, not the partial query expansion. Previous research [71, 21]

observed that either no improvement or even small degradation of Support Vec-

tor Machines’ performance when partial query expansion are used. Moreover,

the partial query expansion will introduce another parameter, the number of

selected terms, which increase the complexity of the system. We also notice

that most top-ranked documents will contain the original search query and by

setting γ to 0 will not affect the feedback performance.
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4.4.2 Multi-label, Multi-class Classification

Query classification is inherently a multi-class, multi-label problem.

For query classification, we need to potentially deal with many classes, al-

though SVM is inherently a two-class classifier. To reduce a multi-class problem

to a binary problem, a common technique is to build multiple one-versus-the-

rest classifiers with one category being the positive class and the remaining

categories being the negative classes. This method will cause an unbalanced

class distribution as the negative class is usually much larger than the positive

class. In order to make it balanced, we can either use sampling to make the class

size comparative or set several penalty parameters in the SVM formulation. In

our experiment, we adopt the latter approach. The SVM toolkit, Liblinear,

implements such a penalty function, which we use by setting a parameter, w,

with a value equal to the ratio of each class size.

Query classification is also a multi-label problem [110], since each query

can potentially be associated with several labels. When we convert a multi-

class problem into a two-class problem, the multi-label problem can be solved

simultaneously. If a query is associated with a number |c| of labels, it is treated

as a positive query when we build or test a model for one of the |c| classes. For

example, suppose that a query has two labels, say C1 and C2, then when we

construct the model for C1 or C2, the query is merely regarded as a positive

query for training. Furthermore, when we use the model of C1 or C2 to predict

the query in the testing phase, its correct label should be positive.

4.4.3 Evaluation Criteria

To evaluate the performance, we use microaveraged precision, microaveraged

recall and microaveraged F1, which are defined in Chapter 2. They are used

because the overall performance measure will not be affected much by the poor

performance of classes with few positive examples.
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4.5 Experiments

In section 4.5.1 we describe the data set used, while in section 4.5.2 we

explain the experimental setting. Finally, in section 4.5.3 we describe the ex-

perimental results.

4.5.1 Experimental Data Set

We make use of two manually classified subsets of an AOL search log [15].

The first one contains 9,913 manually classified queries resulting from a Mas-

ter’s level Information Science class assignment at Bar-Ilan University during

2007. The participants had prior knowledge of classification, cataloguing and

indexing. The ontology we have adopted for classification consists of 31 top level

categories, which constitutes a reasonable searcher’s ontology. The 31 categories

are listed in the “Category” column of Table 4.1. However, in the experiment,

we discard four classes (url, misspelling, noise and other) which do not contain

topic information at the semantic level; for more detail, we refer the reader to

Section 4.6.

Category AOL Category Category AOL Category

1 Art 17 Misspelling Misspellings

2 Auto Autos 18 Nature

3 Companies Busi-

ness

Business 19 News News

4 Computing Computing 20 Noise

5 Directories 21 Other Other

6 Education 22 People

7 Employment 23 Places Places

8 Entertainment Entertainment 24 Pornography Porn

9 Finance Economy Personal Finance 25 Religion

10 Food and drink 26 Science Research

11 Games Games 27 Shopping Shopping

Continued on next page
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Category AOL Category Category AOL Category

12 Government, orga-

nizations and non-

profit institutions

organization and

institutions

28 Society& Commu-

nity

13 Health and

Medicine

Health 29 Sports Sports

14 Holiday Holidays 30 Technology

15 Home Home 31 URL URL

16 Law & Legislation 32 Travel

Table 4.1: The set of classes and the mapping between our classes and those of

AOL

In the data set, we also incorporate labelled log data from AOL’s research

lab, which uses a similar ontology to ours. Table 4.1 tabulates that mapping of

the AOL ontology to the one we use. After we remove duplicate queries, 17,862

distinct queries remain, and these form our labelled data set. Then we randomly

divide the data set into 10 subsets, and learn the model from 9 subsets and test

it on the remaining subset. The cross-validation process is repeated 10 times,

with each of the 10 subsets use exactly once as the test data. The 10 results

from the folds are averaged and reported. This is called 10 folds cross validation

[63].

4.5.2 Experimental Setting

The notation we employ for the experiments is shown in Table 4.2. We

used the settings in Table 4.2 to enrich both the training and test data. Here

2g is used to approximate a similar number of keywords as Explore Concepts

has. By default, the data was represented as averaged snippets (Equation 4.3),

using a balanced class setting and bi-gram SVM. The evaluation is based on the

standard 10-fold cross-validation.
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Notation Description

q query term without any enrichment

s Enriched query with Related Suggestions

from Yahoo!

e Enriched query with Explore Concepts

from Yahoo!.

(n)g Enriched query with top n Google results,

here n is 2, 5, 10 or 20, respectively, i.e.,

2g, 5g, 10g, 20g

Table 4.2: Query enrichment terminology

4.5.3 Experimental Results

In the following tables TE and TR denotes the test and training data, re-

spectively, and the performance measures are microaveraged.

4.5.3.1 Comparison of difference data representation

The first question we answer is which data representation is better. Averaged

snippets (AS, see Equation 4.3) or summed snippets (SS, see Equation 4.4).

Table 4.3 shows that AS significantly4 outperforms SS.

Data rep. TE TR recall precision F1

AS 10g 10g 52.57% 59.70% 55.91%

SS 10g 10g 44.97% 55.76% 49.79%

Table 4.3: The results for different data representations

The discrepancy between the two representation is due to the nonlinear

transformation in Equation 4.2.
4This was tested by a paired-sample t-test at the 5% significance level.
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4.5.3.2 Bi-gram SVM versus Uni-gram SVM

In Section 4.4.1 we mentioned that a bi-gram model has more features than a

uni-gram model, and that the former has generally achieved better performance

on text classification problems. We evaluate the two classifiers using 10g.

Model TE TR recall precision F1

uni-gram 10g 10g 53.76% 50.64% 52.16%

bi-gram 10g 10g 52.57% 59.70% 55.91%

Table 4.4: The results for uni-gram and bi-gram SVM

The results in Table 4.4 show that bi-gram SVM is better than uni-gram

SVM at the expense of a larger feature space.

4.5.3.3 Balanced Class versus Unbalanced Class

The class size distribution affects of the performance of many classifiers.

If one class size is too small, then to minimise the error rate, the classifier

will assign the label of the big class to all the data. Thus, to alleviate this

problem, the penalty of misclassifying the data for the big class is increased.

The comparison of the results is given in Table 4.5, and as can be seen, balancing

the class distribution leads to significantly better results. Note, however that

the precision of balanced classes is much worse than unbalanced classes, it is

due to the fact that the unbalanced class model only predicts the most probable

queries as positive.

Class dist. TE TR recall precision F1

unbalanced 10g 10g 42.26% 71.53% 53.13%

balanced 10g 10g 52.57% 59.70% 55.91%

Table 4.5: The results of balanced and unbalanced classes
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4.5.3.4 The Random Classifier

This baseline classifier randomly assigns one label to each user query. For

the 27-classes classification, the probability of a true positive, false positive or

false negative is 1
27 , 2627 and 26

27 , respectively. So for a random classifier precision,

recall and F1 are 3.7%.

4.5.3.5 Symmetric Learning using Relevance Feedback for Query

Enrichment

We first consider the case in which we enrich the query using relevance

feedback during both training and testing, i.e. symmetric learning. In this case

we averaged the term weights from the top-n snippets to construct an enhanced

query vector, as described in Section 4.4.1, for both the training and test data.

The experimental result for this baseline is shown at Table 4.6, for various

numbers of pseudo-relevant documents ranging from 2 to 20.

TE TR recall precision F1

2g 2g 47.22% 47.46% 47.32%

5g 5g 51.42% 57.06% 54.09%

10g 10g 52.57% 59.70% 55.91%

20g 20g 51.65% 60.62% 55.78%

Table 4.6: Classification results using symmetric training and testing with en-

richment based on various numbers of pseudo-relevant snippets retrieved from

Google.

The results in Table 4.6 show that best performance is obtained when the

query is enriched using the top-10 snippets from the Google retrieved set. For

10g/10g, the F1 measure is approximately 56%. However, the improvement is

not significant here.
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4.5.3.6 Symmetric Learning using a Secondary Source of Informa-

tion for Query Enrichment

Here we consider the performance when we enrich the query using a sec-

ondary source of information, namely Yahoo’s suggested keywords, row s/s5 in

Table 4.7. For comparison, Table 4.7 also includes the resuls when no enrich-

ment is applied (row q/q), the results when Yahoo! Explore Concepts is adopted

(row e/e), and the case when only the top-2 results are used for pseudo-relevance

feedback (row 2g/2g). The last case is included because the number of enrich-

ment terms is close to that provided by Yahoo suggested keywords. Significantly

more terms are available if 5, 10 or 20 documents are used for enrichment using

pseudo-relevance feedback.

TE TR recall precision F1

q q 53.78% 17.01% 25.83%

e e 50.81% 38.14% 43.56%

s s 50.00% 39.14% 43.89%

2g 2g 47.22% 47.46% 47.32%

Table 4.7: Classification results using (i) no enrichment, (ii) enrichment based

on Yahoo! Explore Concepts, (iii) enrichment based on Yahoo’s suggested key-

words, and (iv) the top-2 Google snippets. Training and testing is symmetric.

As expected, Table 4.7 shows performance without enrichment (q/q) is the

worst. Enrichment using Yahoo’s suggested keywords and Yahoo! Explore

Concepts significantly improve performance, from an F1 score of about 26% to

almost 44%. However, the difference between the latter two is too close to reach

a significant difference. However, enriching with only the top-2 pseudo-relevant

documents is superior (about 47%). Moreover, enrichment using 10g/10g (Ta-

ble 4.6) is much better, with an F1 score of almost 56%. The results empirically

justify the importance of an enrichment strategy for query classification.

We now investigate how asymmetric learning affects performance.
5This results is for queries which have related suggestions
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4.5.3.7 Asymmetric Learning

In this approach we enrich the query using pseudo-relevance feedback with

the top-10 Google snippets during training, but only enrich the query with

asymmetric data, i.e., Yahoo’s suggested keywords, Yahoo! Explore Concepts

during testing.

TE TR recall precision F1

q 10g 27.24% 54.44% 36.31%

e 10g 43.86% 60.64% 50.90%

s 10g 37.84% 57.54% 45.65%

2g 10g 41.58% 59.10% 48.81%

10g 10g 52.74% 58.42% 55.43%

Table 4.8: Asymmetric training and testing. Training is performed using queries

enriched with the top-10 Google snippets (10g). Note that row 10g/10g rep-

resents symmetric training, and testing and differs from the score reported in

Table 6 due to pruning of the test set (see text for details.)

Table 4.8 indicates that performance using Yahoo’s suggested keywords dur-

ing testing is improved from an F1 score of 44% to an F1 score of 46%. This

improvement is statistically significant at the 5% significance level. Note that

Yahoo’s suggested keywords do not provide suggestions for all queries in our

test set. For our experiments, training was performed with all queries, as be-

fore. However, testing was only conducted on queries that could be enriched.

The queries which can not find Yahoo’s suggested keywords are discarded. This

reduced the number of queries from 17,862 to 7,654. For comparison purposes,

Table 4.7 also includes a row (10g/10g) reporting the scores for classification on

this reduced test set, and as expected it yielded the best result. We also notice

that Yahoo! Explore Concepts achieved the second best results when a similar

amount of enrichment is used. In particularly, it is better than the 2g/10g case,

since 2g contains the specific context of the query terms, which can not cover

the broader concepts of the search queries. However, it is at the expense of

extra computation as we describe in section 4.3.1.
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4.6 Topic Analysis of Search Queries

We mentioned that understanding the meaning of queries is a key task which

is at the heart of web search. One application of query classification is to help

comprehend search engine logs. The analysis of search engine logs is important

in order to understand how users interact with a search engine. Conventional

analysis of search engine log data looks at various metrics such as query and

session length aggregated over the full data set. Here we segment the data

according to a topic taxonomy of web search and compute the metrics by topic

basis.

Analysing query logs is one of the approaches that allows us to gain a deeper

understanding of the ways in which users interact with search engines. Basic

analysis of search logs provides mainly statistical outputs (e.g., most frequent

query terms, number of query terms in a query, and length of sessions). Such

analysis is of interest, since it provides insight into how an “average user” inter-

acts with a search engine [112]. As an example of such analysis on a Microsoft

query log from spring 2006, see [124]. A general set of guidelines for conducting

search log analysis was given by [68].

Zhang and Moffat [124] provided some basic descriptive statistics of the 2006

MSN query log. Their computations were based on the whole set of queries.

In this section we examine the topic specific statistical characteristics of the

queries in the same log data by first applying to them the query classification

algorithm that we have developed, in order to partition the data into categories.

The study considers a number of questions, including:

• Is the number of results viewed per query dependent on the query topic?

• Are the positions of the clicked results dependent on the query topic?

• Are there any significant differences in the average query length for differ-

ent topics?

• Are there any significant differences in the session length for different

topics?
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• How do the topics distribute during the week?

We used the classifier presented in Section 4.4 to assign the top three labels to

each of the queries from the MSN query log, which we obtained from Microsofts

Live Labs. Prior to classification we pre-processed the query log by taking out

non-alpha-numeric characters, such as “-”, from queries, stemming the queries,

and then removing any single character queries. We classified queries in the

URL class separately using a regular expression to detect the format of a URL.

We then enriched the input queries with Google top-5 results; a query which

did not return any results was considered as noise. A query was consider to be

in the “Other” class if its probability, as reported by the classifier, was below

the prior probability of appearing in the largest class; this probability is the

proportion, according to the classifier, of queries in the largest class. As a

post-processing step after classification we sampled classes which had more the

500,000 queries to limit them to that number; in the future we intend to analyse

full size classes.

4.6.1 Results

We will discuss the analysis of search queries based on topic in the following

section.

4.6.1.1 Topic categories

The categories and the number of queries assigned to them appear in Ta-

ble 4.9. Here a query belongs to a certain category if the category is among

the top three labels assigned to the query. Note that the pornography category

does not include the adult query set supplied by Microsoft in a separate log file.

Category # queries in category %total (14,923,285)

ART[AR] 2383 0.02%

Auto[AU] 639571 4.29%

Continued on next page
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Category # queries in category %total (14,923,285)

Companies/Business[CB] 11479 0.08%

Computing[CO] 2026737 13.58%

Directories[DI] 18763 0.13%

Education[ED] 7868 0.05%

Employment[EM] 4356 0.03%

Entertainment[EN] 3079044 20.63%

Finance & Economy[FE] 506576 3.39%

Food and Drink[FD] 12005 0.08%

Games[GA] 440804 2.95%

Government,organisations,non-

profit institutions[GO]

738652 4.95%

Health & Medicine[HM] 902993 6.05%

Holiday[HL] 477984 3.20%

Home[HO] 557131 3.73%

Law & Legislation[LL] 484 0.00%

Misspelling[MI] 1433872 9.61%

Nature[NA] 801 0.01%

News[NE] 1635456 10.96%

Noise[NO] 501925 3.36%

Other[OT] 451120 3.02%

People[PE] 33085 0.22%

Places[PL] 1917586 12.85%

Pornography[PO] 275539 1.85%

Religion[RE] 258 0.00%

Science[SC] 4356 0.03%

Shopping[SH] 3291744 22.06%

Society & Community[SO] 2998 0.02%

Technology[TE] 3177 0.02%

Sports[SP] 490097 3.28%

Continued on next page
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Category # queries in category %total (14,923,285)

URL[UR] 1847778 12.38%

Table 4.9: The Categories

In table 4.9, category abbreviations are given in the brackets of the first

column and the sum of the last column may exceed 100% since each query is

categorised into up to three classes. For the current analysis, we combined Law,

Religion and Society & Community into a single category, Society-Combined

[SC]; and Science, Technology and Nature were also merged to create the cat-

egory Science-Combined [ST]. Categories containing more than half a million

queries were sampled randomly, in such a way that if a query was chosen then

all the queries that appeared in the same session (session IDs were assigned by

Microsoft) in the given category were also included. The size of each sample

was approximately 500,000. Table 4.11 displays the sizes of the sampled sets

(for categories up to size 507,000 there was no sampling) and the number of

clickthroughs for the sampled queries.

4.6.1.2 User Assessment of the Classification

To assess the quality of the classifications, a group of 30 users assessed the

classification results. Each user was presented with 470 queries, random samples

of 10 queries from the smaller classes and 20 queries from the larger ones. The

evaluators were instructed to mark the queries as “Y” if they thought that it was

reasonable to classify the query in this category and “N” otherwise. They were

also asked to suggest alternative categories for the queries and were told that a

query may be classified into multiple classes although they were shown only one

category for each query. If the meaning of the query was not clear to them, we

advised then to submit the query to a search engine. To compute the margin

of error for a 95% confidence interval for the given sample sizes (300 for the

smaller classes and 600 for the larger ones), we assume a binomial distribution

and a worst case scenario of p = 0.5 that overestimates the sample size, i.e.

we assume apriori that both a “Y” and a “N” were equally likely. Using the

standard formula that the sample size is approximately equal to 4p(1−p)/error2,
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we obtained an error margin of 6% for the smaller classes and 4% for the larger

ones.

In order to assess the result we used macro- and micro- averaging as before,

averaging across the two dimensions of classes on the one hand, and users on

the other. The average results are consistent across the board, with a precision,

recall and F1 of approximately 74.5%; the details are shown in Table 4.10. Note

that this is over 20% higher than the experimental results when testing the

classifier, and moreover we have trained the classifier on an AOL log but have

used it in practice to classify an MSN log. This result convincingly shows that

our methodology of applying topical analysis to query log data is sound.

Category Average satisfaction Standard deviation

ART[AR] 90% 13%

Auto[AU] 80% 14%

Companies/Business[CB] 89% 18%

Computing[CO] 51% 16%

Directories[DI] 78% 19%

Education[ED] 80% 18%

Employment[EM] 85% 12%

Entertainment[EN] 70% 14%

Finance & Economy[FE] 78% 16%

Food and Drink[FD] 91% 15%

Games[GA] 75% 11%

Government,organisations,non-

profit institutions[GO]

62% 17%

Health & Medicine[HM] 75% 9%

Holiday[HL] 80% 15%

Home[HO] 65% 21%

Misspelling[MI] 76% 14%

News[NE] 50% 23%

Noise[NO] 82% 22%

Continued on next page
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Category Average satisfaction Standard deviation

Other[OT] 44% 16%

People[PE] 87% 16%

Places[PL] 69% 18%

Pornography[PO] 79% 8%

Science-Combined[ST] 44% 18%

Shopping[SH] 71% 16%

Society-Combined[SC] 88% 16%

Sports[SP] 77% 14%

URL[UR] 88% 22%

Table 4.10: Satisfaction with categorization

4.6.1.3 Clickthrough

Table 4.11 shows the statistics for the clickthrough data. We see that in all

except two cases (Home and Food) the total number of clickthroughs is less than

the size of the query set. For the category Noise the size of the clickthrough set

is especially small, but this is in accordance with the definition of this set.

Category sample size # clicks clicks per query

ratio

ART[AR] 2383 2165 0.91

Auto[AU] 500004 444110 0.89

Companies/Business[CB] 11479 10447 0.91

Computing[CO] 500004 373100 0.75

Directories[DI] 18763 17235 0.92

Education[ED] 7868 7320 0.93

Employment[EM] 4356 4032 0.93

Entertainment[EN] 500003 385219 0.77

Finance & Economy[FE] 506575 426952 0.84

Food and Drink[FD] 12005 12271 1.02

Continued on next page
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Category sample size # clicks clicks per query

ratio

Games[GA] 440804 404595 0.92

Government,organisations,non-

profit institutions[GO]

500003 401666 0.80

Health & Medicine[HM] 500004 462020 0.92

Holiday[HL] 477984 407551 0.85

Home[HO] 557131 570984 1.02

Misspelling[MI] 500003 199539 0.40

News[NE] 500001 383647 0.77

Noise[NO] 501925 19146 0.04

Other[OT] 451112 320530 0.71

People[PE] 33085 29664 0.90

Places[PL] 500002 388861 0.78

Pornography[PO] 275539 261746 0.95

Science-Combined[ST] 503908 416988 0.83

Shopping[SH] 500003 421752 0.84

Society-Combined[SC] 3740 3101 0.83

Sports[SP] 490097 414194 0.85

URL[UR] 500004 338833 0.68

Table 4.11: Sampled queries, number clickthroughs and clickthrough ratio

The low clickthough ratio is also understandable for the category Misspelling.

The average clickthrough ratio was 0.81 and the standard deviation is 0.2. Thus

all the results except for the above two that were mentioned are within one stan-

dard deviation. The values were considerably below the average for Computing,

URL and Other. The results are somewhat surprising for URL, because it is

assumed that when URL queries are entered to the search box, the user uses

the search engine as a navigation tool, and thus we expect the user to click on

the desired result. One possible explanation could be that many of these URLs

are misspelled resulting in a relatively low clickthrough ratio. This point will

be further investigated in the future research.
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Another interesting point regarding clickthroughs, is the relatively large

number of queries for which there is no clickthrough at all. This can be seen in

Figure 4.1.

Figure 4.1: Distribution of number of clicks per query for the different categories

The percentage of the 0-clickthrough queries is 41.65% on average, and even

if we exclude the categories Noise and Misspelling, the average is still 38.17%,

while the average percentage of queries with one clickthrough is 47.66%. Thus

0 and 1-clickthrough queries cover on average more than 85% of the queries.

There are a few cases where the number of 0-clickthrough queries is higher than

the number of 1-clickthrough queries: Computing, Entertainment, Other, Peo-

ple, Places, Shopping and the obvious Misspelling and Noise. On the other

hand, there are also a few cases where the number of 1-clickthrough is consider-

ably higher than the average: Companies, Entertainment, Games, Pornography,

Society-combined and URL. Note that URL has a low clickthrough ratio, and

a high 1-clickthrough rate. This seems to imply, that in many cases there is

no clickthrough at all, and if there is clickthrough, the user usually clicks on a
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single search result.

Next we limit the discussion only to the set of queries that had at least one

clickthrough. Figure 4.2 displays the differences between the average number

of clickthroughs. The median was 1 for all cases, the average is 1.42 and the

standard deviation is 0.15. In Figure 4.2, the topics with high clickthroughs

(more than one standard deviation above the average) are highlighted in red,

while those with considerably lower than the average are highlighted in green.

The high average clickthrough categories are Art, Food and Home; while the

low average classes are Companies, Finance & Economy and URL.

Figure 4.2: Average clickthrough rate of clicked queries
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4.6.1.4 Clickthrough position

Here we look at the distribution of the position of the clicked result for all

clickthroughs (see Figure 4.3) versus the first clickthrough for all the queries that

were clicked (see Figure 4.4). The average percentage of clickthroughs at the

top position is 48.2% with a standard deviation of 12.3% when we consider all

the clicks. When considering only the first clickthrough for each clicked query,

the top position is chosen in 59.9% of the cases on average, with a standard

deviation of 10.1%. Thus there is a more pronounced tendency to click on the

result in the top position when choosing to inspect the first search result (this

is known as the presentation bias - see [12]). In this case too, we can see some

topic-specific differences. The number of clicks on the top position is low for:

Art, Home and People, and it is high for Finance, Society-combined and URL.

When considering the first clickthrough only, the number of clicks on the top

position is low for Art and People and high for Employment, Finance, Society-

combined and URL. By low are referring to more than a standard deviation

below the average.

4.6.1.5 Query length

For each topic, we measured the average and the median number of terms

in the queries that were classified into the specific category. The results are

displayed in Table 4.12.

Category average query length median query length

ART[AR] 1.77 2

Auto[AU] 2.59 2

Companies/Business[CB] 1.80 2

Computing[CO] 2.52 2

Directories[DI] 2.40 2

Education[ED] 2.80 2

Employment[EM] 2.09 2

Entertainment[EN] 2.52 2

Continued on next page
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Category average query length median query length

Finance & Economy[FE] 2.11 2

Food and Drink[FD] 2.70 2

Games[GA] 2.02 2

Government,organisations,non-

profit institutions[GO]

1.52 1

Health & Medicine[HM] 2.77 2

Holiday[HL] 2.69 2

Home[HO] 2.79 2

Misspelling[MI] 2.65 2

News[NE] 2.67 2

Noise[NO] 1.71 1

Other[OT] 2.03 2

People[PE] 2.24 2

Places[PL] 3.16 3

Pornography[PO] 1.98 1

Science-Combined[ST] 2.73 2

Shopping[SH] 2.48 2

Society-Combined[SC] 1.62 1

Sports[SP] 2.52 2

URL[UR] 1.00 1

Table 4.12: Average and median number of terms per query

Categories with especially low averages/medians are highlighted in green,

and those with high averages/medians are highlighted in red. The mean of the

averages is 2.29 and the standard deviation is 0.5. The longest queries on average

(and also in terms of the median) belong to the category Places. Although even

for Places most of the queries are short, the distribution is skewed as it is for

other topics. Typical three term queries in Places are “Maui’s Fleming Beach”

and “holiday inn express”, and an example of a longer query is “sunnyside

fishing camp keewatin canada”. Such queries arise when users are looking for

information on specific places they know about.
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Figure 4.3: Clickthrough position - all clickthroughs

4.6.1.6 Session length

We measured the length of the sessions in terms of the number of queries

that were issued within the same session.

Here we analyse the queries in the sessions, but only for those queries that

were assigned to the given category, noting that sessions IDs were obtained from

the log data. If for example a user asked five queries in a session, say, q1 ,q2, ,

q5, and q1, q4 and q5 belong to category A and q2 and q3 to category B, then

when analysing category A we consider only q1, q4 and q5, and we consider the

session to consist only of those queries. That is, the length of this session with

respect to category A is three and we calculate the time difference between q1

and q4 and between q4 and q5 as time between the queries in this category A

session.

The results are displayed in Table 4.13. The average session length for all the
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Figure 4.4: Clickthrough position - first clickthrough for each clicked query

categories is 1.64 with standard deviation 0.40. Values one standard deviation

below and above the average are highlighted.

Category average session

length (queries)

median session

length

ART[AR] 1.39 1

Auto[AU] 1.85 1

Companies/Business[CB] 1.17 1

Computing[CO] 2.00 1

Directories[DI] 1.34 1

Education[ED] 1.39 1

Employment[EM] 1.22 1

Entertainment[EN] 2.56 2

Continued on next page
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Category average session

length (queries)

median session

length

Finance & Economy[FE] 1.33 1

Food and Drink[FD] 1.30 1

Games[GA] 1.41 1

Government,organisations,non-

profit institutions[GO]

1.51 1

Health & Medicine[HM] 1.91 1

Holiday[HL] 1.52 1

Home[HO] 1.57 1

Misspelling[MI] 1.94 1

News[NE] 1.89 1

Noise[NO] 1.47 1

Other[OT] 1.25 1

People[PE] 1.36 1

Places[PL] 2.27 1

Pornography[PO] 1.55 1

Science-Combined[ST] 2.00 1

Shopping[SH] 2.58 2

Society-Combined[SC] 1.19 1

Sports[SP] 1.48 1

URL[UR] 1.82 1

Table 4.13: Session length

We observe that there are some topic-specific differences. Somewhat to our

surprise the shortest sessions are not in the category URL, Misspelling or Noise.

An explanation for this could be, that if someone uses the search engine as a

navigation tool, he/she does so consistently and therefore issues several URL

queries in a session. An explanation of the calculated average session length

for Misspelling could be that if a user makes a spelling mistake once, he/she is

likely to continue making such mistakes.
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4.6.1.7 Temporal characteristics

Here we calculate the daily query volumes per category for May 2006 (the

log provided by Microsoft covers this period). It had been noted by Zhang and

Moffat [124], that there is a clear drop in the number of issued queries during

weekends (6 & 7 May, 13 & 14 May, 20 & 21 May and 27, 28 & 29 May -

Monday, May 29 2006 was Memorial Day in the US, a public holiday).

When looking at the category specific distributions, we also notice this drop,

but the extent of the drop varies with the category. We examined all the large

categories plus Pornography. The largest drop in the number of issued queries

was observed for Finance and for Government (see Figures 4.5a and 4.5b). In

these two categories the number of queries submitted on weekends and holidays

is less than 40% of the number of queries submitted on the other days. Note

that for both categories, in most cases Monday (or the first working day of the

week) is the peak day. This seems to indicate that most of the queries in these

categories are work related.

There is a second, much larger group of categories, where the number of

queries submitted during weekends and holidays is between 40% and 60% of

the number of queries submitted on weekdays. Categories belonging to this

group include: Computing (Figure 4.5c), Shopping (Figure 4.5d) and Auto (Fig-

ure 4.5e). It seems that there is continued interest in these topics both during

weekdays and weekends.

In the third group there is hardly any drop in the weekend, i.e., the volume

during weekends and holidays is at least 60% of the volume on weekdays. Cate-

gories in this group include Games (Figure 4.5f) and Pornography (Figure 4.5g)

and Entertainment (Figure 4.5h). These topics can be characterised as recre-

ation, so it is easy to understand why the volume of queries remains high for

these topics during weekends as well.
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(a) Finance (b) Government, organizations and non-

profit institutions

(c) Computing (d) Shopping

(e) Auto (f) Games

(g) Pornography (h) Entertainment

Figure 4.5: Daily volume of the queries in specific categories
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4.7 Discussion

In this chapter, we examine the query classification problem. In some ap-

plications, e.g. federated search, there is a need to perform query classification

prior to performing the search. In such a case, enriching the query with re-

sults derived from pseudo-relevance feedback is not possible. Without pseudo-

relevance feedback, query enrichment must be accomplished using secondary

sources of information. This leads to the case of asymmetric learning.

We considered the use of Yahoo’s suggested keywords and Explore Con-

cepts in Section 4.3 as such a source of secondary information. Table 4.6 and

Table 4.7 show that the performance, as measured by microaveraged F1, is

significantly less than can be obtained using pseudo-relevance feedback. Specif-

ically, our experiments showed that using a symmetric testing and training

procedure, enriching with Yahoo’s suggested keywords produced an F1 score of

about 44%, which is substantially less than enrichment with the top-10 snippets

from Google, when the F1 score is about 56%. Even if only enriching with a

similar number of terms, i.e. using the top-2 snippets, the F1 score is 47%,

which is about 3% better than using Yahoo suggested keywords.

To improve performance, we investigated an asymmetric learning strategy in

Table 4.8. Training was performed with queries enriched by the top-10 snippets

from Google, but testing was performed using queries enriched by Yahoo’s sug-

gested keywords. In this case, performance increased from 44% to 46%. This

is well below that which can be obtained using a symmetric learning procedure

and enrichment based on the top-10 snippets. However, if we compare this to

the performance achieved when only the top-2 snippets are used for enrichment,

i.e. a similar number of enrichment terms are used, the performance is compa-

rable. This suggests that if a sufficiently rich source of secondary information

is available, it may be possible for enrichment based on secondary sources to

be competitive with those based on pseudo-relevance feedback. In addition, we

also compared Yahoo’s suggested keywords to Yahoo! Explore Concepts, which

is a method of keyword extraction comparable to that of the pseudo-relevance

feedback. Given the similar amount of features, Yahoo! Explore Concepts

yielded the best results. This implies that if we can improve the quality of the
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enrichment data, the performance can also be improved.

Query classification provides another dimension to understand search query

logs. We have carried out an analysis on a substantial search engine log in

Section 4.6, where the analysis was computed on a topic-by-topic basis, from

a top level ontology pertaining to web search. In order to be able to analyse

the data, we classified the queries using an algorithm we have developed in

section 4.4. Although this algorithm is far from perfect, we believe that its

results are indicative of the topics, given the relatively high user satisfaction with

the results of the classification. Our results show that, for each of the metrics

we have presented, there are outlier classes which exhibit deviant behavior. We

note that as expected, the statistics for Noise and Misspelling are often different

in figure 4.1 and table 4.11, but in many cases we discovered other classes with

deviant behavior. For example, the longest queries are for Places in table 4.12,

the largest clickthrough rate for Art in figure 4.2 and the largest session rates

for Shopping and Entertainment in table 4.13. In table 4.5 we also discovered

that the daily volume of queries is also sensitive to the topic.

We suggest that some of the differences we have observed could have an

impact on the way search engines deal with queries from different categories.
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Chapter 5

Ranking Classes of Search

Engine Results

In this chapter, we will study the problem of class ranking, in particularly,

we investigate the query independent features associated with the classification

process, such as class size, top ranked document within each class and query

dependent features, i.e., the class probability distribution of a test query derived

from query classification in Chapter 4. A proof of concept for a classification-

based search engine is presented as a demonstration of the system.

5.1 Introduction

In chapter 3, we compared the performance of traditional search engines

with classification-based search. Using target testing, we quantified the benefits

of grouping results in comparison to a standard search engine in terms of the

rank of the target documents in the result set. However, there are two issues

we have not yet addressed.

The first issue concerns target testing that the queries are computer-generated,

which may not fully reflect real users’ search intentions and the correlation be-

tween the queries and the target documents.
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The second is related to the ranking method. Despite considerable research

on document categorisation and document ranking, there has only been a small

amount of research effort on how to rank categories.

To address these issues, we investigate various approaches of ranking classes

and how such rankings affect the number of classes and documents a user must

inspect prior to finding a document satisfying his or her information need. In

particular, the information need is conveyed in users’ queries from a web query

log and the desired documents are embedded in the clickthrough data. The

main applications of our work are not only grouping retrieved data, but also the

investigation of ranking models for them.

5.1.1 Related Work

There has been significant work on clustering and classification of search

results [29, 31, 126]. Our interest in this chapter is specifically focused on how

previous research dealt with the problem of ranking classes. There are two main

approaches in this respect.

The first approach [31] is to rank classes based on their size, i.e. the top-

ranked class contains more documents than the other classes. This approach is

simple and assumes that a class’s relevance is purely a function of the number

of documents it contains.

The second approach [125, 126] is to rank classes based on various features

associated with the documents in each class. For example, in [125] the au-

thors ordered the clusters by their “estimated coherence”, defined as a function

of the number of documents containing each phrase and the number of words

that make up its phrase. In [126], all n-grams (n ≤ 3) were first extracted

from search results as candidate phrases, and salient scores were calculated by

a regression model trained from manually labelled data. The features includes

phrase frequency/inverted document frequency, phrase length, intra-cluster sim-

ilarity, cluster entropy and phrase independence. The phrases with top salient

scores, called salient phrases, are the names of candidate clusters. Finally, they

are further merged according to the overlapping part of the two clusters. The
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salient scores are used to rank the clusters.

A second important consideration is how documents are ranked within a

class. Several alternatives have been proposed. However, in the work described

here, the relative ranking of documents within a class is taken to be the same

as their relative ranking in the original result set. We believe that this is an

important experimental design consideration. In particular, if the ranking of

documents is altered within a class, then it is very difficult to determine whether

any improvement is due to (i) the class ranking, (ii) the new document ranking,

or (iii) a combination of (i) and (ii). Thus, in order to eliminate this potential

ambiguity, we maintained relative document rankings within classes. Therefore

any improvement must be only due to the class ranking.

5.2 Class-Based Ranking Method

Before we discuss the various class ranking algorithms we examined, it is

useful to first describe how we evaluated performance. For a conventional sys-

tem, in which the result set is displayed as a ranked list of documents, i.e. we

have a list of documents {d1, d2, · · · dN}, if the k-th document is the desired

document, then the user must look at k documents (d1 · · · dk). We refer to k as

the “list rank” of the document, since it was ranked k in the one-dimensional

list of retrieved documents. Clearly, the lower the list rank, the quicker the user

will find the desired document.

The performance of a classification-based system is more complicated to

define. Consider the case where the user is looking for document, di,j , where

i denotes the rank of the class the document is contained in, and j is the

document’s rank within this class. Thus, a user must look at i class labels and

then j document snippets in order to find document, di,j , a total of (i + j)

classes and documents. We referred to this as in-class rank in Chapter 3.

For any classification-based system, we compare a document’s in-class rank

to its original, corresponding list rank, k. We say that the classification-based

system outperforms the list-based system if i + j < k, i.e., the user looks at

fewer classes and documents.
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Note that we have implicitly assumed that (i) documents are correctly as-

signed to classes, and (ii) that users always choose the correct class. In practice,

this will not always be the case. However, this assumption simplifies our analysis

and permits us to determine the best-case performance of class-based retrieval

systems, therefore in-class rank provides the upper bound of the systems. We

refer the reader to Chapter 3 for more discussion of when this assumption does

not hold.

Given an initial retrieval set, D = {d1 · · · d|D|}, that has been grouped into a

set of classes, C = {c1 · · · c|C|}, we now wish to determine the relative ranking of

each class. The information we have available is the query, q, and the documents,

D. We employ a straightforward Bayesian approach, i.e. we wish to estimate

the probability, P (c|q), that class, c is of interest, conditioned on the query, q,

P (c|q) ∝ P (c)P (q|c). (5.1)

The value of P (c|q) is used to determine the class rank(CR). We now consider

how each of these two terms might be estimated.

5.2.1 Query-Dependent Rank

The probability, P (q|c), is the likelihood that class c generates query q.

According to Bayesian rule, it can be regarded as solving the query classification

problem [110]. This problem has received significant attention [23, 26] since the

2005 KDD Cup competition [80]. Solutions to this problem typically enrich the

query terms using keywords from the top-ranked documents in the result set;

See chapter 4 for more detail on query classification.

For a test query, the class probability distribution can be modeled as

P (q|c) ≈ 1
1 + exp(−(wT

c x + b))
, (5.2)

where, x is term vector containing the query and enrichment terms, and the

weights wc and intercept b are derived from L2-regularised logistic regression

[82], based on a set of labelled examples. Alternative estimates for P (q|c) are

possible, but are not considered here.
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5.2.1.1 Query-Based Rank (QR)

If each class is only ranked based on Equation (5.2), i.e. we ignore the query-

independent term, P (c), in Equation (5.1), we refer to it as query-based rank

(QR).

5.2.2 Query-Independent Rank

To estimate P (c), we make use of the available documents in the retrieved

result set. Note that we can estimate P (c) based on the class distribution of the

collection, but this is beyond our scope and it is not as accurate as the retrieved

result set. We further assume that only documents contained in the class, Dc,

affect the probability of the class, i.e.

P (c) ≈ P (c|Dc). (5.3)

We believe this assumption is reasonable as the class probability is mainly de-

termined by the information within the class, not by the other classes. Thus,

Equation (5.1) becomes

P (c|q) ≈ P (c|Dc)P (q|c). (5.4)

We now considered several ways to estimate the conditional probability

P (c|Dc); More precisely, we present functions to approximate the likelihood

of the class c to be examined rather than probability, as the results do not sum

to 1.

5.2.2.1 Document-based Rank (DR)

One approach to estimating P (ci|Dc) is to base the probability on the top-

ranked document in the class, ci. The reader is reminded that the original rank

order of documents in the result set is retained within a class.

The j-th ranked document in class, ci, is denoted di,j . The document’s

corresponding list rank, i.e. its rank prior to classification, is denoted s(di,j) =

s(dk) = k.
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We then define the conditional probability, P (c|Dc) as

P (c|Dc) = f(s(di,1)), (5.5)

where c = ci, and s(di,1) is the list rank of the top document in class ci. The

function, f(x), can be any monotonically decreasing function in the value x.

Here we consider the inverse function defined by

f(x) =
1
x

(5.6)

and the logistic function defined by

f(x) =
1

1 + exp(x)
. (5.7)

If we only rank classes based on the query-independent factor of Equa-

tion (5.1), then both functions, f(x), will rank the classes in the same order.

In the subsequent experiments, we therefore only consider the inverse function,

and rank classes according to

P (c|Dc) =
1

s(di,1)
(5.8)

We refer to this as the document-based rank (DR).

5.2.2.2 Size Rank (SR)

In contrast to ranking classes based on the top-ranked document in the class,

we also consider the case where the conditional probability P (c|Dc) is based on

the class size. That is, the bigger the class, i.e. the more documents assigned

to the class, the more important the class is considered to be. Thus, we have

P (c) ≈ P (c|Dc) =
|c|∑
i |ci| , (5.9)

where |c| is the number of elements in the class c, and the denominator is the

size of result set.

Again, if we only rank classes based on the query-independent factor of

Equation (5.1), and the class ranks are based on the size of the classes, as

defined in Equation (5.9), then we refer to this as the Size Rank (SR).
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5.2.3 Additional Class Ranking Models

From Equation (5.2) and the definitions for P (q|c) and P (c), we can now

define a variety of different models for ranking classes based on both the query-

dependent and query-independent probabilities.

5.2.3.1 Query/ Inverse Rank (QDIR)

If the class ranking is determined by the product of Equations (5.2) and

(5.6), then we obtain

P (c|q) ≈ 1
1 + exp(−(wT

c x + b))
× 1

s(dc,1)
. (5.10)

We call this rank the Query/Inverse Rank(QDIR).

5.2.3.2 Query/Logistic Rank (QDLR)

The Query/Logistic Rank (QDLR) is correspondingly defined as

P (c|q) ≈ 1
1 + exp(−(wT

c x + b))
× 1

1 + exp(s(dc,1))
. (5.11)

5.2.3.3 Query/Size Rank (QSR)

Similarly, if the class ranking is determined by the product of Equations (5.2)

and (5.9), then we have

P (c|q) ≈ 1
1 + exp(−(wT

c x + b))
× |c|∑

i |ci| . (5.12)

We call this rank the Query/Size Rank (QSR).

5.2.3.4 Summary of Ranking Methods

We distinguish the methods for estimating P (c|q) ≈ P (q|c)P (c|Dc) accord-

ing to the different methods presented above. The list rank (LR) is the original

rank of a document in the result set, i.e. before any classification. We then con-

sider two query-independent methods of ranking classes, based on (i) the class
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size, i.e. size rank (SR), and (ii) the top-ranked document in each class, i.e.

document rank (DR). We also consider ranking classes based only of the query-

dependent term, i.e. the query-based rank (QR). Finally, we consider rank-

ing classes based on a combination of query-dependent and query-independent

terms. In all these cases, the query-dependent term is based on Equation (5.2),

and we vary the query-independent term. Specifically, we consider (i) query/size

rank (QSR) in which the conditional probability, P (c|Dc) is based on the size

of a class, and (ii) query inverse rank (QDIR) and query logistic rank (QDLR),

both of which are based on a function of the top-ranked document in each

class, and where this function is the inverse function or the logistic function,

respectively. The various methods are summarised in Table 5.1.

Notation Meaning

LR List Rank, the rank of the results re-

turned by the search engine.

SR Size-based Rank computed according to

(Equation (5.9))

DR Document-based Rank computed ac-

cording to (Equation (5.6)).

QR Query-Based Rank computed according

to (Equation (5.2))

QSR Query/Size Rank computed according

to (Equation (5.12))

QDIR Query/Inverse Rank computed accord-

ing to (Equation (5.10)).

QDLR Query/Logistic Rank computed accord-

ing to (Equation (5.11)).

Table 5.1: The summary of the ranks
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5.3 Experiments

In this section, we will conduct the experiments to evaluate the impact of

the the different rank methods we have presented in the previous section.

5.3.1 Experimental Setting

Evaluation of information retrieval systems requires knowledge of a docu-

ment’s relevance with respect to a query. One indirect source of such information

is query logs. These logs consist of queries together with associated clickthrough

data. Previous research [88] showed that retrieval evaluation based on query

logs yields similar performance to retrieval evaluation based on traditional hu-

man assessors. We used a subset of an MSN query log (the RFP 2006 dataset),

collected in spring 2006. The log contains approximately 15 millions queries.

Each query has associated with it either (i) no clickthrough data (no-click), (ii)

one clickthrough data (one-click), or (iii) multiple clickthrough data (multiple-

click).

We ignored queries for which there is no associated clickthrough data (ap-

proximately 6.1 million queries) as they do not contain any feedback. In general,

there are two types of search session that will be abandoned. Firstly, if the ses-

sion information is rare, which is measured by the frequency of a query or a query

clickthrough pair. Such session provides less or even no value for user browse

model, query suggestion and other tasks, so it will be abandoned [49, 27]. Sec-

ondly, if the session does not contain any useful information for research tasks,

it will be abandoned. Dupret et al [48] built a session utility model based on

clickthroughs, therefore any session without a clickthrough is discarded, which

is close to our work. Boldi et al [20] built a query-flow graph with a directed

edge from one query to another query by making use of queries in one session.

The sessions containing one query are discarded as they do not provide useful

information for their task. For one-click queries, of which there are approxi-

mately 7.2 million, we assume the query was satisfied by the document clicked

on. For multiple-click queries, of which there are approximately 1.6 million, we

assume that the query was satisfied by the last document clicked on. We realise
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that this will not always be true, but assume that it is true sufficiently often to

provide us with reliable results. Note that this assumption has been partially

justified by other researchers [75], in the context of multiple-click queries.

The query log does not include information describing the result set returned

in response to the query. Rather, the clickthrough data only identifies those

documents in the result set that the user clicked on. Of course, in order to

evaluate the various classification based ranking methods, we need access to

the complete result set. We acquired this information by issuing the query

to a search engine, specifically Microsoft Live Search on May 2009, which was

subsequently replaced by Bing. Note that for some queries, the URLs clicked

on in the query log are not returned by the search engine, either because its

rank is beyond our retrieved result set or the URL is no longer available. We

discarded such queries. In the case where the URL is returned in the result set,

we assume that the result set returned by Live Search is similar to the result set

observed by the user during the collection of the log. We acknowledge that this

is a major assumption, which cannot be verified due to the evolution of the web

and users’ search behavior. To conduct a known item test, we have to assume

that the clickthrough data still attract users’ attention even some new relevant

results may occur in the retrieved data set in practice. We can also carry out our

experiment on a standard Web TREC collection, which provide static data set.

However, TREC collect is mainly used to evaluate the retrieval algorithms, while

our work is built upon the underlying retrieval methods. Our classifier predicts

the label based on the retrieved snippets online and the TREC collection does

not provide such information. Previous research [111] also presented some issues

to use TREC algorithm for web search. Nevertheless, TREC is another option

for us. Future work is needed to repeat these experiments on a TREC collection

or more recent data set.

The experimental methodology will now be described. The total number

of unique queries which have a clickthrough is 3,545,500. Among them, there

are 658,000 multiple-click queries, whose top-20 search results have been down-

loaded by us before Microsoft upgraded Live to Bing. We took a random sample

of 20,000 one-click queries and 20,000 multiple-click queries, whose clickthrough

occurred both in the query log and in our retrieved data set.
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For each query, the list rank of the relevant document (i.e. the document

clicked on for one-click or the final document clicked on for multiple-click) were

recorded. Next, the documents in the result set were classified into one of 27

classes; these classes are enumerated in the Chapter 4; see Section 4.6 for more

details about this ontology for searchers. In order to classify the documents

we compute P (c|q) from Equation (5.2), using logistic regression. The training

data is obtained from two manually classified subsets of an AOL search log [15].

For details about the training data, please refer to Chapter 4. We enriched

the query with the top-10 snippets in the result set, the titles of the top-10

documents and their URLs to form the vector x. Then for the test query, we

enriched the query with the same information and predicted the probability via

Equation (5.2).

To keep our data consistent, for a given query, we record the list rank of

the given clickthrough in the result set, as it may be different from the one

recorded in the log data. Then query classification is carried out by enriching

the query with the top-10 results. In this manner we attain the class probability

distribution. After that we assign each result into its class.

5.3.2 Experimental Methodology

The experimental procedure, including data pre-processing have been de-

scribed in the Section 5.3.1. We assume the last clickthrough of multiple-click

queries and the clickthrough of one-click queries as the target document. We

then compare the list rank with the class rank methods described in the Sec-

tion 5.2. The classification of search results is carried out using the same query

classifier as we described in Chapter 4. The class with highest probability is

the predicted label for the result. And document ranking within each class is

determined by the original list rank.

5.3.3 Experimental Results

In Section 5.3.3.1, we present the results for multiple-click queries. The

results of One-click queries are presented in Section 5.3.3.2.
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5.3.3.1 Results for Multiple-Click Queries

Each target document has an original list rank from 1 to 20. Table 5.2 shows

for each list rank, the mean value of the corresponding in-class rank. Column

1 of Table 5.2 provides the list rank of the target documents for the top-20

documents, i.e., in this case there is no classification, only a traditional list of

retrieved documents. Column 2 to 7 provide the equivalent in-class ranks (ICR),

i.e., the total number of classes and documents a user must examine in order

to find the target document. If the class-based rank is less than the LR, then

the classification based system outperforms a traditional system. The smallest

value indicates the least number of documents that a user must inspect before

finding the desired document.

LR QR DR SR QSR QDLR QDIR

1 3.00 2.00 2.88 2.79 2.08 2.13

2 3.55 3.00 3.39 3.32 2.93 3.01

3 3.95 3.64 3.73 3.68 3.58 3.63

4 4.45 4.23 4.20 4.20 4.15 4.18

5 4.81 4.80 4.63 4.58 4.71 4.70

6 5.28 5.26 4.95 4.99 5.19 5.18

7 5.65 5.86 5.41 5.42 5.74 5.68

8 6.11 6.24 5.86 5.85 6.15 6.12

9 6.37 6.58 6.13 6.13 6.49 6.44

10 6.83 7.05 6.54 6.56 6.97 6.89

11 7.46 7.69 7.16 7.18 7.60 7.57

12 7.89 8.07 7.52 7.59 8.01 7.93

13 8.38 8.58 7.99 8.05 8.50 8.41

14 8.41 8.66 8.07 8.13 8.57 8.50

15 8.99 9.17 8.56 8.68 9.10 9.05

16 9.55 9.84 9.25 9.32 9.74 9.64

17 9.64 10.03 9.23 9.29 9.94 9.83

18 10.50 10.82 10.12 10.17 10.72 10.63

Continued on next page
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LR QR DR SR QSR QDLR QDIR

19 10.69 10.95 10.27 10.36 10.88 10.80

20 11.27 11.52 10.98 10.95 11.41 11.32

Table 5.2: The comparison of class based rank for the last click through accord-

ing to list rank (multiple-click).

One reason why the class-based rankings do not yield an improvement for

list ranks of 5 or less, is that in-class ranks introduce a small overhead, i.e. an

extra click to examine the class the result is in. Thus, if the desired document

is ranked first, i.e. its list rank is 1, and, for class-based ranking, this document

is the first document in the first class, the user must examine one class and one

document, thereby incurring a cost of 2.

It is interesting to note that for an initial list rank of 5 or less, the best

classification-based methods are provided by document-based ranking methods,

specifically DR and QDIR. However, for list ranks greater than 5, classification

methods based on class size perform best. For initial list ranks between 5 and

10, we observe that SR and QSR are the best, and for an initial list rank

greater than 10, SR performs best in most cases. This might be due to the

fact that for list ranks greater than 10, the initial query is, by definition, poor,

and therefore ranking classes based only on the query-independent component

is usually superior. However, the difference in performance between the two

methods is actually quite small.

Figure 5.1 shows the cumulative distribution of target documents for each

method. We see that for list rank, approximately 25% of target documents are

at list rank of 1, and 35% have a list rank less than or equal to 2. No class

ranking system has a class rank of 1 because of the overhead it introduces.

Approximately 25% of clicked document have a in-class rank of 2. The list rank

and in-class rank cross at rank 4. Approximate 50% of the documents have a

rank of 4 or less for all systems. Conversely, 50% of clicked documents have a

rank greater than 4, and in those cases, a classification based system performs

better.
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Figure 5.1: The cumulative distribution of the rank of click through based on

ranking position (multiple-click).

5.3.3.2 Results for One-Click Queries

The performance for one-click queries is very similar to the multiple-click

queries.

LR QR DR SR QSR QDLR QDIR

1 3.11 2.00 2.85 2.79 2.08 2.14

2 3.57 3.00 3.32 3.28 2.94 3.04

3 4.13 3.68 3.74 3.76 3.61 3.68

4 4.56 4.25 4.20 4.21 4.18 4.22

5 4.98 4.78 4.62 4.65 4.71 4.73

6 5.40 5.31 5.04 5.05 5.25 5.24

7 5.87 5.85 5.51 5.52 5.77 5.74

8 6.22 6.16 5.88 5.92 6.06 6.06

9 6.40 6.51 6.05 6.09 6.43 6.36

10 7.01 7.11 6.63 6.64 7.04 7.01

11 8.03 8.06 7.54 7.67 8.03 8.03

12 7.95 8.03 7.38 7.47 7.98 7.93

13 8.23 8.25 7.78 7.78 8.17 8.14

14 8.71 8.67 8.28 8.29 8.60 8.56

Continued on next page
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LR QR DR SR QSR QDLR QDIR

15 9.04 9.18 8.61 8.67 9.13 9.10

16 9.55 9.85 9.28 9.26 9.72 9.57

17 10.05 10.37 9.81 9.79 10.31 10.17

18 9.88 10.14 9.65 9.60 10.09 9.91

19 10.95 11.12 10.38 10.60 11.05 11.01

20 10.95 11.17 10.51 10.58 11.14 11.03

Table 5.3: The comparison of class based rank for the last click through accord-

ing to list rank (one-click).

Table 5.3 shows the mean value of the respective in-class rank for each list

rank. Column 1 of Table 5.3 provides the list rank of the clicked document in

the list-ranked results set. We can see that all in-class ranks perform worse than

the list rank when list rank is less than or equal to 4, which is similar to the

results in Table 5.2. The in-class rank outperforms the list rank when the list

rank is greater than 4. In those cases, once again, ranking classes based on class

size, i,e, SR and QSR, exhibit the better results.

Figure 5.2 shows the cumulative distribution of target documents for each

method, for one-click queries.

Compared to the Figure 5.1, the list rank more strongly dominates the top

ranks, i.e., approximate 47% of target documents are at list rank of 1 and

about 70% of target documents are at ranks of three or less. As before, ranking

classes based on a document-based ranking provides the best performance for

the classification methods when the list rank is less than 5.

If the initial query is good, i.e. the target document has a list rank less

than 5, then displaying results as a traditional one-dimensional list is superior.

However, for queries where the initial list rank is 5 or more, classification based

ranking offers better results. It would therefore be interesting to investigate a

hybrid method for displaying the result set, in which the top-ranked document

is displayed first, followed by categorised results.
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Figure 5.2: The Cumulative Distribution of Click Through Based on Ranking

Position (one-click).

5.4 Learning to Rank

The ranking model in the previous section is unsupervised. Recently, learn-

ing to rank [86] has becomes very topical as it can potentially deliver state of

the art performance. Here we conduct the preliminary experiments in order

to learn to rank classes of search results. The algorithms we make use of are

RankNet [25] and RankingSVM [73]. We note that both algorithms use a pair-

wise approach, i.e.,a pair of documents are represented as feature vectors and

the output is the pairwise preference between each pair of documents. Such pair-

wise approaches suffer from some limitations. i.e., the positional information is

invisible to their loss functions, and they ignore the fact that some documents

(or document pairs) are associated with the same query [83], compared to the

listwise approaches, such as ListNet [28]. Moreover, given a small number of

features, those machine learning algorithms may not outperform conventional

ranking algorithms. Our target is to evaluate the classification-based search ,

but to be complete, we conduct the following experiment and present the result

here. In future, we plan to carry out some research by making use of larger

query log data, more features and advanced algorithms on this topic.

The dataset we used was described in the previous section. From the data

set, we randomly chose 5000 queries, all of which contains a single click through
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as the training sample; another 4000 queries were similarly chosen as the test

data.

The class of the single clickthrough is taken to be the target class, and we

randomly select other class to form a pair of classes. Then the learning to rank

algorithm learns the preference model from these pairs. The generated model

is used to rank the classes of the results of queries from the test data.

Learning to rank methods work well for high dimensional data sets, typi-

cally with hundreds of features or more. However, to be able to compare these

experiments with the unsupervised one, carried out in the previous sections,

we use the following features: (1) top document rank within a class, (2) mean

document rank within a class, (3) class size, and (4) class probability based on

query classification.

The experimental results are shown in Table 5.4.

LR QR SR QSR QDLR NETR SVMR

1 2.95 2.68 2.77 2.07 2.27 2.17

2 3.59 3.27 3.44 2.92 3.11 3.04

3 3.79 3.51 3.59 3.61 3.61 3.62

4 4.38 4.05 4.20 4.12 4.25 4.23

5 4.70 4.35 4.48 4.69 4.56 4.68

6 5.19 4.82 4.96 5.23 5.09 5.19

7 5.67 5.27 5.40 5.72 5.57 5.65

8 6.28 5.79 5.94 6.30 6.11 6.12

9 6.39 5.94 6.20 6.45 6.22 6.26

10 6.66 6.16 6.35 6.68 6.55 6.58

Table 5.4: The comparison of unsupervised class ranking and supervised class

ranking

In the table NETR denotes the class rank generated by RankNet, and SVMR

denotes the class rank generated by RankingSVM. It can be seen that the results

of the supervised ranking methods are similar to the unsupervised one. We can

see that supervised ranking methods do not outperform the unsupervised ones.
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However, for initial list rank of two or less, the corresponding class rank is close

to the best class rank, and the overall performance is close the QSR. Although

the supervised ranking methods do not prove to be advantageous, we believe

that this is mainly due to the limited feature space. In future work, we plan to

explore the performance of supervised ranking methods in higher dimensional

feature space.

5.5 A Proof of Concept for a Classification-Based

Search Engine

A proof of concept for a classification-based search is necessary for our work.

We implemented a prototype of the system as described below.

5.5.1 Classification-Based Search Engines - an Architec-

ture

To demonstrate our models for classification-based search, we require a

search engine to integrate a classification module. In this section, we will de-

scribe an architecture of such a classification-based search engine.

For the search component, we made use of a metasearch engine, which com-

bines results from one or more search engines and presents one ranked list to

the user through a common interface. The primary advantage of metasearch

engine over each individual search engine is improved coverage. Earlier research

[78] concluded that all search engines cover only a small portion of the size

of the web. Searching multiple search engines simultaneously via metasearch

can improve the coverage significantly. If combined with vertical search en-

gines, metasearch can improve the precision of individual search engine to some

extent, this relates to the query classification problem in Chapter 4.

Another advantage is the metasearch does not require any crawler and in-

dexing because metasearch provides a free platform to access the commercial

search engines. One issue with metasearch engines is that they are at the mercy
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Figure 5.3: An architecture of a classification-based metasearch engine.

of the search engines they wish to query, and some have banned metasearch

engines from “free riding” on top of them. This leads some metasearch engines

to negotiate a commercial arrangement with the major search engines [79].

The classification-based metasearch engine is similar to a typical metasearch

engine except that it consists of one extra module - the classifier, hence the

ranking module involves the additional computation of ordering classes and

documents within each class.

The architecture of a classification-based metasearch search is shown in Fig-

ure 5.3. The classification module involves two parts: query classification and

results classification.

Apart from the low level architecture, the user interface is important for

a search system. An important task of a user interface is to aid users in the

expression of their information needs, in the formulation of their queries, in

the understanding of their search results, and in keeping track of the progress

of their information seeking efforts [65]. We should keep the user interface as

simple as possible so that the user will focus on the content and not be attracted

or confused by any other complex function. This is the reason the standard user

interface for search engine has remained the same for the last decade.

For web applications like search, the most important functionalities are a
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Figure 5.4: Google Search User Interface

hyperlink and a “Submit” button. In this case, data and functionality are

not clearly separated and a rich tool set is not necessary for a simple search

experience. One example is the Google user interface shown in Figure 5.4.

When the user issues a query, Figure 5.5 shows how Google presents the results

to the user. Google provides the function of restricting results by place and time

Figure 5.5: Search Engine Results Pages (SERP)

on the left panel. In the middle panel is the main retrieved results for the query,

which may include small number of sponsored links. The main sponsored links

are listed on the right panel. This user interface is very clear and effective.

There are other tips that contribute to an effective user interface, such as

Google Suggest, which has the ability to narrow in on good search terms based

on partial user input. In our implementation, we ignore the query suggest
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Figure 5.6: The Layout of the User Interface

feature, but we implement logging function in the system.

5.5.2 Classification-Based Search Engines - an Implemen-

tation

In this section, our proposed search engines will be introduced. The main

value here is to provide the basis functionality of classification-based search

engines, and as described previously, there are many implementation issues we

have not addressed, such as Google Suggest functionality and the limitation of

API. The prototype system was implemented as an MSc project [4].

5.5.2.1 Proposal for User Interface

There are three components involved in a user interface: the search box,

the classes and the results set for each class. We adopted the approach as in

Figure 5.6. This layout lists the class labels at the left panel and the corre-

sponding results set at the right panel. The class labels are organised in a

logical way so that most relevant class will be presented first. The results set

are stored in an object at Javascript level so that it is simple and convenient

to display the results. This layout approach is widely adopted by many clus-

ter search engine, including Yippy (http://www.yippy.com/), SnakeT (http:
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Figure 5.7: The Screen Shot of User Interface

//snaket.di.unipi.it/) and Carrot (http://project.carrot2.org/). A

screen shot of this layout from the prototype is shown in Figure 5.7.

The project is implemented in Java and Javascript. Glassfish (http://

glassfish.java.net/) is the application server containing the service.

5.5.2.2 Metasearch with an SVM Classification Module

JavaScript Object Notation (JSON) is used as a vehicle for the retrieved

results, since both Google Search Ajax API and Bing API 2.0 support JSON.

The classification module is trained from two parts of the manually classified

AOL Log as we mentioned in Chapter 4 and one subset of manually classified

Live Data. The predictive model used bi-gram linear SVM, also described in

Chapter 4.

Each result is associated with a score to reflect the relative relevance for a

user query. In this project, we adopted a simple approach to rank the result

called Borda Count algorithm [38]. The procedure works as followed: the web

pages of each search engine are scored in such a way that if n results are retrieved,

then the first document will have the score n and the second will have n−1 and so

on until the last document will have the score 1; the scores of the corresponding
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results from both search engines are then added up.

We conducted a small sample user test on the prototype as part of the MSc

project. The six participants have a variety of backgrounds, including English,

IT, Engineering and Dentistry. Each user was issued with three queries and

asked to find their desired information in our system. They were then asked to

provide some feedback about the system. The following is a summarisation of

the user testing.

• Users found the results they had in mind in the class with the highest

score that is displayed first to the user but not necessarily in the class

they expected.

• Users had to check up to a maximum two classes until they found the

document they had in mind.

• The feature of classification, interface design, font size, and colour theme

was rated good in general, however the speed of the system was rated

negatively. Some of the users thought that the speed, although slow, was

tolerable since they did not have to sequentially scan the entire results set

if they had an expectation of what class a result may belong to.

• Users in general were very excited to use the search engine and they ap-

praised the idea of classifying search engine results.

5.6 Discussion

We proposed a probabilistic model for ranking classes, and derived six rank-

ing functions from this model in section 5.2. Two models, SR and DR, were

query-independent, and one model, QR, was query-dependent. A combination

of these resulted in the models QSR, and QDIR and QDLR.

Within each class, the rank order of documents was identical to that in

the original list rank. We believe this is an important experimental control

in order to be certain that any improvements in ranking are solely due to the

classification methods under investigation.
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In section 5.3.3 we examined a subset of queries derived from an MSN log

recorded in Spring 2006. This subset consisted of 20,000 queries for which one-

click was associated with each query, and 20,000 queries for which multiple-clicks

were associated with each query. The two data sets were examined indepen-

dently, but the experimental results are consistent across both. In particular,

we observed that for target documents with an initial list rank less than 5, the

classification-based methods offered no advantage. This is partly due to the fact

that these methods introduce a small overhead, i.e. to even examine the first

document in the first class requires two, rather than one click. However, for

target documents with an initial list rank of 5 or more, classification methods

are better. Of the six methods examined, the two based on class size, SR and

QSR, performed best from table 5.3 and table 5.2. The difference between these

two methods is small.

For the case where the target document has an initial list rank of 5 or less,

the document-based classification methods performed best. However, they were

inferior to traditional list rank, i.e. no classification.

The fact that the traditional list rank performs well for good queries, i.e.

where the initial rank of target documents is less than 5, while classification-

based methods perform well for poorer queries, i.e. where the initial rank of

target documents is greater than 4, suggests that some form of hybrid method

should be investigated. For example, one could display the top-ranked document

followed by categorised results. This would be an interesting line of future

investigation.

A key assumption of our experimental results is that the retrieved results

obtained using Live Search are similar to those observed by users at the time

the query log was collected in Spring 2006. It is not possible to verify this

assumption, and it would be interesting to repeat our experiments on more

recent data.

In our work, we also assume that classification is perfect, i.e. that documents

are correctly classified and that users correctly identify the target class. In prac-

tice, this will not be the case, and our experimental results must be considered

as a best case scenario.
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We also implemented a prototype of classification based search engine. In a

real implementation, we encountered the false positive problem, which is difficult

to avoid. Encountering false positives will lower the users’ confidence in the

system. Two approaches to handle this issue are:

• User explicit feedback.

• Classification during indexing.

If the user can provide direct feedback to our classifier system, it will improve

the performance. However, most users are reluctant to do the extra work and

implicit feedback, e.g., clickthrough data can be used. Moreover, classification

during indexing is a reasonable approach to reduce the false positives.

We know that the one level class structure provides a coarse granularity.

Some queries can be more specific and domain focused, which requires a deep

class hierarchy. This requires further research. Clustering and tag informa-

tion from social bookmarking website such as delicious can be applied to this

problem.
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Chapter 6

Concluding Remarks and

Future Directions

In this thesis, we investigated the issue of improving search engines by em-

ploying classification. It is motivated by the following considerations: 1) Infor-

mation growth on the web is increasing at an exponential rate, and 2) discovering

structure within an information domain has been proved to be an effective way

in practice of organizing large data sets. For example, the time-consuming man-

ual classification of information has successfully been applied by librarians for

information organisation with a long history. Classification also deals with the

unavoidable problem that the retrieved results from traditional search engines

are topic-independent, therefore limiting users’ search experience for ambiguous

queries.

To address this issue, in this thesis we have proposed classification as a

means to organise the retrieved results from a search engine. At the theoretical

level, document classification is derived from statistical learning theory and can

control the generalization ability of the learning process. In practice, advanced

classifiers, such as Support Vector Machines, have obtained better accuracy on

a variety of datasets compared to traditional classifiers, such as decision tree or

Naive bayes classifier[72]. Such automatic classifiers form the foundation of our

research.
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Chapter 3 presented a simulation-based evaluation framework that can be

used to measure the effect of adding a classification component to a search

engine. This methodology explored six possible user behaviors in a category-

based results presentation for the identification of the target document in table

3.1. By design, for every target document, ten queries, each corresponding

to different levels of query quality were generated automatically so that the

correlation between the effect on category-based systems and query quality could

be analysed in section 3.4.1. This method therefore reduced the need for the

expensive and time-consuming user testing, although in practice user testing

is still very important. A summary of the contributions and results from this

chapter are as follows:

• We first proposed six user models corresponding to user behaviors in the

classification-based framework. For each user model, we defined related

class-based ranks in section 3.2. Although precursory research has con-

firmed by user testing, that category-based retrieval can improve users’

searching time, to our knowledge, there has been no work discussing the

ranking of document within a classification-based framework, which allows

us to quantitatively analyze the benefits of a category-based strategy. In

this context it is worth mentioning that eye tracking experiments have

shown that document ranking is correlated with search time. Our results

in section 3.4.1 not only demonstrated the advantages when the user cor-

rectly identifies the class and there is no machine error, but also suggested

the strategy the user should take to achieve the optimal performance when

the user does not know the class or when there are user and machine errors.

• Classification will introduce errors. We first analysed the correlation be-

tween the performance of classifiers and the performance of classification-

based search engines in section 3.4.1.1. Our work suggests that the perfor-

mance of classification-based search engines are negatively affected by the

accuracy of the classifier. However, significant reductions in search time

can still be achieved when the error rates are even as high as 30%.

• We envisage that a classification-based search engine will create only a

small overhead, in particular for good queries in section 3.4.1.1; here the
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good queries means the rank of the desired document is within the top 5

results. We suggested a hybrid system to address this problem.

Chapter 4 introduced the topic of query classification and an application of

query classification, i.e., topic specific analysis of search queries. The chapter

considered the main challenge of query classification, in particular for online

prediction of the class the user is interested in, in the case where the available

information is usually limited to the user query. The method we employ is

to enrich the query with additional keywords as we described in section 4.3.

We argued that for a query classifier, the quality and size of the training data

will positively affect the performance. We enriched each query with the co-

occurrence terms from Yahoo’s Related Suggestions, Explore Concepts from

Yahoo! and the top 2,5,10 and 20 snippets of results from Google. Then different

combinations of enrichment were considered for training query and test query

in section 4.5. A bi-gram SVM model was built to predict the label of the query.

The results suggested that:

• Enrichment by pseudo-relevance feedback, i.e., top n snippets of results

from Google, was better than enrichment by suggested keywords and Ex-

plore Concepts for a symmetric setting in table 4.7.

• In the symmetric setting, the performance of enrichment from Google

results increased with the number of snippets at the first stage, however

degraded when enriched with the top 20 results. We believe this may be

due to more noise that is introduced into the data when too many snippets

are used as shown in table 4.6.

• For the asymmetrical learning setting in section 4.5.3.7, we found that

enrichment based on secondary sources to be competitive with those based

on pseudo-relevance feedback, which implies that if we can improve the

quality of the enrichment data, the performance of query classification can

also be improved.

We applied query classification into the analysis of a search query log to gain the

additional insight of the users’ intent in section 4.6. We found a few interesting
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results in section 4.6.1 such as the longest queries were for Places class, the

largest clickthrough rate occurred at Art class and the largest session rates

were for the Shopping and Entertainment class. For temporal characteristics,

the query distribution of Finance and Government class dropped abruptly from

working day to weekend, and in addition, in most cases Monday was the peak

weekday. This seems to indicate that most of the queries in these categories

were work related. In contrast, there was hardly any drop in the weekend

for the Game, Pornography and Entertainment classes. These topics can be

characterised as recreation, so the volume of those queries remained high during

weekends.

Chapter 5 made use of the class distribution of query classification along

with newly derived class features to provide a ranking for classes. Most previous

work had used class size or the alphabet of the class label to rank the class. In

contrast to the method we used in Chapter 3, in Chapter 5 we made use of search

queries from a Microsoft Live search log. The log provides real user queries along

with the clickthrough data. In section 5.3, two types of queries were studied

in the experiment: one-click queries and multiple-click queries. The desired

information of one-click queries is the result clicked on, while for multiple-click

queries, we assumed the last clickthrough was the target document. We then

analysed the retrieved results in terms of list rank and classification-based rank.

Experimental evaluation of each of our six class-based ranks methods we

proposed in section 5.3.3 showed that size rank and query/size rank performed

best for the queries whose rank of target document is greater than four. And

for the case where the target document has an initial scroll rank of four or less,

the the class-based rank making use of document-based information yielded

the best result; however, it is inferior to traditional list rank due to the small

overhead introduced by classification system. To address the overhead issue, we

suggested a hybrid search interface: we put top ranked results first, followed

by class results. This will slightly affect the performance of classification-based

search engines, but it can still have a better performance for documents with

low rank and the same performance as traditional search engines for documents

with high ranks, which form the bulk of clickthroughs.
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A prototype classification-based search engine was built to evaluate the fea-

sibility of our idea and small scale user testing was carried out to confirm our

results in section 5.5.

The work presented in this thesis examined specific strategies in the use of a

classification-based search engine. However, much work still remains to be done

under this topic.

The need for a reasonable depth of class structure is one that has received

little attention in IR literature. Chapter 3 described a shallow class structure to

organize the results along with the definition of class-based rank. Deep structure

classification can convey more information, however, it may increase the search

time to the target document, and thus the class-based rank of the document.

Moreover, displaying a deep hierarchy is problematic, and may occupy more

screen space. It is desirable in this case to learn how to effectively present the

results in an efficient way, also user testing may suggest better methods for

displaying the results.

The classifier used here is by no means perfect. The work described in

Chapter 3 confirmed that the accuracy of the classifier will affect a classification-

based search engine. In particular, false positive will have a negative effect on the

system. Ideally, we expect that full document classification performed offline

during indexing will improve the classifier’s accuracy. In such a case, semi-

supervised learning can aid the classifier. However, this approach is not feasible

for a metasearch engine. We believe user feedback can be used to partially

solve the problem. This requires that the user would provide feedback and the

predictive model will be updated frequently based on the feedback.

For the query classification task, the effectiveness of each measure varied

depending on the size and quality of enrichment data. Understanding the na-

ture of this relation between the performance of the classifier and the data is

obviously an interesting question as we know that retrieved results varied across

a range of topics. Extending this idea to topic modeling [19] is an interesting

direction.

Learning to rank classes has received little attention in IR literature, al-

though learning to rank results has been popular for the last decade [86]. We
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conducted preliminary experiments to investigate the effect of the new features

derived from class. Nevertheless, learning to rank class can improve the system

when more features are considered. This will reweight the importance of each

feature. However, this problem requires further exploration.

Throughout the thesis, the experiments did not involve any user testing

except for a limited test of the prototype search engine. It would be interesting

to conduct a large scale user test and to compare it with the known item test

carried out in this thesis.

Commercial search engines present the results independently of the topics.

Moreover, cluster-based search engines have to face the unavoidable problem of

cluster label generation and the discrepancy between the clustering algorithm

and human cognition. Identifying the benefits of the classification-based ap-

proach quantitatively and the new direction presented in this thesis is therefore

important. The author hopes that this thesis proves to be useful in addressing

these and related topics in future research on classification-based search.
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