
Chapter Four

Keener’s Method

James P. Keener proposed his rating method in a 1993 SIAM Review article [42]. Keener’s
approach, like many others, utilizes nonnegative statistics that result from contests (games)
between competitors (teams) to create a numerical rating for each team. In some circles
these are called power ratings. Of course, once a numerical rating for each team is estab-
lished, then ranking the teams in order of their ratings is a natural consequence.

Keener’s method is to relate the rating for a given team to the absolute strength of
the team, which in turn depends on the relative strength of the team—i.e., the strength of
the team relative to the strength of the teams that it has played against. This will become
more clear as we proceed. Keener bases everything on the following two stipulations that
govern the relationship between a team’s strength and its rating.

Strength and Rating Stipulations

1. The strength of a team should be gauged by its interactions with opponents together
with the strength of these opponents.

2. The rating for each team in a given league should be uniformly proportional to the
strength of the team. More specifically, if si and ri are the respective strength and
rating values for team i, then there should be a proportionality constant λ such that
si = λri, and λ must have the same value for each team in the league.

Selecting Strength Attributes

To turn the two rules above into a mechanism that can be used to compute a numerical
rating for each team, let’s assign some variables to various quantities in question. First,
settle on some attribute or statistic of the competition or sport under consideration that you
think will be a good basis for making relative comparisons of team strength, and let

aij = the value of the statistic produced by team i when competing against team j.

For example one of the simplest statistics to consider is the number of times that team
i has defeated team j during the current playing season. For ties, assign the participants a
value of 1/2 for each time they have tied. In other words, if Wij is the number of times
that team i has recently beaten team j, and if Tij is the number of times that teams i and j
have tied, then you might set

aij = Wij +
Tij

2
.
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If you think that a more relevant attribute that reflects team i’s power relative to that
of team j is the number of points Sij that i scores against j, then you might define

aij = Sij .

If teams i and j play against each other more than once, then Sij is the cumulative number
of points scored by i against j.

Rather than game scores or number of victories, you might choose to use other at-
tributes of the competition. For example, if you are an old-school football fan who believes
that the stronger football teams are those that excel in the running game, then you may want
to set

aij = the number of rushing yards that team i accumulates against team j.

Similarly, a contemporary connoisseur of the NFL could be convinced that it’s all about
passing, in which case

aij = the number of passing yards that team i gained against team j.

Regardless of what attribute you select to define your aij’s you will have to contin-
ually update them throughout the playing season (unless of course you are only evaluating
the league after all competition is finished). But as you update your aij’s, you have to
decide if the value of an attribute at the beginning of the season should have as much in-
fluence as its value near the end of the season—i.e., do you want to weight the aij’s as a
function of time?

All of this flexibility allows for a lot of fiddling and tweaking, and this is what
makes building rating and ranking models so much fun. As you can already begin to see,
Keener’s method is particularly ripe with opportunities for tinkering, and even more such
opportunities will emerge in what is to come.

Laplace’s Rule of Succession

Regardless of the attribute that you select, the statistics concerning your attribute can rarely
be used in their raw form to create a successful rating technique. For example, consider
scores Sij . If teams i and j each have a weak defense but a good offense, then they are
prone to rack up big scores against each other. On the other hand, if teams p and q each
have a strong defense but a weak offense, then their games are likely to be low scoring.
Consequently, the large Sij and Sji can have a disproportionate effect in any subsequent
rating system compared to the small Spq and Sqp. When comparing teams i and j, it is
better to take into account the total number of points scored by setting

aij =
Sij

Sij + Sji
. (4.1)

Similar remarks hold for other attributes—e.g., rushing yards, passing yards, turnovers,
etc.

Proportions aij generated by using ratios such as (4.1) may be better than using raw
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values, but, as Keener points out, we should really be using something like

aij =
Sij + 1

Sij + Sji + 2
. (4.2)

The motivation for this is Laplace’s rule of succession [29], and the intuition is that if

pij =
Sij

(Sij + Sji)
, then 0 ≤ pij ≤ 1,

and pij can be interpreted as the probability that team i will defeat team j in the future. If
team i defeated team j by a cumulative score ofX to 0 in past games whereX > 0, then it
might be reasonable to conclude that team i is somewhat better than team j (slightly better
ifX is small or much better ifX is large). However, regardless of the value ofX > 0, we
have that

pij = 1 and pji = 0. (4.3)

This suggests that it is impossible for team j to ever beat team i in the future, which is
clearly unrealistic. On the other hand, if (4.2) is interpreted as the probability pij that team
i will defeat team j in the future, then you can see from (4.2) that 0 < pij < 1, and if team
i defeated team j by a cumulative score ofX to 0 in the past, then

pij =
X + 1
X + 2

→
{

1/2 asX → 0,
1 asX →∞,

which is more reasonable than (4.3). Moreover, if Sij ≈ Sji and both are large, then
pij ≈ 1/2, but as the difference Sij −Sji > 0 increases, pij gets closer to 1, which makes
sense. Consequently, using (4.2) is preferred over (4.1).

To Skew or Not to Skew?

Skewing concerns the issue of how to compensate for the “just because we could” situation
in which a stronger team mercilessly runs up the score against a weaker opponent to either
enhance their own rating or perhaps to just “rub it in.” If (4.2) is used, then Keener suggests
applying a nonlinear skewing function such as

h(x) =
1
2

+
sgn {x− (1/2)}√|2x− 1|

2
(4.4)

to each of the aij’s to help mitigate differences at the upper and lower ends. In other
words, replace aij by h(aij). The graph of h(x) is shown in Figure 4.1, and, as you can
see, this function has the properties that h(0) = 0, h(1) = 1, and h(1/2) = 1/2. Using the
h(aij)’s in place of the aij’s has the intended effect of somewhat moderating differences
at the upper and lower ranges. Skewing with h(x) also introduces an artificial separation
between two raw values near 1/2, which might be helpful in distinguishing between teams
of nearly equal strength.

Once you have seen Keener’s skewing function in (4.4) and have played with it a bit,
you should be able to construct many other skewing functions of your own. For example,
you may want to customize your skewing function so that it is more or less exaggerated
in its skewing ability than is h(x), or perhaps you need your function to affect the upper
ranges of the aij’s differently than how it affects the lower ranges. The value of Keener’s
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Figure 4.1 Graph of the skewing function h(x)

skewing idea is its ability to allow you to “tune” your system to the particular competition
being modeled. Skewing is yet another of the countless ways to fiddle with and tweak
Keener’s technique.

Skewing is not always needed. For example, skewing did not significantly affect
the NFL rankings in the studies in [34, 35, 1]. This is probably due to the fact that the
NFL was well balanced for the years under consideration, so the need for fine tuning was
not so great. Of course, things are generally much different for NCAA sports or other
competitions, so don’t discount Keener’s skewing idea.

Normalization

Having settled on the attribute that defines your nonnegative aij’s, and having decided
whether or not you want to skew them by redefining aij ← h(aij), one last bit of massag-
ing (or normalization) of the aij’s is required for situations in which not all teams play the
same number of games. In such a case, make the replacement

aij ← aij

ni
, where ni = the number of games played by team i. (4.5)

To understand why this is necessary, suppose that you are using scores Sij to define your
aij’s along the lines of (4.1) or (4.2). Teams playing more games than other teams have the
possibility of producing more points, and thus inducing larger values of aij . This in turn
will affect any measure of “strength” that is eventually derived from your aij’s. The same
is true for statistics other than scores—e.g., if number of yards gained or number of passes
completed is your statistic, then teams playing more games can accumulate higher values
of these statistics, which in turn will affect any ratings that these statistics produce.

Caution! Skewing has a normalization effect, so if you are using a skewing function
and there is not a large discrepancy in the number of games played, then (4.5) may not
be necessary—you run the risk of “over normalizing” your data. Furthermore, different
situations require different normalization strategies. Using (4.5) is the easiest thing to do
and is a good place to start, but you may need to innovate and experiment with other
strategies to obtain optimal results—yet another place for fiddling.
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Chicken or Egg?

Once the aij’s are defined, skewed, and normalized, organize them into a square matrix

A =
[
aij

]
m×m

, where m = the number of teams in the league.

Representing the data in such a way allows us to apply some extremely powerful ideas
from matrix theory to quantify “strength” and to generate numerical ratings. While it is
not apparent at this point, it will be necessary to make a subtle distinction between the
“strength value” for each team and its “ratings value.” This will become more apparent
in the sequel. In spite of the fact that the “strength value” and the “rating value” are not
equal, they are of course related. This presents us with a chicken-or-egg situation because
we would like to use the “rating values” to measure “strength values” but the “strength” of
each team will affect the value of a team’s “rating.”

Ratings

Let’s just jump in blindly and start with ratings. We would like to construct a rating value
for each ofm teams based on their perceived “strength” (which we still don’t have a handle
on) at some time t during the current playing season. Let

rj(t) = the numerical rating of team j at time t,

and let r(t) denote the column containing each of thesem ratings. It is understood that the
values rj(t) in the rating vector r(t) change in time, so the explicit reference to time in the
notation can be dropped—i.e., simply write rj in place of rj(t) and set

r =

⎛
⎜⎜⎝

r1

r2
...

rm

⎞
⎟⎟⎠ = the ratings vector. (4.6)

Even though the values in r are unknown to us at this point, the assumption is that they
exist and can somehow be determined.

Strength

Now relate the ratings in (4.6) (which at this point exist in theory only) to the concept of
“strength.” Recall that Keener’s first stipulation is that the strength of a team should be
measured by how well it performs against opponents but tempered by the strength of those
opponents. In other words, winning ten games against powder-puff competition shouldn’t
be considered the same as winning ten games against powerful opponents.

How well team i performs against team j is precisely what your statistic aij is sup-
posed to measure. How powerful (or powerless) team j is is what the rating value rj is
supposed to gauge. Consequently, it makes sense to adopt the following definition.
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Relative Strength

The relative strength of team i compared to team j is defined to be

sij = aijrj .

It is natural to consider the overall or absolute strength of team i to be the sum of
team i’s relative strengths compared to all other teams in the league. In other words, it is
reasonable to define absolute strength (or simply the strength) as follows.

Absolute Strength

The absolute strength (or simply the strength ) of team i is defined to be

si =
m∑

j=1

sij =
m∑

j=1

aijrj , and s =

⎛
⎜⎜⎝

s1

s2
...

sm

⎞
⎟⎟⎠ is the strength vector. (4.7)

Notice that the strength vector s can be expressed as

s =

⎛
⎜⎜⎜⎝

∑
j a1jrj∑
j a2jrj

...∑
j amjrj

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...
am1 am2 · · · amm

⎞
⎟⎟⎠
⎛
⎜⎜⎝

r1

r2
...

rm

⎞
⎟⎟⎠ = Ar. (4.8)

The Keystone Equation

Keener’s second stipulation concerning the relationship between strength and rating re-
quires that the strength of each team be uniformly proportional to the team’s rating in the
sense that there is a proportionality constant λ such that si = λri for each i. In terms of
the rating and strength vectors r and s in (4.6) and (4.7) this says that s = λr for some
constant λ. However, (4.8) shows that s = Ar, so the conclusion is that the ratings vector
r is related to the statistics aij in matrixA by means of the equation

Ar = λr. (4.9)

This equation is the keystone of Keener’s method!

In the language of linear algebra, equation (4.9) says that the ratings vector r must
be an eigenvector, and the proportionality constant λ must be an associated eigenvalue
for matrixA. Information concerning eigenvalues and eigenvectors can be found in many
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places on the Internet, but a recommended treatment from a printed source is [54, page
489].

At first glance, it appears that the problem of determining the ratings vector r is not
only solved, but the solution from (4.9) seems remarkably easy—simply find the eigenval-
ues and eigenvectors for some matrixA. However, if determining r could not be narrowed
down beyond solving a general eigenvalue problemAr = λr, then we would be in trouble
for a variety of reasons, some of which are listed below.

1. For a general m×m matrix A, there can be as many as m different values of λ
that will emerge from the solution (4.9). This would present us with the dilemma of
having to pick one value of λ over the others. The choice of λ will in turn affect the
ratings vector r that is produced because once λ becomes fixed, the ratings vector r
is married to it as the solution of the equation (A− λI)r = 0.

2. In spite of the fact that the matrix A of statistics contains only real numbers, it is
possible that some (or even all) of the λ’s that emerge from (4.9) will be complex
numbers, which in turn can force the associated eigenvectors r to contain complex
numbers. Any such r is useless for the purpose of rating and ranking anything. For
example, it is meaningless for one team to have rating of 6+5i while another team’s
rating is 6 − 5i because it is impossible to compare these two numbers to decide
which is larger.

3. Even in the best of circumstances in which real values of λ emerge from the solu-
tion of (4.9), they could be negative numbers. But even if a positive eigenvalue λ
pops out, an associated eigenvector r can (and usually will) contain some negative
entries. While having negative ratings is not as bad as having complex ratings, it is
nevertheless not optimal.

4. Finally, you have to face the issue of how you are going to actually compute the
eigenvalues and eigenvectors of your matrix so that you can extract r. The program-
ming and computational complexity involved in solving Ar = λr for a general
square matrix A of significant size requires most people to buy or have access to
a software package that is designed for full-blown eigen computations—most such
packages are so expensive that they should be shipped in gold-plated boxes.

Constraints

Keener avoids all of the above stumbling blocks by imposing three mild constraints on the
amount of interaction between teams and on the resulting statistics aij inAm×m.

I. Nonnegativity. Whatever attribute you use to determine the statistics aij , and how-
ever you massage, skew, or normalize them, in the end you must ensure that each
statistic aij is a nonnegative number—i.e.,A = [aij ] ≥ 0 is a nonnegative matrix.

II. Irreducibility. There must be enough past competition within your league to ensure
that it is possible to compare any pair of teams, even if they had not played against
each other. More precisely, if teams i and j are any two different teams in the league,
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then they must be “connected” by a a series of past contests involving other teams
{k1, k2, . . . , kp} such that there is a string of games
i↔ k1 ↔ k2 ↔ . . .↔ kp ↔ j with aik1 > 0, ak1k2 > 0, . . . , akpj > 0. (4.10)

The technical name for this constraint is to say that the competition (or the matrix
A) is irreducible.

III. Primitivity. This is just a more stringent version of the irreducibility constraint in
II in that we now require each pair of teams to be connected by a uniform number
of games. In other words, the connection between teams i and j in (4.10) involves
a chain of p games with positive statistics. For a different pair of teams, II only
requires that they be connected, but they could be connected by a chain of q games
with positive statistics in which p 	= q. Primitivity requires that all teams must be
connected by the same number of games—i.e., there must exist a single value p such
that (4.10) holds for all i and j. The primitivity constraint is equivalent to insisting
thatAp > 0 for some power p. The reason to require primitivity is because it makes
the eventual computation of the ratings vector r easy to execute.

Perron–Frobenius

By imposing constraints I and II described above, the powerful Perron–Frobenius theory
can be brought to bear to extract a unique ratings vector from Keener’s keystone equation
Ar = λr. There is much more to the complete theory than can be presented here (and
more than is needed), but its essence is given below—the complete story is given in [54,
page 661].

Perron–Frobenius Theorem

IfAm×m ≥ 0 is irreducible, then each of the following is true.

• Among all values of λi and associated vectors xi 	= 0 that satisfyAxi = λixi

there is a value λ and a vector x for whichAx = λx such that
� λ is real. � λ > 0.
� λ ≥ |λi| for all i. � x > 0.

• Except for positive multiples of x, there are no other nonnegative eigenvectors
xi forA, regardless of the eigenvalue λi.

• There is a unique vector r (namely r = x/
∑

j xj) for which

Ar = λr, r > 0, and
m∑

j=1

rj = 1. (4.11)

• The value λ and the vector r are respectively called the Perron value and
the Perron vector. For us, the Perron value λ is the proportionality con-
stant in (4.9), and the unique Perron vector r becomes our ratings vector.
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Important Properties

Notice that by virtue of being defined by the Perron vector for A, the ratings vector r is
not only uniquely determined by the statistics aij in A, but r also has the properties that
each team rating is such that

0 < ri < 1 and
m∑

i=1

ri = 1.

This is important because it puts everything on a level playing field in the sense that it
allows for an interpretation of strength in terms of percentages—e.g., a nice pie chart can
be made to graphically illustrate the strength of one team relative to the rest of the league.
Having the ratings sum to one means that whenever the ratings for a particular team in-
creases, it is necessary for one or more ratings of other teams to decrease, and thus a
balance is maintained throughout a given playing season, or from year-to-year, or across
different playing seasons. Furthermore, this balance allows level comparisons of ratings
derived from two different attributes. For example, if we constructed one set of Keener
ratings based on scores Sij and another set of Keener ratings based on winsWij (and ties),
then the two ratings and resulting rankings can be compared, reconciled, and even aggre-
gated to produce what are sometimes called consensus (or ensemble) ratings and rankings.
Techniques of rank aggregation are discussed in detail in Chapter 14.

Computing the Ratings Vector

Given that you have ensured that all statistics aij are nonnegative (i.e., A ≥ 0), then the
first thing to do is to check that the irreducibility requirement described in constraint II is
satisfied. Let’s assume that it is. If it isn’t, something will have to be done to fix this, and
possible remedies are presented on page 39. Once you are certain that A is irreducible,
then there are two options for computing r.

Brute Force. If you have access to some gold-plated numerical software that has the
facility to compute eigenvalues and eigenvectors, then you can just feed your matrix
A into the software and ask it to spit back at you all of the eigenvalues and all of the
eigenvectors.

— Sort through the list of eigenvalues that is returned and locate the one that is
real, positive, and has magnitude larger than all of the others. The Perron–
Frobenius theory ensures that there must be such a value, and this is the Perron
root—it is the value of λ that we are looking for.

— Next have your software return an eigenvector x that is associated with λ. This
is not necessarily the ratings vector r. Depending on the software that you use,
this vector x = (x1, x2, . . . , xm) could be returned to you as a vector of all
negative numbers or all positive numbers (but no zeros should be present—if
they are, something is wrong). Even if x > 0, its components will probably
not sum to one, so you generally have to force this to happen by setting

r =
x∑m

i=1 xi
.
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This is the Perron vector, and consequently r is the desired ratings vector.

Power Method. If the primitivity condition in III is satisfied, then there is a rel-
atively easy way to compute r that requires very little in the way of programming
skills or computing horse power. It’s called the power method because it relies on
the fact that as k increases, the powers Ak of A applied to any positive vector x0

send the productAkx0 in the direction of the Perron vector—if you are interested in
why, see [54, page 533]. Consequently, scaling Akx0 by the sum of its entries and
letting k →∞ produces the Perron vector (i.e., the rating vector) r as

r = lim
k→∞

Akx0∑m
i=1 Akx0

.

The computation of r by the power method proceeds as follows.

— Select an initial positive vector x0 with which to begin the process. The uni-
form vector

x0 =

⎛
⎜⎝

1/m
1/m

.

.

.
1/m

⎞
⎟⎠

is usually a good choice for an initial vector.

— Instead of explicitly computing the powers Ak and then applying them to x0,
far less arithmetic is required by the following successive calculations. Set

yk = Axk, νk =
m∑

i=1

(yk)i, xk+1 =
yn

νk
, for k = 0, 1, 2, . . . . (4.12)

It is straightforward to verify that this iteration generates the desired sequence

x1 =
Ax0∑m

i=1

(
Ax0

)
i

,

x2 =
Ax1∑m

i=1

(
Ax1

)
i

=
A2x0∑m

i=1

(
A2x0

)
i

,

x3 =
Ax2∑m

i=1

(
Ax2

)
i

=
A3x0∑m

i=1

(
A3x0

)
i

,

...

The primitivity condition guarantees that

xk → r as k →∞.

(Mathematical details are in [54, page 674].) In practice, the iteration (4.12) is
terminated when the entries in xk have converged to enough significant digits
to draw a distinction between the teams in your league. The more teams that
you wish to consider, the more significant digits you will need—see the NFL
results on page 42 to get a sense of what might be required. Just don’t go for
overkill. Unless you are trying to rate and rank an inordinately large number
of teams, you probably don’t need convergence to 16 significant digits.
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Forcing Irreducibility and Primitivity

As explained in the discussion of the constraints on page 35, irreducibility and primitivity
are conditions that require sufficient interaction between the teams under consideration,
and these interactions are necessary for the ratings vector r to be well defined and to be
computable by the power method. This raises the natural question: “How do we actually
check to see if our league (or our matrixA) has these kinds of connectivity?”

There is no short cut for checking irreducibility. It boils down to checking the
definition—i.e., for each pair of teams (i, j) in your league, you need to verify that there
has been a series of games

i↔ k1 ↔ k2 ↔ . . .↔ kp ↔ j with aik1 > 0, ak1k2 > 0, . . . , akpj > 0

that connects them. Similarly, for primitivity youmust verify that there is a uniform number
of games that connects each pair of teams in your league. These are tedious tasks, but a
computer can do the job as long as the number of teamsm is not too large.

However, the computational aspect of checking connectivity is generally not the
biggest issue because for most competitions it is rare that both kinds of connectivity will
be present. This is particularly true when you are building ratings (and rankings) on a
continual basis (e.g., week-to-week) from the beginning of a competition and updating
them throughout the playing season. It is highly unlikely that you will have sufficient
connectivity to ensure irreducibility and primitivity in the early parts of the playing season,
and often these connectivity conditions will not be satisfied even near or at the end of a
season.

So, the more important question is: “How can we force irreducibility or primitivity
into a competition so that we don’t ever have to check for it?” One particularly simple
solution is to replaceA by a small perturbation of itself by redefining

A← A + E, where E = εeeT =

⎛
⎜⎜⎜⎜⎝

ε ε · · · ε ε
ε ε · · · ε ε
...
...
. . .

...
...

ε ε · · · ε ε
ε ε · · · ε ε

⎞
⎟⎟⎟⎟⎠

in which e is a column of all ones and ε > 0 is a number that is small relative to the
smallest nonzero entry in the unperturbed matrixA. The effect is to introduce an artificial
game between every pair of teams such that the statistics of the artificial games are small
enough to not contaminate the story that the real games are trying to tell you. Notice that
in the perturbed competition every team is now directly connected (with positive statistics)
to every other team,1 and therefore both irreducibility and primitivity are guaranteed.

A less stringent perturbation can be used to ensure primitivity when you know that
there has been enough games played to guarantee irreducibility. If the competition (or the
matrix A) is irreducible, then adding any value ε > 0 to any single diagonal position in
A will produce primitivity. In other words, adding one artificial game between some team

1It is permissible to put zeros in the diagonal positions of E if having an artificial game between each team
and itself bothers you.



40 CHAPTER 4

and itself with a negligibly small game statistic, or equivalently, redefiningA as

A← A + E, where E = εeieT
i in which eT

i = (0, 0, . . . , 1, 0, . . . , 0)

will produce primitivity [54, page 678].

Summary

Now that all of the pieces are on the table, let’s put them together. Here is a summary of
how to build rating and ranking systems fromKeener’s application of the Perron–Frobenius
theory.

1. Begin by choosing one particular attribute of the competition or sport under consid-
eration that you think will be a good basis for making comparisons of each team’s
strength relative to that of the other teams in the competition. Examples include the
number of times team i has defeated (or tied) team j, or the number of points that
team i has scored against team j.

— More than one scheme can be constructed for a given competition by taking
more specific features into account—e.g., the number of rushing (or passing)
yards that one football team makes against another, or the number of three-
point goals or free throws that one basketball teammakes against another. Even
defensive attributes can be used—e.g., the number of pass interceptions that
one football team makes against another, or the number of shots in basketball
that team i has blocked when playing team j.

— The various ratings (and rankings) obtained by using the finer aspects of the
competition can be aggregated to form consensus (or ensemble) ratings (or
rankings). For example, you can construct one or more Keener schemes based
on offensive attributes and others based on defensive attributes, and then ag-
gregate the resulting ratings into one master rating and ranking list. The details
describing how this is accomplished are presented in Chapter 14. Before stray-
ing off into rank aggregation, first nail down a solid system that is based on one
specific attribute.

2. Whatever attribute is chosen, compile statistics from past competitions, and set

aij = the value of the statistic produced by team i when competing against team j.

It is absolutely necessary that each aij be a nonnegative number!

3. Massage the raw statistics aij in step 2 to account for anomalies. For example, if
you use aij = Sij = the number of points that team i scores against team j, then as
explained on page 31, you should redefine aij to be

aij =
Sij + 1

Sij + Sji + 2
for all i and j.

4. If after massaging the data you feel that there is an imbalance in the sense that some
aij’s are very much larger (or smaller) than they should be (perhaps due to a team
artificially running up the statistics on a weak opponent), then restore a balance by
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constructing a skewing function such as the one in the discussion on page 31 given
by

h(x) =
1
2

+
sgn {x− (1/2)}√|2x− 1|

2
,

and make the replacement aij ← h(aij).

5. If not all teams have played the same number of games, then account for this by
normalizing the aij’s in step 4 above by making the replacement

aij ← aij

ni
, where ni = the number of games played by team i.

and organize these numbers into a nonnegative matrixA = [aij ] ≥ 0.

6. Either check to see that there has been enough competition in your league to guaran-
tee that it (or matrixA) satisfies the irreducibility and primitivity conditions defined
on page 36, or else perturbA by adding some artificial games with negligible game
statistics so as to force these conditions as described on page 39.

— If you are not sure (or just don’t want to check) if constraints I and II hold, then
both irreducibility and primitivity can be forced by making the replacement
A← A + εeeT , where e is a column of all ones and ε > 0 is small relative to
the smallest positive aij in the unperturbedA.

— If irreducibility is already present—i.e., if for each pair of teams i and j there
has been a series of games such that

i↔ k1 ↔ k2 ↔ . . .↔ kp ↔ j with aik1 > 0, ak1k2 > 0, . . . , akpj > 0

for some p (which can vary with the pair (i, j) being considered)—then the
league (or matrix A) can be made primitive (i.e., made to have a uniform p
that works for all pairs (i, j)) by simply adding ε > 0 to any single diag-
onal position in A. This creates an artificial game between some team and
itself with a negligible statistic, and it amounts to making the replacement
A← A + εeieT

i , where ε > 0 and eT
i = (0, 0, . . . , 1, 0, . . . , 0) for some i.

7. Compute the rating vector r by using the power method described on page 38. If you
have forced irreducibility or primitivity as summarized in step 6 above, then slightly
modify the power iteration (4.12) on page 38 as shown below.

— For the perturbed matrixA + εeeT , execute the power method as follows.

• Initially set r← (1/m)e, where e is a column of all ones.
• Repeat the following steps until the entries in r converge to a prescribed
number of significant digits.

BEGIN

1. σ ← ε
∑m

j=1 rj , (= εeT r)

2. r← Ar + σe, (= [A + εeeT ]r)

3. ν ←∑m
j=1 rj , (= eT [A + εeeT ]r)

4. r← r/ν, (= [A + εeeT ]r/eT [A + εeeT ]r)

REPEAT
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— The power method changes a bit when the perturbed matrixA+εeieT
i is used.

• Initially set r← (1/m)e, where e is a column of all ones.
• Repeat the following until each entry in r converges to a prescribed num-
ber of significant digits.

BEGIN

1. σ ← εri, (= εeT
i r)

2. r← Ar + σei, (= [A + εeieT
i ]r)

3. ν ←∑m
j=1 rj , (= eT [A + εeieT

i ]r)

4. r← r/ν, (= [A + εeeT ]r/eT [A + εeieT
i ]r)

REPEAT

— These steps are simple enough that they can be performed manually in any
good spreadsheet environment.

The 2009–2010 NFL Season

To illustrate the ideas in this chapter we used the scores for the regular seventeen-week
2009–2010 NFL season to build Keener ratings and rankings. The teams were ordered
alphabetically as shown in the following list of team names.

Order Name Order Name

1. BEARS 17. JETS

2. BENGALS 18. LIONS

3. BILLS 19. NINERS

4. BRONCOS 20. PACKERS

5. BROWNS 21. PANTHERS

6. BUCS 22. PATRIOTS

7. CARDINALS 23. RAIDERS

8. CHARGERS 24. RAMS

9. CHIEFS 25. RAVENS

10. COLTS 26. REDSKINS

11. COWBOYS 27. SAINTS

12. DOLPHINS 28. SEAHAWKS

13. EAGLES 29. STEELERS

14. FALCONS 30. TEXANS

15. GIANTS 31. TITANS

16. JAGUARS 32. VIKINGS

Using this ordering, we set

Sij = the cumulative number of points scored by team i against team j

during regular-season games. The matrix containing these raw scores using our ordering
is shown below. For example, S12 = 10 in the following matrix indicates that the BEARS
scored 10 points against the BENGALS during the regular season, and S21 = 45 means
that the BENGALS scored 45 points against the BEARS.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1 0 10 0 0 30 0 21 0 0 0 0 0 20 14 0 0 0 85 6 29 0 0 0 17 7 0 0 25 17 0 0 46
2 45 0 0 7 39 0 0 24 17 0 0 0 0 0 0 0 0 23 0 31 0 0 17 0 34 0 0 0 41 17 0 10
3 0 0 0 0 3 33 0 0 16 30 0 41 0 3 0 15 29 0 0 0 20 34 0 0 0 0 7 0 0 10 17 0
4 0 12 0 0 27 0 0 37 68 16 17 0 27 0 26 0 0 0 0 0 0 20 42 0 7 17 0 0 10 0 0 0
5 6 27 6 6 0 0 0 23 41 0 0 0 0 0 0 23 0 37 0 3 0 0 23 0 3 0 0 0 27 0 0 20
6 0 0 20 0 0 0 0 0 0 0 21 23 14 27 0 0 3 0 0 38 27 7 0 0 0 13 27 24 0 0 0 0
7 41 0 0 0 0 0 0 0 0 10 0 0 0 0 24 31 0 31 25 7 21 0 0 52 0 0 0 58 0 28 17 30
8 0 27 0 55 30 0 0 0 80 0 20 23 31 0 21 0 0 0 0 0 0 0 48 0 26 23 0 0 28 0 42 0
9 0 10 10 57 34 0 0 21 0 0 20 0 14 0 16 21 0 0 0 0 0 0 26 0 24 14 0 0 27 0 0 0
10 0 0 7 28 0 0 31 0 0 0 0 27 0 0 0 49 15 0 18 0 0 35 0 42 17 0 0 34 0 55 58 0
11 0 0 0 10 0 34 0 17 26 0 0 0 44 37 55 0 0 0 0 7 21 0 24 0 0 24 24 38 0 0 0 0
12 0 0 52 0 0 25 0 13 0 23 0 0 0 7 0 14 61 0 0 0 24 39 0 0 0 0 34 0 24 20 24 0
13 24 0 0 30 0 33 0 23 34 0 16 0 0 34 85 0 0 0 27 0 38 0 9 0 0 54 22 0 0 0 0 0
14 21 0 31 0 0 40 0 0 0 0 21 19 7 0 31 0 10 0 45 0 47 10 0 0 0 31 50 0 0 0 0 0
15 0 0 0 6 0 24 17 20 27 0 64 0 55 34 0 0 0 0 0 0 9 0 44 0 0 68 27 0 0 0 0 7
16 0 0 18 0 17 0 17 0 24 43 0 10 0 0 0 0 24 0 3 0 0 7 0 23 0 0 0 0 0 54 50 0
17 0 37 32 0 0 26 0 0 0 29 0 52 0 7 0 22 0 0 0 0 17 30 38 0 0 0 10 0 0 24 24 0
18 47 13 0 0 38 0 24 0 0 0 0 0 0 0 0 0 0 0 6 12 0 0 0 10 3 19 27 20 20 0 0 23
19 10 0 0 0 0 0 44 0 0 14 0 0 13 10 0 20 0 20 0 24 0 0 0 63 0 0 0 40 0 21 27 24
20 42 24 0 0 31 28 33 0 0 0 17 0 0 0 0 0 0 60 30 0 0 0 0 36 27 0 0 48 36 0 0 49
21 0 0 9 0 0 44 34 0 0 0 7 17 10 48 41 0 6 0 0 0 0 10 0 0 0 20 43 0 0 0 0 26
22 0 0 42 17 0 35 0 0 0 34 0 48 0 26 0 35 40 0 0 0 20 0 0 0 27 0 17 0 0 27 59 0
23 0 20 0 23 9 0 0 36 23 0 7 0 13 0 7 0 0 0 0 0 0 0 0 0 13 13 0 0 27 6 0 0
24 9 0 0 0 0 0 23 0 0 6 0 0 0 0 0 20 0 17 6 17 0 0 0 0 0 7 23 17 0 13 7 10
25 31 21 0 30 50 0 0 31 38 15 0 0 0 0 0 0 0 48 0 14 0 21 21 0 0 0 0 0 40 0 0 31
26 0 0 0 27 0 16 0 20 6 0 6 0 41 17 29 0 0 14 0 0 17 0 34 9 0 0 30 0 0 0 0 0
27 0 0 27 0 0 55 0 0 0 0 17 46 48 61 48 0 24 45 0 0 40 38 0 28 0 33 0 0 0 0 0 0
28 19 0 0 0 0 7 23 0 0 17 17 0 0 0 0 41 0 32 30 10 0 0 0 55 0 0 0 0 0 7 13 9
29 14 32 0 28 33 0 0 38 24 0 0 30 0 0 0 0 0 28 0 37 0 0 24 0 40 0 0 0 0 0 13 27
30 0 28 31 0 0 0 21 0 0 44 0 27 0 0 0 42 7 0 24 0 0 34 29 16 0 0 0 34 0 0 51 0
31 0 0 41 0 0 0 20 17 0 26 0 27 0 0 0 47 17 0 34 0 0 0 0 47 0 0 0 17 10 51 0 0
32 66 30 0 0 34 0 17 0 0 0 0 0 0 0 44 0 0 54 27 68 7 0 0 38 33 0 0 35 17 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

NFL 2009–2010 regular season scores

From these raw scores we used (4.2) on page 31 to construct the matrix[
Sij + 1

Sij + Sji + 2

]
32×32

,

and then we applied Keener’s skewing function h(x) in (4.4) on page 31 to each entry in
this matrix to form the nonnegative matrix

A32×32 = [aij ] =
[
h

(
Sij + 1

Sij + Sji + 2

)]
.

Normalization as described on page 32 is not required because all teams played the same
number of games (16 of them—each team had one bye). Furthermore,A is primitive (and
hence irreducible) becauseA2 > 0, so there is no need for perturbations. The Perron value
forA is λ ≈ 15.832 and the ratings vector r (to 5 significant digits) is shown below.

Team Rating Team Rating

BEARS .029410 JETS .034683

BENGALS .031483 LIONS .025595

BILLS .029066 NINERS .031876

BRONCOS .031789 PACKERS .035722

BROWNS .027923 PANTHERS .030785

BUCS .026194 PATRIOTS .035051

CARDINALS .032346 RAIDERS .026222

CHARGERS .035026 RAMS .024881

CHIEFS .028006 RAVENS .033821

COLTS .034817 REDSKINS .029107

COWBOYS .034710 SAINTS .036139

DOLPHINS .029805 SEAHAWKS .027262

EAGLES .033883 STEELERS .033529

FALCONS .032690 TEXANS .033415

GIANTS .030480 TITANS .030538

JAGUARS .028962 VIKINGS .034783

(4.13)

NFL 2009–2010 Keener ratings
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After the ratings are sorted in descending order, the following ranking of the NFL teams
for the 2009–2010 season is produced.

Rank Team Rating Rank Team Rating

1. SAINTS .036139 17. BENGALS .031483

2. PACKERS .035722 18. PANTHERS .030785

3. PATRIOTS .035051 19. TITANS .030538

4. CHARGERS .035026 20. GIANTS .030480

5. COLTS .034817 21. DOLPHINS .029805

6. VIKINGS .034783 22. BEARS .029410

7. COWBOYS .034710 23. REDSKINS .029107

8. JETS .034683 24. BILLS .029066

9. EAGLES .033883 25. JAGUARS .028962

10. RAVENS .033821 26. CHIEFS .028006

11. STEELERS .033529 27. BROWNS .027923

12. TEXANS .033415 28. SEAHAWKS .027262

13. FALCONS .032690 29. RAIDERS .026222

14. CARDINALS .032346 30. BUCS .026194

15. NINERS .031876 31. LIONS .025595

16. BRONCOS .031789 32. RAMS .024881

(4.14)

NFL 2009–2010 Keener rankings

Most who are familiar with the 2009–2010 NFL season would probably agree that
this ranking (and the associated ratings) looks pretty good in that it is an accurate reflection
of what happened in the post-season playoffs. The SAINTS ended up being ranked #1,
and, in fact, the SAINTS won the Super Bowl! They defeated the COLTS by a score of 31
to 17. Furthermore, as shown in Figure 5.2 on page 61, the top ten teams in our rankings
each ended up making the playoffs during 2009–2010, and this alone adds to the credibility
of Keener’s scheme.

The COLTS were #5 in our ratings, but they probably would have rated higher if
they had not rolled over and deliberately given up their last two games of the season to
protect their starters from injury. It might be an interesting and revealing exercise to either
delete or somehow weight the scores from the last two regular season games for some (or
all) of the teams and compare the resulting ratings and rankings with those above—we
have not done this, so if you follow up on your own, then please let us know the outcome.

On the other hand, after reviewing a replay of Super Bowl XLIV, it could be argued
that the COLTS actually looked like a #5 team against the SAINTS, and either a healthy
PATRIOTS or CHARGERS team might well have given the SAINTS a greater challenge
than did the COLTS. Another interesting project would be to weight the scores so that those
at the beginning of the season and perhaps some at the end do not count for as much as
scores near the crucial period after midseason—and this might be done on a team-by-team
basis.
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Jim Keener vs. Bill James

Wayne Winston begins his delightful book [83] with a discussion of what is often called
the Pythagorean theorem for baseball that was formulated by Bill James, a well-known
writer, historian, and statistician who has spent much of his time analyzing baseball data.
James discovered that the percentage of wins that a baseball team has in one season is
closely approximated by a Pythagorean expectation formula that states

% wins ≈ runs scored2

runs scored2 + runs allowed2
=

1
1 + ρ2

where ρ =
runs allowed
runs scored

.

This is a widely used idea in the world of quantitative sports analysis—it has been applied
to nearly every major sport on the planet. However, each different sport requires a different
exponent in the formula. In other words, after picking your sport you must then adapt the
formula by replacing ρ2 with ρx, where the value of x is optimized for your sport. Winston
suggests using the mean absolute deviation (or MAD) for this purpose. That is, if

ωi = the percentage of games that team i wins during a season, (4.15)

and

ρi =
points allowed by team i

points scored by team i
, (4.16)

and if there are m teams in the league, then the mean absolute deviation for a given value
of x is

MAD(x) =
1
m

m∑
i=1

∣∣∣∣ωi − 1
1 + ρx

i

∣∣∣∣ , (4.17)

or equivalently, in terms of the vector 1-norm [54, page 274],

MAD(x) =
‖w − p(x)‖1

m
, where

⎧⎨
⎩

w = (ω1, ω2, . . . , ωm)T ,
and
p(x) =

(
(1 + ρx

1 )−1, (1 + ρx
2 )−1, . . . , (1 + ρx

m)−1
)T

.

Once you choose a sport then it’s your job to find the value x∗ that minimizes MAD(x)
for that sport. And if you are really into tweaking things, then “points” in (4.16) can be
replaced by other aspects of your sport—e.g., in football it is an interesting exercise to see
what happens when you use

ρi =
yards given up by team i

yards gained by team i
.

Let’s try out James’s Pythagorean idea for the 2009–2010 NFL regular season. In
other words, estimate

% regular season wins ≈ 1
1 + ρx

, where ρ =
points allowed
points scored

,

and where x is determined from the 2009–2010 NFL scoring data given on page 43. Then
let’s compare these results with how well the Keener ratings in (4.13) and (4.14) estimate
the winning percentages. The percentage of wins for each NFL team during the regular
2009–2010 season is shown in the following table, 2 and this is our target.

2For convenience, percent numbers �% are converted by multiplying decimal values by 100.
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Team %Wins Team %Wins

BEARS 43.75 JETS 56.25

BENGALS 62.50 LIONS 12.50

BILLS 37.50 NINERS 50.00

BRONCOS 50.00 PACKERS 68.75

BROWNS 31.25 PANTHERS 50.00

BUCS 18.75 PATRIOTS 62.50

CARDINALS 62.50 RAIDERS 31.25

CHARGERS 81.25 RAMS 06.25

CHIEFS 25.00 RAVENS 56.25

COLTS 87.50 REDSKINS 25.00

COWBOYS 68.75 SAINTS 81.25

DOLPHINS 43.75 SEAHAWKS 31.25

EAGLES 68.75 STEELERS 56.25

FALCONS 56.25 TEXANS 56.25

GIANTS 50.00 TITANS 50.00

JAGUARS 43.75 VIKINGS 75.00

(4.18)

Percentage of regular-season wins for the NFL 2009–2010 season

The optimal value x∗ of the exponent x in (4.17) is determined by brute force. In
other words, compute MAD(x) for sufficiently many different values of x and then eyeball
the results to identify the optimal x∗. Using the 2009–2010 NFL scoring data on page 43
we computed MAD(x) for 1500 equally spaced values of x between 1 and 4 to estimate

x∗ = 2.27, and MAD(x∗) = .0621. (4.19)

The graph of MAD(x) is shown in Figure 4.2. This means that the predictions produced by

x

M
A

D
(x

)

x   * = 2.274

.06
.06214

.08

.10

1 2 3 4

Figure 4.2 Optimal Pythagorean exponent for the NFL

James’s generalized Pythagorean formula 1/(1 + ρx∗
) were only off by an average 6.21%

per team for the 2009–2010 NFL season. Not bad for such a simple formula!

Winston reports in [83] that Daryl Morey, the General Manager of the Houston
Rockets, made a similar calculation for earlier NFL seasons (it’s not clear which ones),
and Morey arrived at a Pythagorean exponent of 2.37. Intuition says that the optimal x∗

should vary with time. However, Morey’s results together with with Winston’s calcula-
tions and our value suggest that the seasonal variation of x∗ for the NFL may be relatively
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small. Moreover, Winston reports that MAD(2.37) = .061 for the 2005–2007 NFL sea-
sons, which is pretty close to our MAD(2.27) = .062 value for the 2009–2010 season.

Now let’s see if the Keener ratings r in (4.13) on page 43 can produce equally good
results. There is nothing to suggest that Keener’s ratings are Pythagorean entities that
should work in any kind of nonlinear estimation formula. However, the correlation coeffi-
cient between the ratings r in (4.13) and the win percentagesw in (4.18) is

Rrw =
(r− μre)T (w − μwe)
‖r− μre‖2 ‖w − μwe‖2

≈ .934, where e =

⎛
⎝

1
1
.
.
.
1

⎞
⎠, and μ� = mean. (4.20)

This indicates a strong linear relationship between r and the data in w [54, page 296] so
rather than trying to force the ratings ri into a Pythagorean paradigm, we should be looking
for optimal linear estimates of the form α+ βri ≈ ωi, or equivalently αe + βr ≈ w. The
Gauss–Markov theorem [54, page 448] says that “best” values of α and β are those that

minimize ‖Ax − w‖22, where A =

⎛
⎝

1 r1
1 r2

.

.

.
.
.
.

1 rm

⎞
⎠, x =

(
α
β

)
, and w =

⎛
⎝

ω1
ω2

.

.

.
ωm

⎞
⎠. Finding

α and β boils down to solving the normal equations AT Ax = AT w [54, page 226],
which is two equations in two unknowns in this case. Solving the normal equations for
x is a straightforward calculation that is hardwired into most decent hand-held calculators
and spreadsheets. For the 2009–2010 NFL data, the solution (to five significant places) is
α = −1.2983 and β = 57.545, so the least squares estimate for the percentage of regular
season wins based on the Keener (Perron–Frobenius) ratings is (rounded to five places)

Est Win% for team i = α+ βri = −1.2983 + 57.545 ri.

The following table shows the actual win percentage (rounded to three places) along with
the Pythagorean and Keener estimates for each NFL team in the 2009–2010 regular season.

Team Wins % Pythag % Keener % Team Wins % Pythag % Keener %

BEARS 43.8 42.2 39.4 JETS 56.3 70.9 69.8

BENGALS 62.5 52.7 51.3 LIONS 12.5 18.9 17.5

BILLS 37.4 36.9 37.5 NINERS 50.0 59.1 53.6

BRONCOS 50.0 50.4 53.1 PACKERS 68.8 73.3 75.7

BROWNS 31.3 27.4 30.9 PANTHERS 50.0 51.3 47.3

BUCS 18.8 24.4 20.9 PATRIOTS 62.5 71.6 71.9

CARDINALS 62.5 58.1 56.3 RAIDERS 31.3 18.2 21.1

CHARGERS 81.3 69.0 71.8 RAMS 6.3 11.0 13.4

CHIEFS 25.0 30.2 31.3 RAVENS 56.3 71.6 64.8

COLTS 87.5 66.7 70.5 REDSKINS 25.0 36.9 37.7

COWBOYS 68.8 69.9 69.9 SAINTS 81.3 71.6 78.1

DOLPHINS 43.8 45.4 41.7 SEAHAWKS 31.3 31.9 27.1

EAGLES 68.8 63.5 65.2 STEELERS 56.3 57.2 63.1

FALCONS 56.3 56.3 58.3 TEXANS 56.3 58.7 62.5

GIANTS 50.0 46.5 45.6 TITANS 50.0 42.8 45.9

JAGUARS 43.8 35.0 36.8 VIKINGS 75.0 71.9 70.3
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And now the punch line. The MAD for the Keener estimate is (to three significant places)

MADr =
1
32

32∑
i=1

|(−1.2981 + 57.547 ri)− ωi| = .0591.

In other words, by using the Keener ratings to predict the percentage of wins in the 2009–
2010 NFL season, we were only off by an average of 5.91% per team, whereas the opti-
mized Pythagorean estimate was off by an average of 6.28% per team. MAD was used
because Winston uses it in [83], but the mean squared error (or MSE) that averages the
sum of squares of the errors is another common metric. For the case at hand we have

MSEPythag = .0065 and MSEKeener = .0050.

• Bottom Line. Keener (Perron–Frobenius really) wins the shootout for 2009–2010!

It is reasonable that Perron–Frobenius (aka James Keener) should be at least as good as
Pythagoras (aka Bill James) because the latter does not take into account the level of diffi-
culty (or ease) required for a team to score or to give up points whereas the former does. Is
Keener’s margin of victory significant? You decide. If your interest is piqued, then conduct
more experiments on your own, and let us know what you discover.

Back to the Future

Suppose that you were able to catch a ride with Marty McFly in Dr. Emmett Brown’s
plutonium powered DeLorean back to the beginning of the 2009–2010 NFL season, and,
just like Biff Tannen who took the 2000 edition of Grays Sports Almanac back to 1955
to make a fortune, you were able to jot Keener’s ratings (4.13) on page 43 on the palm of
your hand just before you hopped in next to the flux capacitor. How many winners would
you be able to correctly pick by using these ratings? Of course, the real challenge is to try
to predict the future and not the past, but the exercise of looking backwards is nevertheless
a valuable metric by which to gauge a rating scheme and compare it with others.

Hindsight vs. Foresight

Throughout the book we will refer to the exercise of using current ratings to pre-
dict winners of past games as hindsight prediction, whereas using current ratings
to predict winners of future games is foresight prediction. Naturally, we expect
hindsight accuracy to be greater than foresight accuracy, but contrary to the pop-
ular cliché, hindsight is not 20-20. No single rating value for each team can
perfectly reflect all of the past wins and losses throughout the league.

Since most ratings do not account for a home-field advantage, making either hind-
sight or foresight predictions usually means that you must somehow incorporate a “home-
field factor.” If you could take the Keener ratings (4.14) on page 44 back to the beginning
of the 2009–2010 NFL season to pick winners from all 267 games during the 2009–2010
NFL season, you would have to add a home-field advantage factor of .0008 to the Keener
rating for the home team to account for the fact that the average difference between the
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home-team score and the away-team score was about 2.4.3 By doing so you would cor-
rectly pick 196 out of the 267 games for a winning percentage of about 73.4%. This is the
hindsight accuracy.

It is interesting to compare Keener’s hindsight predictions with those that might have
been obtained had you taken back one of the other ratings that are generally available at the
end of the season. There is no shortage of rating sites available on the Internet, but most
don’t divulge the details involved in determining their ratings. If you are curious how well
many of the raters performed for the 2009–2010 NFL season, see Todd Beck’s predic-
tion tracker Web site at www.thepredictiontracker.com/nflresults.php,
where many different raters are compared.

Can Keener Make You Rich?

The Keener ratings are pretty good at estimating the percentage of wins that a given team
will have, but if you are a gambler, then that’s probably not your primary concern. Mak-
ing money requires that a bettor has to outfox the bookies, and this usually boils down to
beating their point spreads (Chapter 9 on page 113 contains a complete discussion of point
spreads and optimal “spread ratings”). The “players” who are reading this have no doubt
already asked the question, “How do I use the Keener ratings to predict the spread in a
given matchup?” Regrettably, you will most likely lose money if you try to use Keener to
estimate point spreads. For starters, the team-by-team scoring differences are poorly cor-
related with the corresponding differences in the Keener ratings. In fact, when 264 games
from the 2009–2010 NFL season were examined, the correlation between differences in
game scores and the corresponding differences in the Keener ratings was calculated from
(4.20) to be only about .579. In other words, there is not much in the way of a linear relation
between the two.

In fact, we would go so far as to say that it is virtually impossible for any single list of
rating values to generate accurate estimates of point spreads in American football. General
reasons are laid out in detail in Chapter 9 on page 113, but while we are considering
Keener ratings, we might ask why they in particular should not give rise to accurate spread
estimates. Understanding the answer, requires an appreciation of what is hiding underneath
the mathematical sheets. In a nutshell, it is because Keener’s technique is the first cousin
of a Markov chain defined by making a random walk on the thirty-two NFL teams, and as
such, the ratings only convey information about expected wins over a long time horizon.
Markovian methods are discussed in detail in Chapter 6 on page 67.

To understand this from an intuitive point of view, suppose that a rabid fan forever
travels each week from one NFL city to another and the decision of where to go next week
is determined by the entries in the matrix A = [aij ] that contains your statistics. If you
normalize the columns of A to make each column sum to one, then, just as suggested on
page 31, aij can be thought of as the probability that team i will beat team j. But instead
of using this interpretation, you can also think of aij as being

3This is not exactly correct because while a “home team” is always designated, three games—namely on
10/25/09 (BUCS–PATRIOTS), 12/3/09 (BILLS–JETS), and 2/7/10 (COLTS–SAINTS)—were played on neutral
fields, but these discrepancies are not significant enough to make a substantial difference.
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aij = Probability of traveling to city i given that the fan is currently in city j.

If aij > akj , then, relative to team j, team i is stronger than k. But in terms of our traveling
fan this means that he is destined to spend a greater portion of his life in city i than city
k after being in city j. Applying this logic across all cities j suggests that, in the long
run, more time is spent in cities with winning teams—the higher the winning percentage,
the more time spent. In other words, if we could track our fan’s movements to determine
exactly what proportion of his existence is spent in each city, then we have in effect gauged
the proportion of wins that each team is expected to accumulate in the long run.

The Fan–Keener Connection

The “fan ratings” rF derived from the proportion of time that a random walking
fan spends in each city are qualitatively the same as the Keener ratings rK . That
is, they both reflect the same thing—namely long-term winning percentages.

The intuition is as follows. The sequence x0,x1,x2, . . . generated by power method
(4.12) on page 38 converges to the Keener ratings rK . Normalizing the Keener matrix at
the outset to make each column sum equal one obviates the need to normalize the iterates
(i.e., dividing by νk in (4.12)) at each step. The power method simplifies to become

xk+1 = Axk for k = 0, 1, 2, . . . where x0 =

⎛
⎜⎝

1/m
1/m

.

.

.
1/m

⎞
⎟⎠, (4.21)

and the iterates xk estimate the path of our fan. The x0 initiates his trek by giving him an
equal probability of starting in any given city. Markov chain theory [54, page 687] ensures
that entry i in xk is the probability that the fan is in city i on week k. If xk → rF , then [rF ]i
is the expected percentage of time that the fan spends in city i over an infinite time horizon.
The different normalization strategies produce small differences between rK and rF ,4 but
the results are qualitatively the same. Thus Keener’s ratings mirror the fan’s expected time
in each city, which in turn implies that Keener reflects only long-run win percentages.

Conclusion

Keener’s ratings are in essence the result of a limiting process that reflects long-term win-
ning percentages. They say nothing about the short-term scheme of things, and they are
nearly useless for predicting point spreads. So, NO—Keener’s idea won’t make you rich
by helping you beat the spread, but it was pivotal in propelling two young men into becom-
ing two of the worlds’s most wealthy people—if you are curious, then read the following
aside.

4The intuition is valid for NFL data because the variation in the column sums of Keener’sA is small, so the
alternate normalization strategy amounts to only a small perturbation. The difference between rK and rM can
be larger when the variation in the column sums inA is larger.
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ASIDE: Leaves in the River

An allegory that appeals to us as an applied mathematicians is thinking of mathematical ideas
as leaves on the tree of knowledge. A mathematician’s job is to shake this tree or somehow
dislodge these leaves so that they fall into the river of time. And as they float in and out of the
eddies of the ages, many will marvel at their beauty as they gracefully drift by while others
will be completely oblivious to them. Some will pluck them out and weave them together with
leaves and twigs that have fallen from other branches of science to create larger things that are
returned to the river for the benefit and amusement of those downstream.

O. Perron F. G. Frobenius

Between 1907 and 1912 Oskar (or Oscar)
Perron (1880–1975) and Ferdinand Georg Frobe-
nius (1849–1917) were shaking the tree to loosen
leaves connected to the branch of nonnegative ma-
trices. They had no motives other than to release
some of these leaves into the river so that others
could appreciate their vibrant beauty. Ranking and
rating were nowhere in their consciousness. In fact,
Perron and Frobenius could not have conceived of the vast array of things into which their
leaves would be incorporated. But in relative terms of fame, their theory of nonnegative ma-
trices is known only in rather specialized circles.

J. Keener

The fact that James Keener picked this shiny leaf out of the river
in 1993 to develop his rating and ranking system is probably no accident.
Keener is a mathematician who specializes in biological applications, and
the Perron–Frobenius theory is known to those in the field because it arises
naturally in the analysis of evolutionary systems and other aspects of bio-
logical dynamics. However, Keener points out in [42] that using Perron–
Frobenius ideas for rating and ranking did not originate with him. Leaves
from earlier times were already floating in the river put there by T. H. Wei

[81] in 1952, M. G. Kendall [44] in 1955, and again by T. L. Saaty [67] in 1987. Keener’s
interest in ratings and rankings seems to have been little more than a delightful diversion from
his serious science. When his eye caught the colorful glint of this leaf, he lifted it out of the
river to admire it for a moment but quickly let it drop back in.

Larry Page Sergey Brin

Around 1996–1998 the leaf got caught in a vortex that
flowed intoGoogle. Larry Page and Sergey Brin, Ph.D. students
at Stanford University, formed a collaboration built around their
common interest in the World Wide Web. Central to their goal
of improving on the existing search engine technology of the
time was their development of the PageRank algorithm for rat-
ing and ranking the importance of Web pages. Again, leaves
were lifted from the river and put to use in a fashion similar to
that of Keener. While it is not clear exactly which of the Perron–
Frobenius colored leaves Brin and Page spotted in the backwaters of the river, it is apparent
from PageRank patent documents and early in-house technical reports that their logic paral-
leled that of Keener and some before him. The mathematical aspects of PageRank and its link
to Perron–Frobenius theory can be found in [49]. Brin and Page were able to exploit the rating
and ranking capabilities of the Perron vector and weave it together with their Web-crawling
software to parlay the result into the megacorporation that is today’s Google. With a few
bright leaves plucked from the river they built a vessel of enormous magnitude that will long
remain in the mainstream of the deeper waters.
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These stories underscore universal truths about mathematical leaves. When you shake
one from the tree into the river, you may be afforded some degree of notoriety if your leaf is
noticed a short distance downstream, but you will not become immensely wealthy as a conse-
quence. If your leaf fails to attract attention before drifting too far down the river, its colors
become muted, and it ultimately becomes waterlogged and disappears beneath the surface
without attracting much attention. However, it is certain that someone else will eventually
shake loose similar leaves from the same branch that will attract notice in a different part of
the river. And eventually these leaves will be gathered and woven into things of great value.

All of this is to make the point that the river is littered with leaves, many of similar
colors and even from the same branch, but fame and fortune frequently elude those responsible
for shaking them loose. The tale of Perron–Frobenius, Keener and his predecessors, and the
Google guys illustrates how recognition and fortune are afforded less to those who simply
introduce an idea and more to those who apply the idea to a useful end.

Historical Note: As alluded to in the preceding paragraphs, using eigenvalues and eigen-
vectors to develop ratings and rankings has been in practice for a long time—at least sixty
years—and this area has a rich history. Some have referred to these methods as “spectral
rankings,” and Sebastiano Vigna has recently written a nice historical account of the subject.
Readers who are interested in additional historical details surrounding spectral rankings are
directed to Vigna’s paper [79].

By The Numbers —

$8, 580, 000, 000 = Google’s Q1 2011 revenue.

— Has your interest in rating and ranking just increased a bit?

— searchenginewatch.com


