
Cloud Computing: Theory and Practice

Dan C. Marinescu
Computer Science Division

Department of Electrical Engineering & Computer Science
University of Central Florida, Orlando, FL 32816, USA

Email: dcm@cs.ucf.edu

November 10, 2012

1

Contents

1 Introduction 10
1.1 Network-centric computing and network-centric content 12
1.2 Peer-to-peer systems . 16
1.3 Cloud computing - an old idea whose time has come 18
1.4 Cloud computing delivery models and services 21
1.5 Ethical issues in cloud computing . 24
1.6 Cloud vulnerabilities . 25
1.7 Major challenges faced by cloud computing 26
1.8 Further readings . 28
1.9 History notes . 28
1.10 Exercises and Problems . 28

2 Parallel and Distributed Systems 30
2.1 Parallel computing . 30
2.2 Parallel computer architecture . 34
2.3 Distributed systems . 36
2.4 Global state of a process group . 37
2.5 Communication protocols and process coordination 41
2.6 Logical clocks . 44
2.7 Message delivery rules; causal delivery . 45
2.8 Runs and cuts; causal history . 47
2.9 Concurrency . 51
2.10 Atomic actions . 54
2.11 Consensus protocols . 58
2.12 Modeling concurrency with Petri Nets . 61
2.13 Enforced modularity; the client-server paradigm 67
2.14 Analysis of communicating processes . 72
2.15 Further readings . 73
2.16 History notes . 73
2.17 Exercises and Problems . 75

3 Cloud Infrastructure 77
3.1 Cloud computing at Amazon . 77
3.2 Cloud computing, the Google perspective . 87
3.3 Microsoft Windows Azure and Online Services 89
3.4 Open-source software platforms for private clouds 90
3.5 Cloud storage diversity and vendor lock-in 94
3.6 Cloud computing interoperability; the Intercloud 97
3.7 Service level agreements and compliance level agreements 98
3.8 Responsibility sharing between user and cloud service provider 100
3.9 User experience . 101
3.10 Software licensing . 103
3.11 Energy use and ecological impact of large-scale data centers 104
3.12 Further readings . 107

2

dell
Rectangle

dell
Rectangle

dell
Rectangle

2 Parallel and Distributed Systems

Cloud computing is based on a large number of ideas and the experience accumulated
since the first electronic computer was used to solve computationally challenging problems.
In this chapter we overview concepts in parallel and distributed systems important for
understanding the basic challenges in the design and use of computer clouds.

Cloud computing is intimately tied to parallel and distributed computing. Cloud applica-
tions are based on the client-server paradigm with a relatively simple software, a thin-client,
running on the user’s machine, while the computations are carried out on the cloud. Many
cloud applications are data-intensive and use a number of instances which run concurrently.
Transaction processing systems, e.g., web-based services, represent a large class of applica-
tions hosted by computing clouds; such applications run multiple instances of the service
and require reliable and an in-order delivery of messages.

The concepts introduced in this section are very important in practice. Communication
protocols which support coordination of distributed processes travel through noisy and
unreliable communication channels which may lose messages or deliver duplicate, distorted,
or out of order messages. To ensure reliable and in order delivery of messages the protocols
stamp each message with a sequence number; in turn, a receiver sends an acknowledgment
with its own sequence number to confirm the receipt of a message. The clocks of a sender
and a receiver may not be synchronized thus these sequence numbers act as logical clocks.
Timeouts are used to request the retransmission of lost or delayed messages.

The concept of consistent cuts and distributed snapshots are at the heart of checkpoint-
restart procedures for long-lasting computations. Indeed, many cloud computations are
data-intensive and run for extended periods of time on multiple computers in the cloud.
Checkpoints are taken periodically in anticipation of the need to restart a software process
when one or more systems fail; when a failure occurs the computation is restarted from the
last checkpoint rather than from the beginning.

Many functions of a computer cloud require information provided by monitors, system
components which collect state information from the individual systems. For example,
controllers for cloud resource management discussed in Chapter 6 require accurate state
information; security and reliability can only be implemented using information provided
by specialized monitors. Coordination of multiple instances is a critical function of an
application controller.

2.1 Parallel computing

As demonstrated by nature, the ability to work in parallel as a group represents a very ef-
ficient way to reach a common target; human beings have learned to aggregate themselves,
and to assemble man-made devices in organizations where each entity may have modest
ability, but a network of entities can organize themselves to accomplish goals that an in-
dividual entity cannot. Thus, we should not be surprised that the thought that individual
systems should work in concert for solving complex applications was formulated early on in
the computer age.

Parallel computing allows us to solve large problems by splitting them into smaller ones
and solving them concurrently. Parallel computing was considered for many years the holy

30

grail for solving data-intensive problems encountered in many areas of science, engineering,
and enterprise computing; it required major advances in several areas including, algorithms,
programming languages and environments, performance monitoring, computer architecture,
interconnection networks, and, last but not least, solid-state technologies.

Parallel hardware and software systems allow us to solve problems demanding more
resources than those provided by a single system and, at the same time, to reduce the time
required to obtain a solution. The speed-up measures the effectiveness of parallelization; in
the general case the speed-up of the parallel computation is defined as

S(N) =
T (1)

T (N)
, (1)

with T (1) the execution time of the sequential computation and T (N) the execution time
when N parallel computations are carried out. Amdahl’s Law7 gives the potential speed-up
of a parallel computation; it states that the portion of the computation which cannot be
parallelized determines the overall speed-up. If α is the fraction of running time a sequential
program spends on non-parallelizable segments of the computation then

S =
1

α
. (2)

To prove this result call σ the sequential time and π the parallel time and start from the
definitions of T (1), T (N), and α:

T (1) = σ + π, T (N) = σ +
π

N
, and α =

σ

σ + π
. (3)

Then

S =
T (1)

T (N)
=

σ + π

σ + π/N
=

1 + π/σ

1 + (π/σ)× (1/N)
. (4)

But

π/σ =
1− α

α
(5)

Thus, for large N

S =
1 + (1− α)/α

1 + (1− α)/(Nα)
=

1

α + (1− α)/N
≈ 1

α
(6)

Amdahl’s law applies to a fixed problem size; in this case the amount of work assigned to
each one of the parallel processes decreases when the number of processes increases and this
affects the efficiency of the parallel execution.

When the problem size is allowed to change Gustafson’s Law gives the scaled speed-up
with N parallel processes as

S(N) = N − α(N − 1). (7)

7Gene Amdahl is a theoretical physicist turned computer architect who contributed significantly to the
development of several IBM systems including System/360 and then started his own company, Amdahl
Corporation; his company produced high performance systems in the 1970s. Amdahl is best known for
Amdahl’s Law formulated in 1960.

31

As before, we call σ the sequential time; now π is the fixed parallel time per process; α is
given by Equation 3. The sequential execution time, T (1), and the parallel execution time
with N parallel processes, T (N), are

T (1) = σ +Nπ and T (N) = σ + π. (8)

Then the scaled speed-up is

S(N) =
T (1)

T (N)
=

σ +Nπ

σ + π
=

σ

σ + π
+

Nπ

σ + π
= α +N(1− α) = N − α(N − 1). (9)

Amdahl’s Law expressed by Equation 2 and the scaled speed-up given by Equation 7
assume that all processes are assigned the same amount of work. The scaled speed-up
assumes that the amount of work assigned to each process is the same regardless of the
problem size. Then to maintain the same execution time the number of parallel processes
must increase with the problem size. The scaled speed-up captures the essence of efficiency,
namely that the limitations of the sequential part of a code can be balanced by increasing
the problem size.

Coordination of concurrent computations could be quite challenging and involves over-
head which ultimately reduces the speed-up of parallel computations. Often the parallel
computation involves multiple stages and all concurrent activities must finish one stage be-
fore starting the execution of the next one; this barrier synchronization further reduce the
speed-up.

The subtasks of a parallel program are called processes, while threads are light-weight
subtasks. Concurrent execution could be very challenging, e.g., it could lead to race condi-
tions, an undesirable effect when the results of concurrent execution depend on the sequence
of events. Often, shared resources must be protected by locks to ensure serial access. Another
potential problem for concurrent execution of multiple processes/threads is the presence of
deadlocks; a deadlock occurs when processes/threads competing with one another for re-
sources are forced to wait for additional resources held by other processes/threads and none
of the processes/threads can finish. The four Coffman conditions, must hold simultaneously
for a deadlock to occur:

1. Mutual exclusion; at least one resource must be non-sharable, only one process/thread
may use the resource at any given time.

2. Hold and wait; at least one processes/thread must hold one or more resources and
wait for others.

3. No-preemption; the scheduler or a monitor should not be able to force a process/thread
holding a resource to relinquish it.

4. Circular wait; given the set of n processes/threads {P1, P2, P3, . . . , Pn}, P1 should wait
for a resource held by P2, P2 should wait for a resource held by P3, and so on, Pn

should wait for a resource held by P1.

There are others potential problems related to concurrency. When two or more pro-
cesses/threads continually change their state in response to changes in the other processes

32

we have a livelock condition; the result is that none of the processes can complete its execu-
tion. Very often processes/threads running concurrently are assigned priorities and sched-
uled based on these priorities. Priority inversion occurs when a higher priority process/task
is indirectly preempted by a lower priority one.

Concurrent processes/task can communicate using messages or shared memory. Multi-
core processors sometimes use shared memory but the shared-memory is seldom used in
modern supercomputers because shared-memory systems are not scalable. Message passing
is the communication method used exclusively in large-scale distributed systems and our
discussion is restricted to this communication paradigm.

Shared memory is extensively used by the system software; the stack is an example of
shared memory used to save the state of a process or thread. The kernel of an operating
system uses control structures such as processor and core tables for multiprocessor and multi-
core system management, process and thread tables for process/thread management, page
tables for virtual memory management, and so on. Multiple application threads running on
a multi-core processor often communicate via the shared memory of the system. Debugging
a a message passing application is considerably easier than debugging a shared memory one.

We distinguish the fine-grain from the coarse-grain parallelism; in the former case rela-
tively small blocks of the code can be executed in parallel without the need to communicate
or synchronize with other threads or processes, while in the latter case large blocks of code
can be executed in parallel. The speed-up of applications displaying fine-grain parallelism
is considerably lower that those of coarse-grained applications; indeed, the processor speed
is orders of magnitude higher than the communication speed even on systems with a fast
interconnect.

In many cases discovering parallelism is quite challenging and the development of parallel
algorithms requires a considerable effort. For example, many numerical analysis problems
such as solving large systems of linear equations, or solving systems of PDEs (Partial Dif-
ferential Equations) require algorithms based on domain decomposition methods.

Data parallelism is based on partitioning the data into several blocks and running mul-
tiple copies of the same program concurrently, each running on a different data block, thus
the name of the paradigm, Same Program Multiple Data (SPMD).

Decomposition of a large problem into a set of smaller problems that can be solved
concurrently is sometimes trivial. For example, assume that we wish to manipulate the
display of a three-dimensional object represented as a 3D lattice of (n × n × n) points; to
rotate the image we would apply the same transformation to each one of the n3 points.
Such a transformation can be done by a geometric engine, a hardware component which
can carry out the transformation of a subset of n3 points concurrently.

Suppose that we want to search for the occurrence of an object in a set of n images,
or of a string of characters in n records; such a search can be conducted in parallel. In all
these instances the time required to carry out the computational task using N processing
elements is reduced by a factor of N .

A very appealing class of applications of cloud computing are numerical simulations of
complex systems which require an optimal design; in such instances multiple design alter-
natives must be compared and optimal ones selected based on several optimization criteria.
Consider for example the design of a circuit using FPGAs. An FPGA (Field Programmable
Gate Array) is an integrated circuit designed to be configured by the customer using a hard-
ware description language (HDL), similar to that used for an application-specific integrated

33

circuit (ASIC). As multiple choices for the placement of components and for interconnect-
ing them exist, the designer could run concurrently N versions of the design choices and
choose the one with the best performance, e.g., minimum power consumption. Alternative
optimization objectives could be to reduce cross-talk among the wires or to minimize the
overall noise. Each alternative configuration requires hours, or maybe days of computing
hence, running them concurrently reduces the design time considerably.

The list of companies which aimed to support parallel computing and ended up as a
casualty of this effort is long and includes names such as: Ardent, Convex, Encore, Floating
Point Systems, Inmos, Kendall Square Research, MasPar, nCube, Sequent, Tandem, and
Thinking Machines. The difficulties to develop new programming models and the effort to
design programming environments for parallel applications added to the challenges faced by
all these companies.

From the very beginning it was clear that parallel computing requires specialized hard-
ware and system software. It was also clear that the interconnection fabric was critical for
the performance of parallel computing systems. We now take a closer look at the parallelism
at different levels and the means to exploit it.

2.2 Parallel computer architecture

Our discussion of parallel computer architectures starts with the recognition that parallelism
at different levels can be exploited; these levels are:

1. Bit level parallelism. The number of bits processed per clock cycle, often called a word
size, has increased gradually from 4-bit processors to 8-bit, 16-bit, 32-bit, and since
2004 to 64-bit. This has reduced the number of instructions required to process larger
size operands and allowed a significant performance improvement. During this evolu-
tionary process the number of address bits have also increased allowing instructions
to reference a larger address space.

2. Instruction-level parallelism. Today’s computers use multi-stage processing pipelines
to speed up execution. Once an n-stage pipeline is full, an instruction is completed at
every clock cycle. A “classic” pipeline of a RISC (Reduced Instruction Set Computing)
architecture consists of five stages8: instruction fetch, instruction decode, instruction
execution, memory access, and write back. A CISC (Complex Instruction Set Com-
puting) architecture could have a much large number of pipelines stages, e.g., an Intel
Pentium 4 processor has a 35-stage pipeline.

3. Data parallelism or loop parallelism. The program loops can be processed in parallel.

4. Task parallelism. The problem can be decomposed into tasks that can be carried
out concurrently. A widely used type of task parallelism is the SPMD (Same Pro-
gram Multiple Data) paradigm. As the name suggests individual processors run the
same program but on different segments of the input-data. Data dependencies cause
different flows of control in individual tasks.

8The number of pipeline stages in different RISC processors varies. For example, ARM7 and earlier
implementations of ARM processors have a three stage pipeline, fetch, decode, and execute. Higher perfor-
mance designs, such as the ARM9, have deeper pipelines: Cortex-A8 has thirteen stages.

34

dell
Cross-Out

In 1966 Michael Flynn proposed a classification of computer architectures based on
the number of concurrent control/instruction and data streams: SISD (Single Instruction
Single Data), SIMD (Single Instruction, Multiple Data), and MIMD (Multiple Instructions,
Multiple Data)9.

The SIMD architecture supports vector processing. When a SIMD instruction is issued,
the operations on individual vector components are carried out concurrently. For example,
to add two vectors (a1, a2... . . . a50) and (b1, b2... . . . b50), all 50 pairs of vector elements are
added concurrently and all the sums (ai + bi), 1 ≤ i ≤ 50 are available at the same time.

The first use of SIMD instructions was in vector supercomputers such as the CDC Star-
100 and the Texas Instruments ASC in the early 1970s. Vector processing was especially
popularized by Cray in the 1970s and 1980s, by attached vector processors such as those
produced by the FPS (Floating Point Systems), and by supercomputers such as the Thinking
Machines CM-1 and CM-2. Sun Microsystems introduced SIMD integer instructions in its
“VIS” instruction set extensions in 1995, in its UltraSPARC I microprocessor; the first
widely-deployed SIMD for gaming was Intel’s MMX extensions to the x86 architecture.
IBM and Motorola then added AltiVec to the POWER architecture and there have been
several extensions to the SIMD instruction sets for both architectures.

The desire to support real-time graphics with vectors of two, three, or four dimensions
led to the development of Graphic Processing Units (GPU). GPUs are very efficient at ma-
nipulating computer graphics, and their highly parallel structures based on SIMD execution
support parallel processing of large blocks of data. GPUs produced by Intel, NVIDIA, and
AMD/ATI are used in embedded systems, mobile phones, personal computers, workstations,
and game consoles.

A MIMD architecture refers to a system with several processors that function asyn-
chronously and independently; at any time, different processors may be executing different
instructions on different data. The processors can share a common memory of a MIMD and
we distinguish several types of systems, Uniform Memory Access (UMA), Cache Only Mem-
ory Access (COMA), and Non-Uniform Memory Access (NUMA). A MIMD system could
have a distributed memory; in this case the processors and the memory communicate with
one another using an interconnection network, such as a hypercube, a 2D torus, a 3D torus,
an omega network, or another network topology. Today, most supercomputers are MIMD
machines and some use GPUs instead of traditional processors. Multi-core processors with
multiple processing units are now ubiquitous.

Modern supercomputers derive their power from architecture and parallelism rather than
the increase of processor speed. The supercomputers of today consist of very large number
of processors and cores communicating via very fast custom interconnects. In mid 2012 the
most powerful supercomputer was a Linux-based IBM Sequoia-BlueGene/Q system powered
by Power BQC 16-core processors running at 1.6 GHz. The system, installed at Lawrence
Livermore National Laboratory, has a total of 1 572 864 cores and 1 572 864 GB of memory,
archives a sustainable speed of 16.32 petaflops, and consumes 7.89 MW of power. Several
most powerful systems listed in the “Top 500 supercomputers” (see http://www.top500.org/)
are powered by NVIDIA 2050 GPU; three of the top 10 use an InfiniBand interconnect.

The next natural step was triggered by advances in communication networks when low-
latency and high-bandwidth WANs (Wide Area Networks) allowed individual systems, many

9Another category, MISD (Multiple Instructions Single Data) is a fourth possible architecture, but it is
very rarely used, mostly for fault tolerance.

35

of them multiprocessors, to be geographically separated. Large-scale distributed systems
were first used for scientific and engineering applications and took advantage of the ad-
vancements in system software, programming models, tools, and algorithms developed for
parallel processing.

2.3 Distributed systems

A distributed system is a collection of autonomous computers, connected through a network
and distribution software called middleware, which enables computers to coordinate their
activities and to share the resources of the system; the users perceive the system as a single,
integrated computing facility.

A distributed system has several characteristics: its components are autonomous, schedul-
ing and other resource management and security policies are implemented by each system,
there are multiple points of control and multiple points of failure, and the resources may not
be accessible at all times. Distributed systems can be scaled by adding additional resources
and can be designed to maintain availability even at low levels of hardware/software/network
reliability.

Distributed systems have been around for several decades. For example, distributed
file systems and network file systems have been used for user convenience and to improve
reliability and functionality of file systems for many years. Modern operating systems allow
a user to mount a remote file system and access it the same way a local file system is
accessed, yet with a performance penalty due to larger communication costs. The Remote
Procedure Call (RPC) supports inter-process communication and allows a procedure on a
system to invoke a procedure running in a different address space, possibly on a remote
system. RPCs were introduced in the early 1970s by Bruce Nelson and used for the first
time at Xerox; the Network File System (NFS) introduced in 1984 was based on Sun’s RPC.
Many programming languages support RPCs; for example, Java Remote Method Invocation
(Java RMI) provides a functionality similar to the one of UNIX RPC methods, XML-RPC
uses XML to encode HTML-based calls.

The middleware should support a set of desirable properties of a distributed system:

• Access transparency - local and remote information objects are accessed using identical
operations;

• Location transparency - information objects are accessed without knowledge of their
location;

• Concurrency transparency - several processes run concurrently using shared informa-
tion objects without interference among them;

• Replication transparency - multiple instances of information objects are used to in-
crease reliability without the knowledge of users or applications;

• Failure transparency - the concealment of faults;

• Migration transparency - the information objects in the system are moved without
affecting the operation performed on them;

36

• Performance transparency - the system can be reconfigured based on the load and
quality of service requirements;

• Scaling transparency - the system and the applications can scale without a change in
the system structure and without affecting the applications.

2.4 Global state of a process group

To understand the important properties of distributed systems we use a model, an abstrac-
tion based on two critical components, processes and communication channels. A process is
a program in execution and a thread is a light-weight process. A thread of execution is the
smallest unit of processing that can be scheduled by an operating system.

A process is characterized by its state; the state is the ensemble of information we need
to restart a process after it was suspended. An event is a change of state of a process. The
events affecting the state of process pi are numbered sequentially as e1i , e

2
i , e

3
i , . . . as shown

in the space-time diagram in Figure 4(a). A process pi is in state σj
i immediately after the

occurrence of event eji and remains in that state until the occurrence of the next event, ej+1
i .

A process group is a collection of cooperating processes; these processes work in concert
and communicate with one another in order to reach a common goal. For example a parallel
algorithm to solve a system of partial deferential equations (PDEs) over a domain D may
partition the data in several segments and assign each segment to one of the members of the
process group. The processes in the group must cooperate with one another and iterate until
the common boundary values computed by one process agree with the common boundary
values computed by another.

A communication channel provides the means for processes or threads to communicate
with one another and coordinate their actions by exchanging messages. Without loss of
generality we assume that communication among processes is done only by means of send(m)
and receive(m) communication events, where m is a message. We use the term “message”
for a structured unit of information, which can be interpreted only in a semantic context
by the sender and the receiver. The state of a communication channel is defined as follows:
given two processes pi and pj, the state of the channel, ξi,j, from pi to pj consists of messages
sent by pi but not yet received by pj.

These two abstractions allow us to concentrate on critical properties of distributed sys-
tems without the need to discuss the detailed physical properties of the entities involved.
The model presented is based on the assumption that a channel is a unidirectional bit pipe
of infinite bandwidth and zero latency, but unreliable; messages sent through a channel
may be lost, distorted, or the channel may fail, lose its ability to deliver messages. We also
assume that the time a process needs to traverse a set of states is of no concern and that
processes may fail, or be aborted.

A protocol is a finite set of messages exchanged among processes to help them coordinate
their actions. Figure 4(c) illustrates the case when communication events are dominant in
the local history of processes, p1, p2 and p3. In this case only e51 is a local event; all others are
communication events. The particular protocol illustrated in Figure 4(c) requires processes
p2 and p3 to send messages to the other processes in response to a message from process p1.

The informal definition of the state of a single process can be extended to collections
of communicating processes. The global state of a distributed system consisting of several

37

(a)

(b)

(c)

e
1

1 e
2

1 e
3

1 e
4

1 e
5

1

e
1

1 e
2

1 e
3

1 e
4

1
e

11

1

e
6

1

e
1

2 e
2

2 e
3

2 e
4

2
e

5

2

e
1

2 e
2

2 e
3

2 e
4

2

e
1

1 e
2

1
e

3

1 e
4

1 e
5

1

e
1

3 e
2

3 e
3

3 e
4

3

p
2

p
3

p
1

p
1

p
1

p
2

Figure 4: Space-time diagrams display local and communication events during a process
lifetime. Local events are small black circles. Communication events in different processes
are connected by lines originating at a send event and terminated by an arrow at the receive
event. (a) All events in case of a single process p1 are local; the process is in state σ1

immediately after the occurrence of event e11 and remains in that state until the occurrence
of event e21. (b) Two processes p1 and p2; event e21 is a communication event, p1 sends a
message to p2; event e

3
2 is a communication event, process p2 receives the message sent by

p1. (c) Three processes interact by means of communication events.

processes and communication channels is the union of the states of the individual processes
and channels [34].

Call hj
i the history of process pi up to and including its j-th event, eji , and call σj

i

the local state of process pi following event eji . Consider a system consisting of n processes,
p1, p2, . . . , pi, . . . , pn with σji

i the local state of process pi; then, the global state of the system
is an n-tuple of local states

Σ(j1,j2,...,jn) = (σj1
1 , σj2

2 , . . . , σji
i , . . . , σ

jn
n). (10)

38

Σ
0,0

Σ
0,1

Σ
1,0

Σ
1,1

Σ
0,2

Σ
0,3

Σ
2,0

Σ
1,2

Σ
2,1

Σ
1,3

Σ
2,2

Σ
1,4

Σ
2,3

Σ
3,2

Σ
1,5

Σ
2,4

Σ
3,3

Σ
4,2

Σ
2,5

Σ
3,4

Σ
4,3

Σ
5,2

Σ
53

Σ
4,4

Σ
5,3

Σ
4,5

Σ
5,4

Σ
5,5

Σ
5,6

e
1

1 e
2

1

p
1

p
2

e
1

2 e
2

2

e
1

1 e
2

1

p
1

p
2

e
1

2 e
2

2

e
1

1 e
2

1

p
1

p
2

e
1

2 e
2

2

e
1

1 e
2

1

p
1

p
2

e
1

2 e
2

2

e
1

1 e
2

1

p
1

p
2

e
1

2 e
2

2

e
1

1 e
2

1

p
1

p
2

e
1

2 e
2

2

)b()a(

time

Figure 5: (a) The lattice of the global states of two processes with the space-time diagrams
in Figure 4(b). (b) The six possible sequences of events leading to the state Σ(2,2).

The state of the channels does not appear explicitly in this definition of the global state
because the state of the channels is encoded as part of the local state of the processes
communicating through the channels.

The global states of a distributed computation with n processes form an n-dimensional
lattice. The elements of this lattice are global states Σ(j1,j2,....jn)(σj1

1 , σj2
2 , . . . , σjn

n).
Figure 5(a) shows the lattice of global states of the distributed computation in Figure

4(b). This is a two-dimensional lattice because we have two processes, p1 and p2. The
lattice of global states for the distributed computation in Figure 4(c) is a three-dimensional
lattice, the computation consists of three concurrent processes, p1, p2, and p3.

The initial state of the system in Figure 5(b) is the state before the occurrence of any
event and it is denoted by Σ(0,0); the only global states reachable from Σ(0,0) are Σ(1,0),
and Σ(0,1). The communication events limit the global states the system may reach; in this
example the system cannot reach the state Σ(4,0) because process p1 enters state σ4 only

39

after process p2 has entered the state σ1. Figure 5(b) shows the six possible sequences of
events to reach the global state Σ(2,2):

(e11, e
2
1, e

1
2, e

2
2), (e

1
1, e

1
2, e

2
1, e

2
2), (e

1
1, e

1
2, e

2
2, e

2
1), (e

1
2, e

2
2, e

1
1, e

2
1), (e

1
2, e

1
1, e

2
1, e

2
2), (e

1
2, e

1
1, e

2
2, e

2
1). (11)

An interesting question is how many paths to reach a global state exist; the more paths
exist, the harder is to identify the events leading to a state when we observe an undesirable
behavior of the system. A large number of paths increase the difficulties to debug the
system.

We conjecture that in the case of two threads in Figure 5(a) the number of paths from
the global state Σ(0,0) to Σ(m,n) is

N (m,n)
p =

(m+ n)!

m!n!
. (12)

We have already seen that there are 6 paths leading to state Σ(2,2) and, indeed

N (2,2)
p =

(2 + 2)!

2!2!
=

24

4
= 6. (13)

To prove Equation 12 we use a method resembling induction; we notice first that the
global state Σ(1,1) can only be reached from the states Σ(1,0) and Σ(0,1) and that N

(1,1)
p =

(2)!/1!1! = 2 thus, the formula is true for m = n = 1. Then we show that if the formula is
true for the (m− 1, n− 1) case it will also be true for the (m,n) case. If our conjecture is
true then

N [(m−1),n]
p =

[(m− 1) + n)]!

(m− 1)!n!
(14)

and

N [m,(n−1)]
p =

[(m+ (n− 1)]!

m!(n− 1)!
. (15)

(m,n)

(m-1,n) (m,n-1)

Figure 6: In the two dimensional case the global state Σ(m,n), ∀(m,n) ≥ 1 can only be
reached from two states, Σ(m−1,n) and Σ(m,n−1).

We observe that the global state Σ(m,n), ∀(m,n) ≥ 1 can only be reached from two
states, Σ(m−1,n) and Σ(m,n−1), see Figure 6 thus

40

N (m,n)
p = N (m−1,n)

p +N (m,n−1)
p . (16)

It is easy to see that indeed

[(m−1)+n]!
(m−1)!n!

+ [m+(n−1)]!
m!(n−1)!

= (m+ n− 1)!
[

1
(m−1)!n!

+ 1
m!(n−1)!

]
= (m+n)!

m!n!
.

(17)

This shows that our conjecture is true thus, Equation 12 gives the number of paths to reach
the global state Σ(m,n) from Σ(0,0) when two threads are involved. This expression can be
generalized for the case of q threads; using the same strategy it is easy to see that the
number of path from the state Σ(0,0,...,0) to the global state Σ(n1,n2,...,nq) is

N (n1,n2,...,nq)
p =

(n1 + n2 + . . .+ nq)!

n1!n2! . . . nq!
(18)

Indeed, it is easy to see that

N (n1,n2,...,nq)
p = N (n1−1,n2,...,nq)

p +N (n1,n2−1,...,nq)
p + . . .+N (n1,n2,...,nq−1)

p (19)

Equation 18 gives us an indication on how difficult it is to debug a system with a large
number of concurrent threads.

Many problems in distributed systems are instances of the global predicate evaluation
problem (GPE) where the goal is to evaluate a Boolean expression whose elements are
functions of the global state of the system.

2.5 Communication protocols and process coordination

A major concern in any parallel and distributed system is communication in the presence of
channel failures. There are multiple modes for a channel to fail and some lead to messages
being lost. In the general case, it is impossible to guarantee that two processes will reach
an agreement in case of channel failures, see Figure 7.

Given two processes p1 and p2 connected by a communication channel that can lose a
message with probability ϵ > 0, no protocol capable of guaranteeing that two processes will
reach agreement exists, regardless of how small the probability ϵ is.

The proof of this statement is by contradiction; assume that such a protocol exists and
it consists of n messages; recall that a protocol is a finite sequence of messages. Since any
message might be lost with probability ϵ the protocol should be able to function when only
n− 1 messages reach their destination, the last one being lost. Induction on the number of
messages proves that indeed no such protocol exists; indeed, the same reasoning leads us to
conclude that the protocol should function correctly with (n− 2) messages, and so on.

In practice, error detection and error correction codes allow processes to communicate
reliably though noisy digital channels. The redundancy of a message is increased by more
bits and packaging a message as a codeword; the recipient of the message is then able to
decide if the sequence of bits received is a valid codeword and, if the code satisfies some
distance properties, then the recipient of the message is able to extract the original message
from a bit string in error.

41

Process p1 Process p2

1
2

n-1

n

Figure 7: Process coordination in the presence of errors; each message may be lost with
probability ϵ. If a protocol consisting of n messages exists, then the protocol should be able
to function properly with n− 1 messages reaching their destination, one of them being lost.

Communication protocols implement not only error control mechanisms, but also flow
control and congestion control. Flow control provides feedback from the receiver, it forces
the sender to transmit only the amount of data the receiver is able to buffer and then process.
Congestion control ensures that the offered load of the network does not exceed the network
capacity. In store-and-forward networks individual routers may drop packets when the
network is congested and the sender is forced to retransmit. Based on the estimation of
the RTT (Round-Trip-Time) the sender can detect congestion and reduce the transmission
rate.

The implementation of these mechanisms require the measurement of time intervals, the
time elapsed between two events; we also need a global concept of time shared by all entities
that cooperate with one another. For example, a computer chip has an internal clock and
a predefined set of actions occurs at each clock tick. Each chip has an interval timer that
helps enhance the system’s fault tolerance; when the effects of an action are not sensed after
a predefined interval, the action is repeated.

When the entities communicating with each other are networked computers, the precision
of the clock synchronization is critical [205]. The event rates are very high, each system
goes through state changes at a very fast pace; modern processors run at a 2− 4 GHz clock
rate. That explains why we need to measure time very accurately; indeed, we have atomic
clocks with an accuracy of about 10−6 seconds per year.

An isolated system can be characterized by its history expressed as a sequence of events,
each event corresponding to a change of the state of the system. Local timers provide
relative time measurements. A more accurate description adds to the system’s history the
time of occurrence of each event as measured by the local timer.

Messages sent by processes may be lost or distorted during transmission. Without
additional restrictions regarding message delays and errors there are no means to ensure
a perfect synchronization of local clocks and there are no obvious methods to ensure a
global ordering of events occurring in different processes. Determining the global state of a
large-scale distributed system is a very challenging problem.

The mechanisms described above are insufficient once we approach the problem of coop-
erating entities. To coordinate their actions, two entities need a common perception of time.
Timers are not enough, clocks provide the only way to measure distributed duration, that
is, actions that start in one process and terminate in another. Global agreement on time
is necessary to trigger actions that should occur concurrently, e.g., in a real-time control

42

system of a power plant several circuits must be switched on at the same time. Agreement
on the time when events occur is necessary for distributed recording of events, for example,
to determine a precedence relation through a temporal ordering of events. To ensure that
a system functions correctly we need to determine that the event causing a change of state
occurred before the state change, e.g., the sensor triggering an alarm has to change its value
before the emergency procedure to handle the event was activated. Another example of the
need for agreement on the time of occurrence of events is in replicated actions. In this case
several replicas of a process must log the time of an event in a consistent manner.

Timestamps are often used for event ordering using a global time-base constructed on
local virtual clocks [235]. The ∆-protocols [94] achieve total temporal order using a global
time base. Assume that local virtual clock readings do not differ by more than π, called
precision of the global time base. Call g the granularity of physical clocks. First, observe
that the granularity should not be smaller than the precision; given two events a and b
occurring in different processes if tb− ta ≤ π+g we cannot tell which of a or b occurred first
[359]. Based on these observations, it follows that the order discrimination of clock-driven
protocols cannot be better than twice the clock granularity.

System specification, design, and analysis require a clear understanding of cause-effect
relationships. During the system specification phase we view the system as a state machine
and define the actions that cause transitions from one state to another. During the system
analysis phase we need to determine the cause that brought the system to a certain state.

The activity of any process is modeled as a sequence of events; hence, the binary relation
cause-effect should be expressed in terms of events and should express our intuition that
the cause must precede the effects. Again, we need to distinguish between local events and
communication events. The latter ones affect more than one process and are essential for
constructing a global history of an ensemble of processes. Let hi denote the local history of
process pi and let eki denote the k-th event in this history.

The binary cause-effect relationship between two events has the following properties:

1. Causality of local events can be derived from the process history:

if eki , e
l
i ∈ hi and k < l then eki → eli. (20)

2. Causality of communication events:

if eki = send(m) and elj = receive(m) then eki → elj. (21)

3. Transitivity of the causal relationship:

if eki → elj and elj → enm then eki → enm. (22)

Two events in the global history may be unrelated, neither one is the cause of the other;
such events are said to be concurrent events.

43

2.6 Logical clocks

A logical clock (LC) is an abstraction necessary to ensure the clock condition in the absence
of a global clock. Each process pi maps events to positive integers. Call LC(e) the local
variable associated with event e. Each process time-stamps each message m sent with the
value of the logical clock at the time of sending, TS(m) = LC(send(m)). The rules to
update the logical clock are specified by the following relationship:

LC(e) :=

{
LC + 1 if e is a local event or a send(m) event
max(LC, TS(m) + 1) if e = receive(m).

(23)

m2m1

m3

p
1

p
2

p
3

m4

m5

1

1

1

2

2

2

3

3

4 5

6 7 8 9

10 11

12

Figure 8: Three processes and their logical clocks; The usual labeling of events as
e11, e

2
1, e

3
1, . . . is omitted to avoid overloading the figure; only the logical clock values for

the local and for the communication events are marked. The correspondence between the
events and the logical clock values is obvious: e11, e

1
2, e

1
3 → 1, e51 → 5, e42 → 7, e43 → 10,

e61 → 12, and so on. Global ordering of all events is not possible; there is no way to establish
the ordering of events e11, e

1
2 and e13.

The concept of logical clocks is illustrated in Figure 8 using a modified space-time dia-
gram where the events are labeled with the logical clock value. Messages exchanged between
processes are shown as lines from the sender to the receiver; the communication events cor-
responding to sending and receiving messages are marked on these diagrams.

Each process labels local events and sends events sequentially until it receives a message
marked with a logical clock value larger than the next local logical clock value, as shown
in Equation 23. It follows that logical clocks do not allow a global ordering of all events.
For example, there is no way to establish the ordering of events e11, e

1
2 and e13 in Figure

8. Nevertheless, communication events allow different processes to coordinate their logical
clocks; for example, process p2 labels the event e

3
2 as 6 because of message m2, which carries

the information about the logical clock value as 5 at the time message m2 was sent. Recall
that eji is the j-th event in process pi.

44

dell
Typewritten Text
max(LC+1, TS(m)+1)

dell
Cross-Out

Logical clocks lack an important property, gap detection; given two events e and e′ and
their logical clock values, LC(e) and LC(e′), it is impossible to establish if an event e′′ exists
such that

LC(e) < LC(e′′) < LC(e′). (24)

For example, for process p1 there is an event, e41, between the events e31 and e51 in Figure 8;
indeed, LC(e31) = 3, LC(e51) = 5, LC(e41) = 4, and LC(e31) < LC(e41) < LC(e51). However,
for process p3, the events e33 and e43 are consecutive though, LC(e33) = 3 and LC(e43) = 10.

2.7 Message delivery rules; causal delivery

The communication channel abstraction makes no assumptions about the order of messages;
a real-life network might reorder messages. This fact has profound implications for a dis-
tributed application. Consider for example a robot getting instructions to navigate from a
monitoring facility with two messages, “turn left” and ”turn right”, being delivered out of
order.

Process

Channel/

Process

Interface

Channel/

Process

Interface

p
i

Process

p
j

Channel

receive

deliver

Figure 9: Message receiving and message delivery are two distinct operations. The channel-
process interface implements the delivery rules, e.g., FIFO delivery.

Message receiving and message delivery are two distinct operations; a delivery rule is
an additional assumption about the channel-process interface. This rule establishes when a
message received is actually delivered to the destination process. The receiving of a message
m and its delivery are two distinct events in a causal relation with one another, a message
can only be delivered after being received, see Figure 9

receive(m)→ deliver(m). (25)

45

First-In-First-Out (FIFO) delivery implies that messages are delivered in the same order
they are sent. For each pair of source-destination processes (pi, pj) FIFO delivery requires
that the following relation should be satisfied

sendi(m)→ sendi(m
′)⇒ deliverj(m)→ deliverj(m

′). (26)

Even if the communication channel does not guarantee FIFO delivery, FIFO delivery can
be enforced by attaching a sequence number to each message sent. The sequence numbers
are also used to reassemble messages out of individual packets.

Causal delivery is an extension of the FIFO delivery to the case when a process receives
messages from different sources. Assume a group of three processes, (pi, pj, pk) and two
messages m and m′. Causal delivery requires that

sendi(m)→ sendj(m
′)⇒ deliverk(m)→ deliverk(m

′). (27)

m2

m1

m3

p
1

p
2

p
3

Figure 10: Violation of causal delivery when more than two processes are involved; message
m1 is delivered to process p2 after message m3, though message m1 was sent before m3.
Indeed, message m3 was sent by process p1 after receiving m2, which in turn was sent by
process p3 after sending message m1.

When more than two processes are involved in a message exchange, the message delivery
may be FIFO, but not causal as shown in Figure 10 where we see that

• deliver(m3)→ deliver(m1); according to the local history of process p2.

• deliver(m2)→ send(m3); according to the local history of process p1.

• send(m1)→ send(m2); according to the local history of process p3.

• send(m2)→ deliver(m2).

• send(m3)→ deliver(m3).

The transitivity property and the causality relations above imply that send(m1)→ deliver(m3).

Call TS(m) the time stamp carried by message m. A message received by process pi
is stable if no future messages with a time stamp smaller than TS(m) can be received by

46

process pi. When using logical clocks, a process pi can construct consistent observations
of the system if it implements the following delivery rule: deliver all stable messages in
increasing time stamp order.

Let us now examine the problem of consistent message delivery under several sets of
assumptions. First, assume that processes cooperating with each other in a distributed
environment have access to a global real-time clock, that the message delays are bounded by
δ, and that there is no clock drift. Call RC(e) the time of occurrence of event e. A process
includes in every message it sends RC(e), where e is the send message event. The delivery
rule in this case is: at time t deliver all received messages with time stamps up to (t− δ) in
increasing time stamp order. Indeed, this delivery rule guarantees that under the bounded
delay assumption the message delivery is consistent. All messages delivered at time t are in
order and no future message with a time stamp lower than any of the messages delivered
may arrive.

For any two events, e and e′, occurring in different processes, the so called clock condition
is satisfied if

e→ e′ ⇒ RC(e) < RC(e′), ∀e, e′. (28)

Oftentimes, we are interested in determining the set of events that caused an event
knowing the time stamps associated with all events, in other words, we are interested in
deducing the causal precedence relation between events from their time stamps. To do so
we need to define the so-called strong clock condition. The strong clock condition requires
an equivalence between the causal precedence and the ordering of the time stamps

∀e, e′, e → e′ ≡ TS(e) < TS(e′). (29)

Causal delivery is very important because it allows processes to reason about the entire
system using only local information. This is only true in a closed system where all com-
munication channels are known; sometimes the system has hidden channels and reasoning
based on causal analysis may lead to incorrect conclusions.

2.8 Runs and cuts; causal history

Knowledge of the state of several, possibly all, processes in a distributed system is often
needed. For example, a supervisory process must be able to detect when a subset of processes
is deadlocked; a process might migrate from one location to another or be replicated only
after an agreement with others. In all these examples a process needs to evaluate a predicate
function of the global state of the system.

We call the process responsible for constructing the global state of the system, the
monitor; a monitor sends messages requesting information about the local state of every
process and gathers the replies to construct the global state. Intuitively, the construction of
the global state is equivalent to taking snapshots of individual processes and then combining
these snapshots into a global view. Yet, combining snapshots is straightforward if and only
if all processes have access to a global clock and the snapshots are taken at the same time;
hence, the snapshots are consistent with one another.

A run is a total ordering R of all the events in the global history of a distributed
computation consistent with the local history of each participant process; a run

47

R = (ej11 , e
j2
2 , . . . , e

jn
n) (30)

implies a sequence of events as well as a sequence of global states.
For example, consider the three processes in Figure 11. We can construct a three-

dimensional lattice of global states following a procedure similar to the one in Figure 5
starting from the initial state Σ(000) and proceeding to any reachable state Σ(ijk) with i, j, k
the events in processes p1, p2, p3, respectively. The run R1 = (e11, e

1
2, e

1
3, e

2
1) is consistent

with both the local history of each process and the global history; this run is valid, the
system has traversed the global states

Σ000,Σ100,Σ110,Σ111,Σ211 (31)

On the other hand, the run R2 = (e11, e
2
1, e

1
3, e

3
1, e

2
3) is invalid because it is inconsistent with

the global history. The system cannot ever reach the state Σ301; message m1 must be sent
before it is received, so event e12 must occur in any run before event e31.

A cut is a subset of the local history of all processes. If hj
i denotes the history of process

pi up to and including its j-th event, eji , then a cut C is an n-tuple

C = {hj
i} with i ∈ {1, n} and j ∈ {1, ni}. (32)

The frontier of the cut is an n-tuple consisting of the last event of every process included in
the cut. Figure 11 illustrates a space-time diagram for a group of three processes, p1, p2, p3
and it shows two cuts, C1 and C2. C1 has the frontier (4, 5, 2), frozen after the fourth event
of process p1, the fifth event of process p2 and the second event of process p3, and C2 has
the frontier (5, 6, 3).

Cuts provide the necessary intuition to generate global states based on an exchange of
messages between a monitor and a group of processes. The cut represents the instance when
requests to report individual state are received by the members of the group. Clearly not
all cuts are meaningful. For example, the cut C1 with the frontier (4, 5, 2) in Figure 11
violates our intuition regarding causality; it includes e42, the event triggered by the arrival of
message m3 at process p2 but does not include e

3
3, the event triggered by process p3 sending

m3. In this snapshot p3 was frozen after its second event, e23, before it had the chance to
send message m3. Causality is violated and the system cannot ever reach such a state.

Next we introduce the concepts of consistent and inconsistent cuts and runs. A cut
closed under the causal precedence relationship is called a consistent cut. C is a consistent
cut if and only if for all events

∀e, e′, (e ∈ C) ∧ (e′ → e) ⇒ e′ ∈ C. (33)

A consistent cut establishes an “instance” of a distributed computation; given a consis-
tent cut we can determine if an event e occurred before the cut.

A run R is said to be consistent if the total ordering of events imposed by the run
is consistent with the partial order imposed by the causal relation; for all events, e → e′

implies that e appears before e′ in R.
Consider a distributed computation consisting of a group of communicating processes

G = {p1, p2, ..., pn}. The causal history of event e, γ(e), is the smallest consistent cut of G
including event e

48

m2m1

m3

p
1

p
2

p
3

m4

m5

e
1

1 e
2

1
e
3

1 e
4

1 e
5

1
e
6

1

e
1

2 e
2

2 e
3

2 e
4

2

e
1

3 e
2

3 e
3

3
e
4

3 e
5

3

e
5

2 e
6

2

C1 C2

Figure 11: Inconsistent and consistent cuts: the cut C1 = (e41, e
5
2, e

2
3) is inconsistent because

it includes e42, the event triggered by the arrival of the messagem3 at process p2, but does not
include e33, the event triggered by process p3 sending m3 thus, the cut C1 violates causality.
On the other hand, C2 = (e51, e

6
2, e

3
3) is a consistent cut, there is no causal inconsistency, it

includes event e62, the sending of message m4, without the effect of it, the event e
4
3 receiving

the message by process p3.

γ(e) = {e′ ∈ G | e′ → e} ∪ {e}. (34)

m2m1

m3

p
1

p
2

p
3

m4

m5

e
1

1 e
2

1
e
3

1 e
4

1 e
5

1
e
6

1

e
1

2 e
2

2 e
3

2 e
4

2

e
1

3 e
2

3 e
3

3
e
4

3 e
5

3

e
5

2 e
6

2

Figure 12: The causal history of event e52, γ(e
5
2) = {e11, e21, e31, e41, e51, e12, e22, e32, e42, e52, e13, e33, e33},

is the smallest consistent cut including e52.

The causal history of event e52 in Figure 12 is:

γ(e52) = {e11, e21, e31, e41, e51, e12, e22, e32, e42, e52, e13, e33, e33}. (35)

49

This is the smallest consistent cut including e52; indeed, if we omit e33, then the cut (5, 5, 2)
would be inconsistent, it would include e42, the communication event for receiving m3, but
not e33, the sending of m3. If we omit e51, the cut (4, 5, 3) would also be inconsistent, it would
include e32 but not e51.

Causal histories can be used as clock values and satisfy the strong clock condition pro-
vided that we equate clock comparison with set inclusion. Indeed.

e→ e′ ≡ γ(e) ⊂ γ(e′). (36)

The following algorithm can be used to construct causal histories:

• Each pi ∈ G starts with θ = ∅.

• Every time pi receives a message m from pj it constructs

γ(ei) = γ(ej) ∪ γ(ek) (37)

with ei the receive event, ej the previous local event of pi, ek the send event of process
pj.

Unfortunately, this concatenation of histories is impractical because the causal histories
grow very fast.

Now we present a protocol to construct consistent global states based on the monitoring
concepts discusses in this section. We assume a fully connected network; recall that given
two processes pi and pj, the state ξi,j of the channel from pi to pj consists of messages sent
by pi but not yet received by pj. The snapshot protocol of Chandy and Lamport consists
of three steps [72]

1. Process p0 sends to itself a “take snapshot” message.

2. Let pf be the process from which pi receives the“take snapshot” message for the first
time. Upon receiving the message, the process pi records its local state, σi, and relays
the “take snapshot” along all its outgoing channels without executing any events on
behalf of its underlying computation; channel state ξf,i is set to empty and process pi
starts recording messages received over each of its incoming channels.

3. Let ps be the process from which pi receives the “take snapshot” message beyond the
first time; process pi stops recording messages along the incoming channel from ps and
declares channel state ξs,i as those messages that have been recorded.

Each“take snapshot” message crosses each channel exactly once and every process pi has
made its contribution to the global state; a process records its state the first time it receives
a “take snapshot” message and then stops executing the underlying computation for some
time. Thus, in a fully connected network with n processes the protocol requires n× (n− 1)
messages, one on each channel.

For example, consider a set of six processes, each pair of processes being connected by
two unidirectional channels as shown in Figure 13. Assume that all channels are empty,
ξi,j = 0, i ∈ {0, 5}, j ∈ {0, 5}, at the time when process p0 issues the “take snapshot”
message. The actual flow of messages is

50

p0 p1

p5

p4 p3

p2

1 1 1

1

1

2 2

2

2

2

2

2

2

2 2

2

2

2 2 2

2

22
2

2

22
2

2

2

Figure 13: Six processes executing the snapshot protocol.

• In step 0, p0 sends to itself the “take snapshot” message.

• In step 1, process p0 sends five “take snapshot” messages labeled (1) in Figure 13.

• In step 2, each of the five processes, p1, p2, p3, p4, and p5 sends a “take snapshot”
message labeled (2) to every other process.

A “take snapshot” message crosses each channel from process pi to pj, i, j ∈ {0, 5}
exactly once and 6× 5 = 30 messages are exchanged.

2.9 Concurrency

Concurrency means that several activities are executed simultaneously. Concurrency allows
us to reduce the execution time of a data-intensive problem as discussed in Section 2.1. To
exploit concurrency often we have to take a fresh look at the problem and design a parallel
algorithm. In other instances we can still use the sequential algorithm in the context of the
SPMD paradigm.

Concurrency is a critical element of the design of system software. The kernel of an
operating system exploits concurrency for virtualization of system resources such as the
processor and the memory. Virtualization, covered in depth in Chapter 5.1, is a system
design strategy with a broad range of objectives including:

51

• Hiding latency and performance enhancement, e.g., schedule a ready-to-run thread
when the current thread is waiting for the completion of an I/O operation;

• Avoiding limitations imposed by the physical resources, e.g., allow an application to
run in a virtual address space of a standard size, rather than be restricted by the
physical memory available on a system;

• Enhancing reliability and performance, as in the case of RAID systems mentioned in
Section 3.5.

Sometimes concurrency is used to describe activities that appear to be executed simulta-
neously, though only one of them may be active at any given time, as in the case of processor
virtualization when multiple threads appear to run concurrently on a single processor. A
thread can be suspended due to an external event and a context switch to a different thread
takes place. The state of the first thread is saved and the state of another thread ready to
proceed is loaded and the thread is activated. The suspended thread will be re-activated at
a later point in time.

Dealing with some of the effects of concurrency can be very challenging. Context switch-
ing could involve multiple components of a OS kernel including the Virtual Memory Manager
(VMM), the Exception Handler (EH), the Scheduler (S), and the Multi-level Memory Man-
ager (MLMM). When a page fault occurs during the fetching of the next instruction multiple
context switches are necessary as shown in Figure 14.

Concurrency is often motivated by the desire to enhance the system performance. For
example, in a pipelined computer architecture multiple instructions are in different phases of
execution at any given time. Once the pipeline is full, a result is produced at every pipeline
cycle; an n-stage pipeline could potentially lead to a speedup by a factor of n. There is
always a price to pay for increased performance and in this example is design complexity
and cost. An n-stage pipeline requires n execution units, one for each stage, as well as
a coordination unit. It also requires a careful timing analysis in order to achieve the full
speed-up.

This example shows that the management and the coordination of the concurrent activ-
ities increases the complexity of a system. The interaction between pipelining and virtual
memory further complicates the functions of the kernel; indeed, one of the instructions in
the pipeline could be interrupted due to a page fault and the handling of this case requires
special precautions, as the state of the processor is difficult to define.

While in the early days of computing concurrency was analyzed mostly in the context of
the system software, nowadays concurrency is an ubiquitous feature of many applications.
Embedded systems are a class of concurrent systems used only by the critical infrastructure,
but also by the most diverse systems from ignition in a car to oil processing in a refinery, from
smart meeters to coffee makers. Embedded controllers for reactive real-time applications
are implemented as mixed software-hardware systems [293].

Concurrency is exploited by application software to speedup a computation and to al-
low a number of clients to access a service. Parallel applications partition the workload
and distribute it to multiple threads running concurrently. Distributed applications, includ-
ing transaction management systems and applications based on the client-server paradigm
discussed in Section 2.13, use extensively concurrency to improve the response time. For
example, a web server spawns a new thread when a new request is received thus, multiple

52

Application
thread 1

Virtual
Memory

Manager

Exception
Handler

Scheduler
Multi-Level

Memory

Manager

Application
thread 2

IR PC Translate (PC)
into (Page#,Displ)

Is (Page#) in

primary storage?

YES- compute the
physical address
of the instruction

IR PC

NO page fault
Save PC

Handle page fault

Identify Page #

Issue AWAIT on
behalf of thread 1

AWAIT

SEND(Page #)

Thread 1
WAITING

Thread 2

RUNNING

IR PC

Load PC
of thread 2

Find a block in
primary storage

block ON?
YES- write block to
secondary storage

NO- fetch block
corresponding to
missing page

I/O operation
complets

ADVANCE

Thread 1
RUNNING

Load PC
of thread 1

IR PC

Figure 14: Context switching when a page fault occurs during the instruction fetch phase.
VMM attempts to translate the virtual address of a next instruction of thread 1 and en-
counters a page fault. Then thread 1 is suspended waiting for an event when the page is
brought in the physical memory from the disk. The Scheduler dispatches thread 2. To
handle the fault the EX invokes the MLMM.

server threads run concurrently. A main attraction for hosting Web-based applications is
the cloud elasticity, the ability of a service running on a cloud to acquire resources as needed
and to pay for these resources as they are consumed.

Communication channels allow concurrent activities to work in concert and coordinate.

53

Communication protocols allow us to transform noisy and unreliable channels into reliable
ones which deliver messages in order. As mentioned earlier, concurrent activities communi-
cate with one another via shared memory or via message passing. Multiple instances of a
cloud application, a server and the clients of the service it provides, and many other appli-
cations communicate via message passing. The Message Passing Interface (MPI) supports
both synchronous and asynchronous communication and it is often used by parallel and
distributed applications. Message passing enforces modularity, as we have seen in Section
2.13, and prevents the communicating activities from sharing their fate; a server could fail
without affecting the clients which did not use the service during the period the server was
unavailable.

The communication patterns in case of a parallel application are more structured, while
patterns of communication for concurrent activities of a distributed application are more dy-
namic and unstructured. Barrier synchronization requires the threads running concurrently
to wait until all of them have completed the current task before proceeding to the next.
Sometimes, one of the activities, a coordinator, mediates communication among concurrent
activities, in other instances individual threads communicate directly with one another.

2.10 Atomic actions

Parallel and distributed applications must take special precautions for handling shared re-
sources. For example, consider a financial application where the shared resource is an
account record; a thread running on behalf of a transaction first accesses the account to
read the current balance, then updates the balance, and, finally, writes back the new bal-
ance. When a thread is interrupted before being able to complete the three steps of the
process the results of the financial transactions are incorrect if another thread operating on
the same account is allowed to proceed. Another challenge is to deal with a transaction
involving the transfer from one account to another. A system crash after the completion of
the operation on the first account will again lead to an inconsistency, the amount debited
from the first account is not credited to the second.

In these cases, as in many other similar situations, a multi-step operation should be
allowed to proceed to completion without any interruptions, the operation should be atomic.
An important observation is that such atomic actions should not expose the state of the
system until the action is completed. Hiding the internal state of an atomic action reduces
the number of states a system can be in thus, it simplifies the design and maintenance of
the system. An atomic action is composed of several steps and each one of them may fail;
therefore, we have to take additional precautions to avoid exposing the internal state of the
system in case of such a failure.

The discussion of the transaction system suggests that an analysis of atomicity should
pay special attention to the basic operation of updating the value of an object in storage.
Even to modify the contents of a memory location several machine instructions must be
executed: load the current value in a register, modify the contents of the register, and store
back the result.

Atomicity cannot be implemented without some hardware support; indeed, the instruc-
tion set of most processors support the Test-and-Set instruction which writes to a memory
location and returns the old content of that memory cell as non-interruptible operations;
other architectures support Compare-and-Swap, an atomic instruction which compares the

54

contents of a memory location to a given value and, only if the two values are the same,
modifies the contents of that memory location to a given new value.

Two flavors of atomicity can be distinguished: all-or-nothing and before-or-after atom-
icity. All-or-nothing means that either the entire atomic action is carried out, or the system
is left in the same state it was before the atomic action was attempted; in our examples
a transaction is either carried out successfully, or the record targeted by the transaction is
returned to its original state. The states of an all-or-nothing action are shown in Figure 15.

Pending

Committed

Discarded

Commit

Abort

New action

Aborted

Figure 15: The states of an all-or-nothing action.

To guarantee the all-or-nothing property of an action we have to distinguish preparatory
actions which can be undone from irreversible ones, such as the alteration of the only copy
of an object. Such preparatory actions are: allocation of a resource, fetching a page from
secondary storage, allocation of memory on the stack, and so on. One of the golden rules
of data management is never to change the only copy; maintaining the history of changes
and a log of all activities allow us to deal with system failures and to ensure consistency.

An all-or-nothing action consists of a pre-commit and a post-commit phase; during the
former it should be possible to back up from it without leaving any trace while the later
phase should be able to run to completion. The transition from the first to the second phase
is called a commit point. During the pre-commit phase all steps necessary to prepare the
post-commit phase, e.g., check permissions, swap in main memory all pages that may be
needed, mount removable media, and allocate stack space must be carried out; during this
phase no results should be exposed and no actions that are irreversible should be carried
out. Shared resources allocated during the pre-commit cannot be released until after the
commit point. The commit step should be the last step of an all-or-nothing action.

A discussion of storage models illustrates the effort required to support all-or-nothing
atomicity, see Figure 16. The common storage model implemented by hardware is the so
called cell storage, a collection of cells each capable to hold an object, e.g., the primary
memory of a computer where each cell is addressable. Cell storage does not support all-
or-nothing actions, once the contents of a cell is changed by an action, there is no way to
abort the action and restore the original content of the cell.

To be able to restore a previous value we have to maintain a version history for each
variable in the cell storage. The storage model that supports all-or-nothing actions is called
journal storage. Now the cell storage is no longer accessible to the action by the access is
mitigated by a storage manager. In addition to the basic primitives to Read an existing
value and to Write a new value in cell storage, the storage manager uniquely identifies an
action that changes the value in cell storage and, when the action is aborted is able to
retrieve the version of the variable before the action and restore it. When = the action is
committed then the new value should be written to the cell.

55

a zk

a a a k k k z z z

Cell storage

Version history of a each variable in cell storage

Cell storageM

a

n

a

g

e

r

Journal storage

Catalog

Version histories

Outcome records

ACTION

READ

WRITE

COMMIT

ABORT

Figure 16: Storage models. Cell storage does not support all-or-nothing actions. When we
maintain the version histories it is possible to restore the original content but we need to
encapsulate the data access and provide mechanisms to implement the two phases of of an
atomic all-or-nothing action. The journal storage does precisely that.

Figure 16 shows that for a journal storage in addition to the version histories of all vari-
ables affected by the action we have to implement a catalog of variables and also to maintain
a record to identify each new action. A new action first invokes the Action primitive; at
that time an outcome record uniquely identifying the action is created. Then, every time
the action accesses a variable, the version history is modified and, finally, the action either
invokes a Commit or an Abort primitive. In the journal storage model the action is atomic
and follows the state transition diagram in Figure 15.

Before-or-after atomicity means that, from the point of view of an external observer, the
effect of multiple actions is as if these actions have occurred one after another, in some order;
a stronger condition is to impose a sequential order among transitions. In our example the
transaction acting on two accounts should either debit the first account and then credit the
second one, or leave both accounts unchanged. The order is important, as the first account
cannot be left with a negative balance.

Atomicity is a critical concepts for our efforts to build reliable systems from unreliable

56

components and, at the same time, to support as much parallelism as possible for better
performance. Atomicity allows us to deal with unforseen events and to support coordination
of concurrent activities. The unforseen event could be a system crash, a request to share a
control structure, the need to suspend an activity, and so on; in all these cases we have to
save the state of the process or of the entire system to be able to restart it at a later time.

As atomicity is required in many contexts, it is desirable to have a systematic approach
rather than an ad-hoc one. A systematic approach to atomicity must address several delicate
questions:

• How to guarantee that only one atomic action has access to a shared resource at any
given time.

• How to return to the original state of the system when an atomic action fails to
complete.

• How to ensure that the order of several atomic actions leads to consistent results.

Figure 17: A monitor provides special procedures to access the data in a critical section.

Answers to these questions increase the complexity of the system and often generate
additional problems. For example, access to shared resources can be protected by locks,
but when there are multiple shared resources protected by locks concurrent activities may
deadlock. A lock is a construct which enforces sequential access to a shared resource; such
actions are packaged in the critical sections of the code. If the lock is not set, a thread first
locks the access, then enters the critical section and finally unlocks it; a thread wishing to
enter the critical section finds the lock set and waits for the lock to be reset. A lock can be
implemented using the hardware instructions supporting atomicity.

Semaphores and monitors are more elaborate structures ensuring serial access; semaphores
force processes to queue when the lock is set and are released from this queue and allowed

57

to enter the critical section one by one. Monitors provide special procedures to access the
shared data see Figure 17. The mechanisms for the process coordination we described require
the cooperation of all activities, the same way traffic lights prevent accidents only as long
as the drivers follow the rules.

2.11 Consensus protocols

Consensus is a pervasive problem in many areas of human endeavor; consensus is the process
of agreeing to one of several alternates proposed by a number of agents. We restrict our
discussion to the case of a distributed system when the agents are a set of processes expected
to reach consensus on a single proposed value.

No fault-tolerant consensus protocol can guarantee progress [123], but protocols which
guarantee freedom from inconsistencies (safety) have been developed. A family of protocols
to reach consensus based on a finite state machine approach is called Paxos10.

A fair number of contributions to the family of Paxos protocols are discussed in the
literature. Leslie Lamport has proposed several versions of the protocol including Disk
Paxos, Cheap Paxos, Fast Paxos, Vertical Paxos, Stoppable Paxos, Byzantizing Paxos by
Refinement, Generalized Consensus and Paxos and Leaderless Byzantine Paxos; he has
also published a paper on the fictional part-time parliament in Paxos [206] and a layman’s
dissection of the protocol [207].

The consensus service consists of a set of n processes; clients send requests to processes
and propose a value and wait for a response; the goal is to get the set of processes to
reach consensus on a single proposed value. The basic Paxos protocol is based on several
assumptions about the processors and the network:

• The processes run on processors and communicate through a network; the processors
and the network may experience failures, but not Byzantine failures11.

• The processors: (i) operate at arbitrary speeds; (ii) have stable storage and may rejoin
the protocol after a failure; (iii) can send messages to any other processor.

• The network: (i) may lose, reorder, or duplicate messages; (ii) messages are sent
asynchronously and may take arbitrary long time to reach the destination.

The basic Paxos considers several types of entities: (a) client, an agent that issues a
request and waits for a response; (b) proposer, an agent with the mission to advocate a
request from a client, convince the acceptors to agree on the value proposed by a client,
and to act as a coordinator to move the protocol forward in case of conflicts; (c) acceptor,

10Paxos is a small Greek island in the Ionian Sea; a fictional consensus procedure is attributed to an
ancient Paxos legislative body. The island had a part-time parliament as its inhabitants were more inter-
ested in other activities than in civic work; “the problem of governing with a part-time parliament bears a
remarkable correspondence to the problem faced by todays fault-tolerant distributed systems, where legisla-
tors correspond to processes and leaving the Chamber corresponds to failing” according to Leslie Lamport
[206] (for additional papers see http://research.microsoft.com/en-us/um/people/lamport/pubs/pubs.html).

11A Byzantine failure in a distributed system could be an omission failure, e.g., a crash failure, failure
to receive a request or to send a response; it could also be a commission failure, e.g., process a request
incorrectly, corrupt the local state, and/or send an incorrect or inconsistent response to a request.

58

Leader

2 Promise
3 Accept

request

Acceptor

A

1. Prepare

4 Accept

Acceptor

B

Acceptor

C

1. Prepare

2 Promise
3 Accept

request

1. Prepare

v=a

v=c

v=b

v=d

v=e

v=f

5. The leader accepts a

proposal and informs

all acceptors that the

proposal has been

accepted

Accepted

proposal

Accepted

proposal

Accepted

proposal

Individual clients

request different values

a,b,c,d,e,f...
1. Prepare – the leader chooses a proposal with proposal number pn=k.

2. Promise – an acceptor promises to accept the proposal only if it has not

responded to a proposal with pn> k. (B does not respond)

3. Accept request – the leader chooses the value v of the highest proposal

number from all acceptors who have sent a promise and sends it to all of them.

4. Accept – an acceptor accepts a proposal with pn=k only if it has not promised

to accept a proposal with pn >k. Stores the accepted value in persistent memory

5. The leader accepts a proposal if the quorum of acceptors send an accept

message for the proposal with pn=k. (C does not accept)

Figure 18: The flow of messages for the Paxos consensus algorithm. Individual clients
propose different values to the leader who initiates the algorithm. Acceptor A accepts the
value in message with proposal number pn=k; acceptor B does not respond with a promise
while acceptor C responds with a promise, but ultimately does not accept the proposal.

an agent acting as the fault-tolerant “memory” of the protocol; (d) learner, an agent acting
as the replication factor of then protocol and taking action once a request has been agreed
upon; and finally (e) the leader, a distinguished proposer.

A quorum is a subset of all acceptors. A proposal has a proposal number pn and contains
a value v. Several types of requests flow through the system, prepare, accept.

In a typical deployment of the algorithm an entity plays three roles, proposer, acceptor,
and learner. Then the flow of messages can be described as follows [207]: “clients send
messages to a leader; during normal operations the leader receives the client’s command,
assigns it a new command number i, and then begins the i-th instance of the consensus
algorithm by sending messages to a set of acceptor processes.” By merging the roles, the
protocol “collapses” into an efficient client-master-replica style protocol.

A proposal consists of a pair, a unique proposal number and a proposed value, (pn, v);
multiple proposals may propose the same value v. A value is chosen if a simple majority
of acceptors have accepted it. We need to guarantee that at most one value can be chosen,

59

otherwise there is no consensus. The two phases of the algorithm are:

Phase I.

1. Proposal preparation: a proposer (the leader) sends a proposal (pn = k, v). The
proposer chooses a proposal number pn = k and sends a prepare message to a majority
of acceptors requesting:

• that a proposal with pn < k should not be accepted;

• the pn < k of the highest number proposal already accepted by each acceptor.

2. Proposal promise: An acceptor must remember the proposal number of the highest
proposal number it has ever accepted as well as the highest proposal number it has
ever responded to. The acceptor can accept a proposal with pn = k if and only if
it has not responded to a prepare request with pn > k; if it has already replied to a
prepare request for a proposal with pn > k then it should not reply. Lost messages
are treated as an acceptor that chooses not to respond.

C P A 1 A 2 A 3 L 1 L2

client request(v)

prepare request(v)

promise request (1, null)

accept request (1, v)

accepted (1, v)

client response (v)

C P A 1 A 2 A 3 L 1 L2

client request(v)

prepare request(v)

promise request (1, null)

accept request (1, v)

accepted (1, v)

client response (v)

(a)

(b)

X
A 2 fails

Figure 19: The basic Paxos with three actors: proposer (P), three acceptors (A1, A2, A3),
and two learners (L1, L2). The client (C) sends a request to one of the actors playing the
role of a proposer. The entities involved are (a) Successful first round when there are no
failures. (b) Successful first round of Paxos when an acceptor fails.

Phase II.

1. Accept request: if the majority of acceptors respond, then the proposer chooses the
value v of the proposal as follows:

60

• the value v of the highest proposal number selected from all the responses;

• an arbitrary value if no proposal was issued by any of the proposers.

The proposer sends an accept request message to a quorum of acceptors including
(pn = k, v)

2. Accept: If an acceptor receives an accept message for a proposal with the proposal
number pn = k it must accept it if and only if it has not already promised to consider
proposals with a pn > k. If it accepts the proposal it should register the value v and
send an accept message to the proposer and to every learner; if it does not accept the
proposal it should ignore the request.

The following properties of the algorithm are important to show its correctness: (1)
a proposal number is unique; (2) any two sets of acceptors have at least one acceptor in
common; and (3) the value sent out in Phase 2 of the algorithm is the value of the highest
numbered proposal of all the responses in Phase 1.

Figure 18 illustrates the flow of messages for the consensus protocol. A detailed analysis
of the message flows for different failure scenarios and of the properties of the protocol can
be found in [207]. We only mention that the protocol defines three safety properties: (1)
non-triviality - the only values that can be learned are proposed values; (2) consistency - at
most one value can be learned; and (3) liveness - if a value v has been proposed eventually
every learner will learn some value, provided that sufficient processors remain non-faulty.
Figure 19 shows the message exchange when there are three actors involved.

In Section 4.5 we present a consensus service, the ZooKeeper, based on the Paxos protocol
and in Section 8.6 we discuss Chubby, a locking service based on the algorithm.

2.12 Modeling concurrency with Petri Nets

In 1962 Carl Adam Petri introduced a family of graphs, the so-called Petri Nets (PNs) [290].
PNs are bipartite graphs populated with tokens that flow through the graph and used to
model the dynamic rather than static behavior of systems, e.g. detect synchronization
anomalies.

A bipartite graph is one with two classes of nodes; arcs always connect a node in one
class with one or more nodes in the other class. In the case of Petri Nets the two classes
of nodes are places and transitions thus, the name Place-Transition (P/T) Nets often used
for this class of bipartite graphs; arcs connect one place with one or more transitions or a
transition with one or more places.

To model the dynamic behavior of systems, the places of a Petri Net contain tokens;
firing of transitions removes tokens from the input places of the transition and adds them
to its output places, see Figure 20.

Petri Nets can model different activities in a distributed system. A transition may
model the occurrence of an event, the execution of a computational task, the transmission
of a packet, a logic statement, and so on. The input places of a transition model the pre-
conditions of an event, the input data for the computational task, the presence of data in
an input buffer, the pre-conditions of a logic statement. The output places of a transition

61

dell
Rectangle

