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Abstract
Self e-Learning Networks (SeLeNes) aim at facilitating access to digital material — not neces-

sarily primarily produced for educative purposes — to a wide audience of learners and instructors
with diverse educational background and requirements. One step towards this goal is the abil-
ity to specify educational needs or to describe educational material according to personalized
e-learning terminologies and conceptualisations. In this deliverable we investigate how this goal
can be achieved in a declarative way using language primitives for defining views over distributed,
autonomous RDF bases holding learning object descriptions and schemas. Based on these prim-
itives, we introduce a fully-fledged view definition language, called RVL, for creating not only
virtual resource descriptions, but also virtual RDF/S schemas from (meta)classes, properties,
and resource descriptions available on a SeLeNe. Furthermore, we illustrate how RVL views can
be composed with structured RDF/S queries expressed in a query language like RQL, by means
of an internal logical framework (linear Datalog rules) capturing the semantics of the RDF/S
model, as well as of RQL queries and RVL views. To the best of our knowledge, RVL is the
first declarative view definition language offering such functionality. Finally, we present how the
RQL/RVL query processing can be implemented in three different architectural alternatives: the
centralized, the mediated and the autonomic scenarios as presented in Deliverable 5.
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The SeLeNe Project

Life-long learning and the knowledge economy have brought about the need to support a broad
and diverse community of learners throughout their lifetimes. These learners are geographically
distributed and highly heterogeneous in their educational backgrounds and learning needs. The
number of learning resources available on the Web is continuously increasing, thus indicating the
Web’s enormous potential as a significant resource of educational material both for learners and
instructors.

The SeLeNe Project aims to elaborate new educational metaphors and tools in order to facil-
itate the formation of learning communities that require world-wide discovery and assimilation
of knowledge. To realize this vision, SeLeNe is relying on semantic metadata describing edu-
cational material. SeLeNe offers advanced services for the discovery, sharing, and collaborative
creation of learning resources, facilitating a syndicated and personalized access to such resources.
These resources may be seen as the modern equivalent of textbooks, comprising rich composition
structures, “how to read” prerequisite paths, subject indices, and detailed learning objectives.

The SeLeNe Project (IST-2001-39045) is a one-year Accompanying Measure funded by EU
FP5, running from 1st November 2002 to 31st October 2003, extended until 31st January 2004.
The project falls into action line V.1.9 CPA9 of the IST 2002 Work Programme, and is con-
tributing to the objectives of Information and Knowledge Grids by allowing access to widespread
information and knowledge, with e-learning as the test-bed application. The project is conduct-
ing a feasibility study of using Semantic Web technology for syndicating knowledge-intensive
resources (such as learning objects) and for creating personalized views over such a Knowledge
Grid.

Executive summary

This deliverable (4.3) is part of the SeLeNe Workpackage 4 on Syndication and Personalization
of Educational Resources. Workpackage 4 has two main objectives:

• To investigate techniques for the syndication and personalization of distributed, autonomous
RDF description bases.

• To design language primitives for defining user views over distributed RDF description bases
and for deriving composite learning objects’ descriptions from those of their constituent
learning objects.

Accessing RDF description bases in SeLeNe raises two basic technical challenges: (1) flexible
mediation of the different RDF schemas employed by the RDF description bases, and (2) per-
sonalization of learning objects’ descriptions and schemas according to the educational needs and
interests of learning objects’ providers (i.e., instructors) and consumers (i.e., learners).

Concerning problem (1), the IEEE LOM has effectively achieved the integration of the various
educational metadata standards, as is reported in Deliverable 2.1 of Workpackage 2. Thus, in the
context of a SeLeNe, we are assuming that metadata about learning objects are represented using
an RDF/S binding of the IEEE LOM. However, fine-grained descriptions expressed in domain
or topic-specific taxonomies may also be made available by instructors. Hence, this workpackage
is investigating a flexible articulation of different domain/topic-specific taxonomies which can be
used for e-learning, as well as the automatic generation of semantic descriptions for composite
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learning objects using the descriptions of their constituent learning objects. The taxonomies used
for this purpose and the resulting descriptions can be easily represented in RDF/S. This work is
reported in Deliverable 4.1.

Concerning problem (2) above, two major issues are involved: (a) specification by learners
of their educational needs, and (b) adaptation of learning objects to these needs. The issue
(a) requires the representation of educational needs in a “learner profile” using the e-learning
schemas, as well as the domain or topic-specific taxonomies available in SeLeNe. It also requires
unstructured, keyword-based querying facilities, which can be translated automatically into the
structured RDF/S queries supported by the SeLeNe system. The result of these unstructured
queries may be returned in a special form of composite learning object called a “trail”. To
address issue (b) we need methods for dynamically adapting learning material to the preferences
of a learner. This requires the ranking of query results by matching the descriptions of the
returned learning objects against the learner’s profile. These issues are discussed in Deliverable
4.2.

Specifying educational needs or describing educational material according to personalized
e-learning RDF/S schemas (for both learners and instructors) requires formalisms for defining
declarative views over learning object descriptions and schemas. This work is reported in this
deliverable, which also discusses the structured RDF/S querying facilities supported by SeLeNe.

Also needed are techniques for detecting changes in learning objects’ descriptions or users’
personal profiles, and for notifying users who have subscribed to be notified of such changes.
Techniques for the provision of this kind of reactive functionality over RDF descriptions of learning
objects and users are reported in Deliverable 4.4.

Revision Information

Revision Date Version Changes

August 30, 2003 0.1 First Draft Proposal

September 15, 2003 0.5 Basic Functionality

September 30, 2003 1.0 Formal Model
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1 Introduction

Personalized access to diverse knowledge bases emerges nowadays as one of the key challenges for
Semantic Web [9] applications. For instance, e-learning applications aim to facilitate the access to
digital material — not necessarily primarily produced for educative purposes — to a wide audience
of learners and instructors with diverse educational backgrounds, needs or expectations. By
exploiting the potential of the forthcoming Semantic Web Technology, e-learning applications can
effectively support distributed, learner-oriented and non-linear/dynamic learning processes [55].

Self e-Learning Networks (SeLeNes) rely heavily on semantically intensive metadata describing
the meaning, usage, accessibility, quality and validity of available educational resources [37]. More
and more such metadata is expressed in the Resource Description Framework/Schema
Language (RDF/S) [41, 15]. Thus, metadata access in a SeLeNe can be easily implemented
using a declarative RDF/S query language, such as RQL [34]. RQL is a typed, functional query
language for uniformly performing navigation and filtering on RDF/S graphs at all abstraction
levels (metaschema, schema and data).

However, an RDF/S query language is not enough. As with any query language, formulating
queries on complex data may require schema knowledge beyond the needs of a given application.
Furthermore, what is useful is not just the retrieval of (part of) an RDF/S graph (as in the
case of RQL), but the ability to create virtual (meta)schemas and resource descriptions in the
result. In fact, for “semantic webs” represented as RDF/S graphs, a view should enable one to
restructure the employed class and property hierarchies, as well as to create new resources and
class or property types. This gives instructors and learners the ability to access existing learning
resources according to their own terminologies and conceptualizations.

The scope of this deliverable is to discuss the language primitives needed for defining declar-
ative views over distributed, autonomous RDF bases holding Learning Object (LO) descriptions
and schemas. Based on these primitives, we introduce a fully-fledged view definition language,
called RVL, in which one can write views as normal RDF/S schemas and resource descriptions.
By exploiting the RQL type system and the distinction of abstraction layers in an RDF/S graph,
RVL captures the desired functionality with the use of just two operators. To the best of our
knowledge, no language for defining such views has yet been proposed.

Figure 1 shows a SeLeNe where multiple peers are connected, provide LO definitions, pose
RQL queries to the system and possibly define RVL views over their local repositories. In this
context, a query service should provide a query routing and processing mechanism that considers
the intensional (i.e. schema) information for integrating and querying peer bases. Different
architectural alternatives for SeLeNe should be considered for the implementation of RQL/RVL
query processing, including an autonomic Peer-to-Peer (P2P) scenario.

This deliverable is organized as follows: Section 2 motivates the use of RVL views by means
of an e-learning portal example for SeLeNe and exhibits a first sample of the functionality it sup-
ports. The design choices which influenced RVL’s specification are presented in Section 3, along
with the operators it specifies and their respective functionality. The composition of RVL views
with structured queries formulated in RQL is exhibited through an internal logical framework,
which captures the RDF/S semantics and queries and it is also presented in Section 3. Sec-
tion 4 analyzes the RQL/RVL query processing mechanism in different architectural alternatives,
highlighting the challenges raised by the autonomic scenario, where we propose the ICS-FORTH
SQPeer Middleware for Semantic Query Routing and Processing in P2P Database Systems. Sec-
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Figure 1: A Self e-Learning Network

tion 5 complements the presentation of RVL and an RQL/RVL query processing and routing
mechanism by presenting existing related approaches in the field of relational, object-oriented
and XML databases and in the field of P2P query processing and routing. Section 6 concludes
by summarizing the contribution of this deliverable and outlining directions for further research.

2 A Motivating Example

We can view each SeLeNe network as a loosely coupled federation of knowledge bases, in which
each peer base holds descriptions (i.e., metadata) about the educational material (i.e., LOs) [49]
of a learning community. We thus envisage many SeLeNes worldwide, created by and serving
different communities of users, as graphically depicted in Figure 1. An instructor can provide
and describe new LOs or enrich the descriptions of existing LOs available on the network. Using
these descriptions, a learner can retrieve LOs of interest by eventually employing domain or topic-
specific taxonomies. In a P2P e-learning network the roles of instructor and learner can of course
be played interchangeably. Access to the available LOs is enabled by appropriate educational
portals, which aggregate and classify in a semantically meaningful way a collection of LOs, which
can be used or referenced via a URI [8]. Following the open tradition of the Web, LOs may
be physically stored in the web site of an organization (educational or corporate) or in the web
pages of individual users. The LO descriptions of a particular learning community may also be
physically distributed or stored at the site of the peer hosting that community’s portal.

In order to enable effective search for LOs in a SeLeNe, LO descriptions conform to e-learning
standards, such as IEEE/LOM (Learning Object Metadata), ARIADNE or IMS1, as reported in
Deliverable 2.1 [56], and also to topic-specific taxonomies of scientific domains, such as ACM/CSS

1http://ltsc.ieee.org/wg12/, http://ariadne.unil.ch/Metadata/, www.imsglobal.org/
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Figure 2: An Example e-Learning Portal Application

(Computing Classification System) [4] or taxonomies of detailed learning objectives [11] [36].
LO schemas and descriptions can be effectively represented in the Resource Description Frame-
work/Schema Language (RDF/S) [41, 15], offering advanced modelling primitives for a SeLeNe
information space. In particular, RDF/S (a) enables a modular design of descriptive schemas
based on the mechanism of namespaces [12]; (b) allows easy reuse or refinement of existing
schemas through subsumption of both class and property definitions; (c) supports partial de-
scriptions since properties associated with a resource are by default optional and repeated and
(d) permits super-imposed descriptions in the sense that a resource may be multiply classified
under several classes from one or several schemas. These modelling primitives are crucial for self
e-learning networks, where monolithic e-learning schemas and descriptions cannot be constructed
in advance and users may have only incomplete information about LOs.

Figure 2 presents the RDF/S description schema and base of a hypothetical educational por-
tal in SeLeNe. The upper part of the figure depicts a simplified RDF/S schema for describing
LOs using attributes with information about their content (title, subject, language, format, etc.)
and pedagogical value (educational context and level, learning objectives and time required for
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fulfilling an educational unit, etc.). The distinction of the different granularity levels of learning
material is represented by the rdfs:subClass-es (class subsumption) Program, Course, Lesson or
more specific components, such as notes, assignments, exams, figures or simulation programs. Re-
lationships between LOs, like hasPrerequisite, capturing learning dependency graphs, or partof,
capturing learning material composition trees, are defined as rdfs:subProperty-s (property sub-
sumption) of the abstract relationship related. LOs may also be related to other classes of
resources through relationships like createdBy ranging over instances of the class Contributor,
which are described in turn by attributes like name and organization. These specializations and
relationships among LOs are just indicative of the different property types specified in e-learning
standards, as reported in Deliverable 2.1 [56], and provide the basic descriptive information
needed for effectively querying e-learning information.

The lower part of Figure 2 illustrates how some LOs provided by the web site of the Computer
Science Department of the University of Crete (CSD UoC) are described according to the schema
employed by the educational portal of our example. For instance, the LO &r1, representing the
web site of the “Web Data Management” course, is of rdf:type Course and has a title attribute
valued “Web Data Management” and two subject attributes valued “Database Management”
and “Distributed Systems”, respectively. In addition, Course &r1 is part of Program &r9 (i.e.,
the graduate studies Program of the CSD UoC), has two prerequisite courses &r2 (with title

“Files and Database”) and &r3 (with title “Web Programming”) and it has been createdBy the
Contributor &r7 with name “Professor A” and organization “University of Crete”. The other
LOs, illustrated in the lower part of Figure 2, are described in a similar way.

2.1 Querying Semantic Web Resources with RQL

Finding LOs in a SeLeNe relies on declarative query languages over RDF/S descriptions, such
as RQL [34, 33] (for an exhaustive comparison of RDF/S query languages readers are referred
to [42]). RQL offers browsing and querying facilities over the LO information space, i.e., the
LO descriptions and the schemas they conform to. More specifically, RQL is a typed query
language relying on a functional approach. The type system employed by RQL [34] specifies a
set of types, namely the metaclass of classes, metaclass of properties, class, property,
resource URIs, literal (XML Schema data types), bag, sequence and alternative types.
The kind of restrictions and inferences produced by the use of the RQL type system are presented
in [34]. On the whole, these types ensure that RQL, due to its functional nature, can compose
basic queries and iterators into complex queries. The basic RQL queries essentially constitute a
simple browsing API requiring minimal knowledge of the employed schema(s), while appropriate
functions recursively traverse the class/property hierarchies defined in a (meta)schema, such as
subClassOf/subPropertyOf, and filtering predicates are used to refine the information produced
after evaluation.

More generally, placed in a semi-structured context, RQL treats RDF/S description graphs
as a collection of nodes and edges. Schema nodes and edges can be queried as normal data using
metaclass names, which essentially serve as entry-points to the corresponding graph. Furthermore,
RQL supports SQL-like filters, which use generalized path expressions with variables on nodes and
edges to traverse RDF/S description graphs at arbitrary depths. Thus, the SELECT-FROM-WHERE

filters provide a powerful tool to iterate over collections with RDF data or schema information
of any kind. The SELECT clause, as in SQL, defines a projection over the variables whose values
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Figure 3: Comparing RQL to RVL

participate in the result. The FROM clause hosts the defined path expressions, which essentially
define the part of the RDF/S graph that will participate in the evaluation of the query. In fact,
a path expression consists of a series of steps. Each step represents movement in a particular
direction by identifying node labels, and each step can apply one or more predicates to eliminate
nodes that fail to satisfy a given condition. These filtering conditions are declared at the (optional)
WHERE clause. The result of each step is a list of nodes that serves as a starting point for the
next step. Moreover, in RDF/S the uniqueness of (meta)schema labels and the ability to describe
resources using labels from several schemas is ensured by the XML namespace facility [12]. Thus,
RQL uses the (optional) clause USING NAMESPACE for the definition of namespace prefixes.

For instance, consider the RQL query presented on the left side of Figure 3, which retrieves
all Course resources of subject ”Database Management” that have been createdBy by a resource
with a name attribute:

SELECT Y, X, W

FROM {Y;ns1:Course}ns1:createdBy{X}.ns1:name{W},

{Y}ns1:subject{Z}

WHERE Z like "Database Management"

USING NAMESPACE ns1=&www.eLearningPortal.gr/schema.rdf#

As we see, an RQL FROM clause consists of path expressions, which facilitate the navigation
through complex schemas and description bases and bind the introduced variables. Filtering
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conditions on these variable bindings are stated in the WHERE clause. For instance, the RQL
path expression {Y;ns1:Course}ns1:createdBy{X}.ns1:name{W} will match all instances of
class Course and their associated createdBy properties, which link them to some instance of
Contributor and its name value. For each such match, we get a binding that maps Y to the
Course resource, X to the Contributor and W to the name value. In a similar way, the path
expression {Y}ns1:subject{Z} is evaluated and the variable bindings involved are filtered ac-
cording to the WHERE clause, as well as to the implicit join condition imposed by the presence of
the same variable, Y, in both path expressions. The XML serialization of the result of this query
is given in the top-left of Figure 3.

2.2 Defining RVL Views on Semantic Web Resources

As well as advanced querying facilities provided by an expressive RDF/S query language such
as RQL, also needed is personalization of LO descriptions and schemas employed by a SeLeNe
portal. For instance, a learner using an educational portal might want LOs presented according
to his/her educational level (e.g., the postgraduate courses) and program (e.g., the e-commerce
courses) and not according to the descriptive terms used by the portal designers (e.g., a subject
ontology). In this case, the need for a subjective rather than an objective ontology emerges [24].
An objective ontology (e.g., IEEE LOM) is used by portal designers to describe LOs for quite
heterogeneous educational audiences. A subjective ontology models the kind of descriptive terms
SeLeNe instructors or learners typically employ to describe a particular domain of interest, thus
becoming a classification mechanism of information resources to learning-specific ontologies.

Thus, to enhance the SeLeNe user’s experience, we need the ability to personalize the way
the portal can be viewed, by providing simpler virtual schemas that reflect an instructor’s or
learner’s perception of the domain of interest. RVL, the view definition language considered in
this deliverable, provides this ability by offering techniques, on the one hand, for the reconciliation
and integration of metadata describing heterogeneous distributed LOs and, on the other hand,
for the definition of personalized views over the LO information space.

To illustrate the functionality of RVL, consider a simple virtual schema (view) for instructors,
which represents only database course material and its authors. This schema can be specified with
the RVL statements presented in the bottom-right part of Figure 3 taking as input the RDF/S
description base of Figure 2. The output of these view statements is the RDF/S virtual schema
and resource descriptions presented at the top-right part of Figure 3 in an XML serialization.

Since in RDF/S the uniqueness of (meta)schema labels and the ability to describe resources
using labels from several schemas is ensured by the XML namespace facility [12], in our example
we use the RVL statement:

CREATE NAMESPACE myview=&http://www.ics.forth.gr/LO.rdf#

Descriptive labels are prefixed by the namespace of the schema to which they belong (e.g.,
ns1#Learning Object), forming in this way unique URIs. This is particularly important in the
open and diverse Web world and even more so when defining views, where virtual, but different,
copies of old schema labels, such as class and property names, are considered.

The second RVL statement in our example “creates” the virtual classes Author and DBCourse

and the virtual properties creates and name:

VIEW rdfs:Class("DBCourse"),rdfs:Class("Author"),

rdf:Property("creates", Author, DBCourse),
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rdf:Property("name", Author, xsd:string);

where rdfs:Class and rdf:Property are two core metaclasses provided in the default RDF/S names-
paces. The semantics of these namespaces along with the XML Schema datatypes is built-in in
RVL/RQL and the corresponding namespace prefixes (e.g., rdf, rdfs,xsd) can thus be omitted2.
Furthermore, we can use the USING NAMESPACE clause to declare the namespaces used in view
statements. As we will see in the next section, RVL also provides the ability to create virtual
subsumption hierarchies or even to filter/restructure existing ones.

The third RVL statement “populates” the virtual classes and properties defined in the view
with appropriate instances copied from the source description base illustrated in Figure 2:

VIEW DBCourse(Y),Author(X),creates(X,Y),name(X,W)

FROM {Y;ns1:Course}ns1:createdBy{X}.ns1:name{W},

{Y}ns1:subject{Z}

WHERE Z like "Database Management";

This statement works much like the query on the portal description base presented in Section 2.1.
To emphasize the connection, we juxtapose on Figure 3 the RVL statement and the RQL query
having the same FROM and WHERE clauses. In the top row of Figure 3, we give the XML serialization
of the results of both the query and the view definition statements.

As we can observe, an RVL FROM clause consists of the RQL [33] path expressions facilitating
navigation through complex schemas and description bases and binding of introduced variables.
Filtering conditions on these variable bindings are stated in the WHERE clause, as in RQL queries.
Notice however the difference between the result of the RQL query and the output of the RVL
view definition in Figure 3. Although their input is the same RDF/S graph, RVL is capable of pro-
ducing virtual schemas and resource descriptions instead of simple variable bindings represented
in some (nested) tabular form.

This functionality is ensured by the VIEW clause, where appropriate population functions are
used taking as parameters the variable bindings produced by the FROM-WHERE filter. For instance,
the virtual class DBCourse is populated with instances (bound to variable Y) of the original class
Course having a property subject valued “Database Management”. The virtual class Author

is populated with instances (bound to variable X) of the base class Contributor, which are the
range values of the property createdBy applied to Course resources. In other words, Author

is populated with all the contributors who have created a database course. Virtual properties
are populated with pairs of resources (e.g., creates is populated with authors having created
database courses) or pairs of resources-values (e.g., name is populated with the names of database
course authors). One of the most salient RVL features is its ability to create virtual schemas
by simply populating the two core RDF/S metaclasses Class (e.g., with schema classes Author

and DBCourse) and Property (e.g., with schema properties creates and name). For someone
interested only in database learning material, this view is much easier to understand. One can
then easily formulate queries on the view, such as the following one in RQL:

SELECT Y

FROM {X}myview:creates{Y}, {X}myview:name{Z}

WHERE Z = "Professor A"

USING NAMESPACE myview=&http://www.ics.forth.gr/LO.rdf#

2For illustration purposes, the default namespaces are included in the example.
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This query should retrieve the database courses created by the author named “Professor A”.

In the context of a SeLeNe, a view definition language such as RVL can be used to imple-
ment advanced user aids, such as personalized navigation and knowledge maps. In the first case,
using appropriate GUIs implemented on top of SeLeNe application services [52], one can easily
implement ‘smart’ bookmarks on available LOs, whose access implies a sequence of navigation
steps and/or complex filtering conditions on the underlying ontology (or ontologies) of an ed-
ucational portal. To use this bookmark and access its relevant LOs we just need to activate
the corresponding view. Moreover, a SeLeNe user can further describe a smart bookmark using
properties from another schema such as the educational objective of the contained LOs, etc. In
the second case, knowledge maps define and combine neighbouring semantic domains for SeLeNe
sub-communities. Such knowledge maps essentially enable SeLeNe ‘super-peers’ [52] to create
personalized semantic portals by clustering in a meaningful way peer description bases relevant
to the educational needs and interests of an e-learning sub-community.

In the following sections we detail the mechanisms that RVL utilizes to accomplish the pre-
viously described functionality.

3 RVL: An RDF View Definition Language

Motivated by the previous example, a fundamental question one can naturally pose, is “what is
a good specification of views for the RDF/S data model?”. We have designed RVL as a concep-
tually simple language enabling both humans and applications to understand view specifications
as normal RDF/S schemas and resource descriptions. More precisely, an RVL view specifies a
virtual description schema graph (or virtual schema for brevity). Its extension corresponds
to a virtual description base graph (or virtual base for brevity), which is a valid instance
of the virtual view schema. Thus, RVL views produce new RDF/S (meta)classes and properties
which are virtual and their instances are computed from the source base(s) or schema(s) us-
ing the RVL program specifying the view. This program defines essentially the mapping (i.e.,
transformation) of the input (i.e., source) to the output (i.e., virtual) RDF/S graph(s).

3.1 Design Choices for the RVL View Definition Language

In order to design an effective RDF/S view specification language, we have addressed the following
issues:

1. How are the virtual schema (meta)classes and properties of a view related to the source
description schema(s)?

2. How are the virtual base resources and property values of a view related to source descrip-
tion base(s)?

3. What is the expressiveness of the input/output transformations supported by the view
specification language?

4. How can the output of view specifications be used in queries and other views?

In the following subsections, we will present the main design choices for RVL in response to the
above fundamental issues.
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3.1.1 Logical Data Independence

Logical data independence is one of the most important properties that a view definition language
should respect (recall the ANSI-SPARC three-level architecture [6]). It essentially requires that
view specifications should be independent of those of the source schemas and bases, while the
semantics of existing virtual schemas should not be altered by the definition of new ones. For
this reason, the scope of virtual (meta)class and property definitions is determined in RVL by
the namespace of the view. This is particularly useful since RVL allows us to not only create new
(meta)classes and properties (as in Figure 3), but to also import in a view existing ones from
the source schemas given as input. Imported (meta)classes and properties are simply replicated
in the virtual schema and do not interfere with those at the source. Moreover, as we will see
in Section 3.2, virtual subsumption hierarchies (for both classes and properties) could also be
defined in a view, which are not necessarily present in the source schemas. Instead of creating
a global subsumption hierarchy mixing both virtual and source (meta)classes and properties, an
RVL virtual schema refers only to the subsumption relationships explicitly established between
the virtual (meta)classes and properties. The separation of virtual from source (meta)classes and
properties in RVL leads to smaller virtual schemas easier to understand and manage.

3.1.2 View Instantiation Capabilities

Besides the population of virtual (meta)classes and properties using, for instance, RQL queries
(see Figure 3) over the original description base (i.e., object-preserving views), an RVL virtual
schema can also be instantiated in the view (i.e., object-generating views) specification. These
instances exist only during the activation of the view and their identifiers are generated by
appropriate Skolem functions. As a matter of fact, the entire virtual schema specified in a view is
essentially a new instance of the default RDF/S meta-schema (class and property names are used
as unique identifiers)! As we will see in Section 3.2, this functionality is also useful in cases where
virtual resource descriptions may have both a dynamic part populated with resources from the
original base and a static one populated exclusively at the view level. RVL is powerful enough to
support both kinds of view instantiation, while instances of the source schemas are simply copied
into the view extension, thereby acquiring a virtual hypostasis.

3.1.3 Transformation Expressiveness

Transformation expressiveness is the cornerstone of the RVL design in order to cope with a wide
range of heterogeneities found in real-scale Semantic Web applications [39, 10]. Therefore, a view
specification language should provide the ability to both create (for personalization purposes) and
reconcile (for mediation purposes) quite different conceptual representations of the same applica-
tion domain. For this reason, RVL is equipped with expressive restructuring capabilities enabling
users to change the abstraction level (i.e., metaschema, schema, data) in which a particular view
construct is defined. As we will detail in Section 3.2, RVL is capable of “promoting” literals or
resources of the original description base to virtual classes, as well as of “demoting” metaclasses
of the original description schema to virtual classes of the view. This ability is ensured by the
expressiveness of the RQL query language to query RDF/S information at all abstraction levels
and the polymorphic type system of the RVL population functions (i.e., the VIEW clause) (see
Table 1 in the Appendix).
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3.1.4 Closure of View Language

On the one hand, one should be able to query RVL views, as in the case of source schemas and
description bases. Since RVL views introduce virtual schemas, one can use their namespace to
formulate RQL queries retrieving (part of) the RDF/S graph specified by the view program. On
the other hand, one should be able to create views using both source and virtual schemas. We
can distinguish between two levels of view specification reuse: inside a virtual schema (intra-)
and across (inter-) virtual schemas. Intra-view reuse is not supported by RVL, since it gives
the possibility to define the extension of a virtual (meta)class based on the extension of another
virtual construct of the same view. To ensure data independence and avoid cyclic declarations of
virtual classes which are hard to grasp, we impose the following restriction: the FROM clause of
RQL queries defining the population of the view constructs cannot refer to information (schema
and data) of the view being defined. Only inter-view reuse is supported by RVL for creating
virtual (meta)classes and properties by employing other virtual schemas. This process results in
a cascade of virtual schema specifications, which ensures that the constructs of a virtual schema
used in the definition of another virtual schema have already been defined.

The above design decisions were taken with the objective of devising a clear and expressive
RDF/S view specification language required by a large spectrum of Semantic Web applications.
In the following subsections, we will detail how RVL implements this functionality.

3.2 RVL Operators

RVL reduces the creation of virtual schemas and description bases down to the use of two opera-
tors, namely the instantiation and the subsumption operators. In order to ensure the validity
of their application and infer the type of virtual constructs, the operands of the RVL operators
must be of a specific type, which is checked during compilation with respect to the RQL/RVL
type system using the typing rules presented in Table 1 in the Appendix. In addition, the presence
of this type system, facilitates a more compact declaration of view statements, in the sense that
the type of one entity in the source schema or base can be reused as such in the view. This ability
does not prohibit users from altering the type of one element using the instantiation operator, as
we will subsequently see in this section.

In the following, we will sketch the functionality supported by each operator by using the more
complex view illustrated in Figure 4. This virtual schema is defined as a view on the schema of
the motivating example in Figure 2 and refers to computer science courses — especially database
and programming language courses — and their authors. In each case, we cite the typing rule of
Table 1 (in the Appendix) applicable for the specific operator.

3.2.1 The Instantiation Operator “( )”

The instantiation operator, denoted “()”, exploits the existence of abstraction layers in an RDF/S
graph in order to support: (a) the creation/import of virtual (meta)classes and properties and (b)
the population of virtual (meta)classes and properties. The instantiation of a virtual construct
should be performed only with resources at the immediate lower abstraction level (see rules 9-12
in Table 1 in the Appendix). Changing the type of an RDF/S entity in an RVL view compared
to a source schema or base (e.g., a literal to a class, or a metaclass to a class) is also supported
using more complex RVL expressions.
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Figure 4: A More Complex RVL View

Let us examine the functionality of the instantiation operator by means of the example view
illustrated in Figure 4. In the simplest case, we are interested in creating new virtual classes as
follows (see rule 3):

VIEW

Class("Author"),Class("CSCourse"),Class("DBCourse"),Class("PLCourse");

The first operand of “()” is the (meta)class (e.g., Class) one wants to populate with a new
instance identified by the string value of the second operand (e.g., Author). Virtual metaclasses
of classes and properties can be also created by instantiating the RVL built-in (meta)metaclasses
rvl:MetaClass and rvl:MetaProperty (see rules 1 and 2 respectively). In order to import a part
(i.e., a set) of the classes defined in a source schema, we need first to use an RQL filter in order to
identify which classes (or properties) are going to be imported into the virtual schema and then,
use the instantiation operator in the VIEW clause, as depicted by the following example (see rule
3):

VIEW Class(X)

FROM Class{X}

WHERE namespace(X) = ns1 and X < ns1:Learning_Object;

The RQL path expression Class{X} in the FROM clause introduces a variable X ranging over all
classes, while the WHERE clause filters X bindings only to the subclasses (direct or transitive) of
Learning Object defined in the schema namespace ns1. The instantiation operator “()” in the
VIEW clause simply creates new instances of Class for each successful binding of class variable
X. Since in this case we are importing in the virtual schema classes as provided by the source
schema, we can omit the explicit call to the instantiation operator by just writing VIEW X.

This abbreviation cannot be used when we transform (“promote” or “demote”) the abstraction
level (i.e., metaschema, schema, data) of constructs specified in the view with respect to their
level in the source schema and base. Assuming, for instance, that the values of the property
subject are not simple strings but terms from a structured vocabulary (e.g., ACM Computing
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Classification System3), one can easily create virtual classes from these values using the following
RVL statement (see rule 3):

VIEW Class(X)

FROM ns1:subject{X};

In this example, string values will be used as unique names of the so created virtual classes.
For this purpose, the instantiation operator uses appropriate Skolem functions: for two equal
subject values, only one virtual class is created. This ability offers a great flexibility in view
specification, especially in environments, such as self e-learning, with highly diverse modelling of
resource descriptions.

As far as properties are concerned, RVL follows the RDF/S approach to consider properties
as first-class citizens. Thereby, their definition is independent of the definition of the class they
are attributed to, while they can be specialized forming subsumption hierarchies. The restriction
posed by the RQL/RVL data model is that the domain and range of a property must always be
defined and be unique, thus the creation of a (virtual) property is accompanied with the definition
of its domain and range classes (or metaclasses or literal types). To accommodate this peculiarity,
the instantiation operator has a slightly different syntax. The first operand of the instantiation
operator corresponds to the name of the core metaclass of properties (Property), the second to
the name of the virtual property, the third to its domain and the fourth to its range. In the
simplest case, we are interested in creating new virtual properties as follows (see rule 4):

VIEW Property("creates", Author, CSCourse),

Property("name", Author, xsd:string),

Property("context", CSCourse, xsd:string),

Property("title", CSCourse, xsd:string);

This view statement creates four new instances of the metaclass Property uniquely identified by
their names: the virtual property creates emanating from the virtual class Author and ranging
over the virtual class CSCourse, as well as the virtual attributes name, context and title of
type string having as domain respectively the virtual classes Author and CSCourse.

Due to the functional nature of RVL, the operands of the instantiation operator are not
restricted to atoms (constants or variables), but can also be other RVL/RQL expressions of
an appropriate type. For instance, we could define inverse properties using the following RVL
statement (see rule 4):

VIEW Property("creator",range(ns1:createdBy),domain(ns1:createdBy));

In this example, the virtual property creator is created with domain and range the virtual
classes Contributor and Learning Object respectively returned by the employed RQL functions.
This is an example of another possible RVL abbreviated expression: the domain and range
virtual classes Contributor and Learning Object are defined in the view at the same time
as the property creator. The complete syntax of the VIEW clause comprises the expressions:
Class(domain(ns1:createdBy)) and Class(range(ns1:createdBy)).

As in the case of classes, we can import in the view a part (i.e., a set) of the properties defined
in a source schema as follows (rule 4):

VIEW Property(P, CSCourse, range(P))

FROM Property{P}

WHERE domain(P)=ns1:Learning_Object and P < ns1:related;

3http://www.acm.org/class/1998/
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According to our example of Figure 2, this RVL statement creates two instances of the metaclass
Property with names partof and hasPrerequisite with domain the already defined virtual class
CSCourse and with the same ranges as in the source schema identified by the namespace ns1.

Besides creating virtual schemas we also need to populate the virtual classes and properties
specified in the view. The same instantiation operator is used for this purpose, this time taking
operands of different types. The additional restriction imposed in the case of properties is that
the resources at the data level to which a property is attributed are instances of the domain and
range classes of the property at schema level. The following two RVL statements populate the
virtual classes and properties we defined above for the example of Figure 4 (see rules 11 and 12

respectively):

VIEW DBCourse(Y),creates(X,Y),Author(X),name(X,W),context(Y,Z),title(Y,K)

FROM {Y;ns1:Course}ns1:createdBy{X}.ns1:name{W}, {Y}ns1:context{Z},

{Y}ns1:title{K}, {Y}ns1:subject{L}

WHERE L like "Database Management";

VIEW PLCourse(Y),creates(X,Y),Author(X),name(X,W),context(Y,Z),title(Y,K)

FROM {Y;ns1:Course}ns1:createdBy{X}.ns1:name{W}, {Y}ns1:context{Z},

{Y}ns1:title{K}, {Y}ns1:subject{L}

WHERE L like "*Programming*";

The virtual class DBCourse (PLCourse) is populated with instances of the source class Course hav-
ing a property subject valued “Database Management” (“Programming Techniques” or “Object-
Oriented Programming”). The virtual class Author is populated in both cases by Contributor

instances having created (property createdBy) Course instances on the desired subject. Virtual
properties are populated in a similar way (DBCourse and PLCourse are defined as subclasses of
CSCourse in the next section).

As a last example, we illustrate how virtual classes (or properties) can be populated with vir-
tual resources residing exclusively at the view. Assuming that an instructor wants also to include
within the virtual base CSCourses a self-published course on the “Semantic Web”, the following
RVL statement can be issued through a suitable, easy-to-use interface (provided by SeLeNe’s Pre-
sentation service), which automatically generates the appropriate RQL/RVL statements (rules
11 and 12):

VIEW CSCourse(&http://www.mycourses.net/~SemWeb),

title(&http://www.mycourses.net/~SemWeb, "Semantic Web");

As we will see in the next subsection, by defining DBCourse and PLCourse as subclasses of
CSCourse, the final population of CSCourse will contain its proper instances, as well as those of
its subclasses.

In more complex situations, an instructor may want to populate the DBCourse virtual class
with resources from a source base, while completing their description manually, by adding, for
instance, a learning objective property:

VIEW DBCourse(X),objective(X,"research tutorial")

FROM {X;ns1:Course}ns1:subject{Y},

WHERE Y like "Database Management";

The above RVL statement will create for each LO instance of DBCourse an objective property
with value “research tutorial” (the property is assumed to have already been defined in the view).
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3.2.2 The Subsumption Operator “ <>′′

The subsumption operator, denoted “< >”, is mainly used for defining virtual sub-(meta)classes
or subproperties. Some restrictions are imposed on the use of this operator by the RQL/RV L

data model. First, cycles in virtual class (or property) subsumption hierarchies are not allowed.
Second, the domain and range of a property must be subsumed by the domain and range of its
super properties. In addition, the subsumption operator is applicable on operands of the same
type ((meta)/class and property types), since the formulation of hierarchies between entities of
different type is meaningless (see rules 5-8 in Table 1 in the Appendix).

In the simplest case, one wants to explicitly define the subsumption relationship between two
virtual (meta)classes or properties, as for instance in the following RVL statements:

VIEW CSCourse<DBCourse>;

VIEW CSCourse<PLCourse>;

The second operand (e.g., DBCourse) of “< >” is declared to be a subclass (or a subproperty) of
the first one (e.g., CSCourse). Both operands in this example are of type class (see rule 7).

As we have seen in the previous subsection, RVL gives us the ability to import a part of the
source schema into the view. Using the subsumption operator in conjunction with RQL filters,
we are able to import not only the source classes (or property) names, but entire subsumption
hierarchies from a source schema, as depicted in the following example:

VIEW $X<$Y>

FROM $X{;$Y}

WHERE namespace($X)=&www.eLearningPortal.gr/schema.rdf# and

namespace($Y)=&www.eLearningPortal.gr/schema.rdf#;

The RQL path expression in the FROM clause essentially traverses the class subsumption hier-
archy of the source schema identified by the namespace www.eLearningPortal.gr/schema.rdf.
Then, for each binding of the class variable $X (e.g., to Learning Object), the variable $Y is
bound to the corresponding (direct or transitive) subclasses (e.g., to Course). The result of the
original RQL query essentially produces a Cartesian product of each class with its subclasses. The
use of the subsumption operator in the VIEW clause, with the variables $X and $Y as operands,
results in the reconstruction of the original subsumption hierarchy of the source schema in the
view. It should be stressed that the above RQL path expression considers a complete transitive
closure of the subsumption hierarchy (i.e., all the paths from a node to its ancestors up to the
root exist). This is extremely useful when filtering conditions on class (or property) names are
also used in the WHERE clause. For instance, the exclusion from the view of some source classes
(e.g., Program) results in a “connected” hierarchy related through subsumption subclasses (e.g.,
figures, exams, etc.) to their ancestors(s) (e.g., Learning Object). Since the use of appropriate
labelling schemes for class (or property) Directed Acyclic Graphs (DAGs) [19] alleviates the need
for actually computing the transitive closure, the subsumption operator can easily produce a
minimal form in which redundant relationships are removed.

The RVL examples presented in this section were just indicative of RVL’s expressiveness.
Consider the spectrum of possible views which can be defined by changing the operands of the
subsumption and instantiation operators and by exploiting the querying capabilities of RQL. This
expressiveness allows us to think of RVL as a powerful transformation mechanism for RDF/S
schema and resource description graphs. In addition, RVL allows the capture of several mod-
elling constructs recently proposed in OWL [22], such as inverse properties, synonyms of classes

18



and properties or complex class definitions using boolean expressions and existential/universal
quantifiers (supported by RQL filters) in a view.

3.3 RQL/RVL Internal Logical Framework

In order to fully capture the semantics of RQL queries and RVL views and to formally ground
the ability to compose RVL views with RQL queries, we use an internal logical framework, which
captures the semantics of RDF/S schemas and queries/views [18]. This first-order, relational
framework is used to translate both queries and views into a common formalism providing meth-
ods to ensure the validity of logical operations. More specifically, this internal logical framework
employs first-order relations together with some first-order constraints to model RDF/S and uses
a signature with three sorts: Resource, Property, Class4. The relations used, along with their
respective meaning, are listed below:

• C EXT(c, x) iff the resource x is in the proper extent (i.e., it is a direct (proper) instance) of
class c. According to the RDF specification [41], class extents can overlap due to multiple
classification of resources;

• C SUB(c, d) iff c is a (not necessarily direct) subclass of d;

• PROP(c, p, d) iff class c is the domain and class d is the range of property p;

• P EXT(x, p, y) iff (x, y) is in the proper extent (i.e., it is a direct (proper) instance) of
property p 5. Like class extents, property extents may overlap;

• P SUB(p, q) iff p is a (not necessarily direct) subproperty of q.

In order to be compliant with the RDF/S semantics, these relations must satisfy some built-in
constraints imposed by the RQL/RVL data model. In particular, the domain and range of a prop-
erty must be unique, while the subclass and subproperty relations must be reflexive, transitive
and satisfy the following subproperty/subclass compatibility constraint:

∀ a, p, b, c, q, d P SUB(q, p) ∧ PROP(a, p, b) ∧ PROP(c, q, d) −→ C SUB(c, a) ∧ C SUB(d, b)

This means that if q is a subproperty of p, the domain and range of q are subclasses of the
domain and range of p, respectively.

Furthermore, we have the property-class extent compatibility constraint, i.e., any instance of
a property p connects a pair of instances of some subclasses of the domain and range of p, re-
spectively:

∀ a, p, b, x, y PROP(a, p, b) ∧ P EXT(x, p, y)
−→ ∃ c, d C SUB(c, a) ∧ C SUB(d, b) ∧ C EXT(c, x) ∧ C EXT(d, y)

If we denote with ∆RDF the set of dependencies (constraints) used to axiomatize the internal
RDF/S model, then the following theorem holds:

4For simplicity reasons, we ignore metaclasses and metaproperties in this discussion, but they can be
handled easily in the same way.

5In our model, instances of properties are represented as ordered pairs of the resources they connect.
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Theorem 1 It is decidable whether ∆RDF |= d and whether ∆RDF |= Q1 ⊑ Q2, where d is an
embedded implicational dependency, Q1, Q2 are conjunctive queries and ⊑ is query containment.

Using the relations C SUB, PROP and P SUB and the names of classes and properties defined
in a schema as constants, we can straightforwardly translate the information embodied into an
RDF/S schema to this internal framework as a set of relational facts (in Datalog parlance, an
extensional database). For instance, some of the facts obtained from the schema of Figure 2 are:

C SUB(Course, Learning Object)
PROP(Learning Object, createdBy, Contributor)
P SUB(partof, related)

Note that this set of facts will include all C SUB and P SUB reflexivity instances and will be
“closed” under transitivity and under subproperty/subclass compatibility.

3.3.1 Translation of RQL Queries into the Internal Logical Framework

An RQL conjunctive query is a query of the form ans(X̄) : − C1, . . . , Cn where the Ci’s are either
RQL class or property patterns (as they appear in the RQL FROM clause) or equalities involving
variables and/or constants and X̄ is a tuple of variables or constants (range restrictions [1] are
also required). Many RQL queries are in fact conjunctive queries, e.g., the query in Section 2 can
be written 6:

ans(Y, X, W) :- {Y;Course}createdBy{X}, {X}name{W},

{Y}subject{Z}, Z = "Database Management"

Conjunctive RQL queries can then be translated into relational conjunctive queries in the
internal logical framework. Indeed, according to the declarative semantics in [34], RQL patterns
have the same meaning as conjunctions of relational atoms. For example:

RQL Pattern Internal Model Translation

{X; $C}@P{Y ; $D} PROP(a, p, b), P SUB(q, p), P EXT(x, q, y),
C SUB(c, a), C SUB(d, b), C EXT(c, x), C EXT(d, y)

{X; $C}@P{Y } PROP(a, p, b), P SUB(q, p), P EXT(x, q, y),
C SUB(c, a), C EXT(c, x)

{X}@P{Y } P SUB(q, p), P EXT(x, q, y)

In the above RQL patterns, X, Y are resource variables, $C, $D are class variables (and can be
replaced with constant class names), and @P is a property variable (that can also be replaced by
a constant property name). Using these patterns, the RQL conjunctive query above translates
internally to the following Datalog rule:

6Namespaces are omitted for clarity reasons. Furthermore, for demonstration reasons, the “like” con-
dition defined in the WHERE clause of the example query is replaced with equality.
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ans(y,x,w) :- PROP(a,createdBy,b),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z),z="Database Management"

3.3.2 Translation of RVL Views into the Internal Logical Framework

In order to favour personalization, virtual RDF/S schemas can be also specified on top of the
portal schema, as for instance the RVL schema shown in Figure 4. If we restrict our attention to
“conjunctive” RVL definitions, virtual classes’ and properties’ definitions and extents can also be
written as rules, whose heads are as in the VIEW clause in RVL and bodies are just like conjunctive
RQL queries. For instance:

Class(DBCourse) :-

Class(PLCourse) :-

Class(CSCourse) :-

CSCourse<DBCourse> :-

CSCourse<PLCourse> :-

Class(Author) :-

Property(creates, Author, CSCourse) :-

Property(name, Author,String) :-

DBCourse(Y):- {Y;Course}subject{Z}, Z="Database Management"

PLCourse(Y):- {Y;Course}subject{Z}, Z="Programming"

Author(X):- {Y;Course}createdBy{X}, {Y}subject{Z}, Z="Database Management"

Author(X):- {Y;Course}createdBy{X}, {Y}subject{Z}, Z="Programming"

creates(X,Y):-{Y;Course}createdBy{X}, {Y}subject{Z}, Z="Database Management"

creates(X,Y):-{Y;Course}createdBy{X}, {Y}subject{Z}, Z="Programming"

name(X,W):- {Y;Course}createdBy{X}, {Y}subject{Z}, Z="Database Management",

{X}name{W}

name(X,W):- {Y;Course}createdBy{X}, {Y}subject{Z}, Z="Programming", {X}name{W}

All the above rules can be translated into a set of conjunctive relational views. To accomplish
this translation, the internal framework is equipped with relations similar to those presented in
Section 3.3. This allows the capture of virtual classes and properties, as well as their virtual sub-
sumption relationships, namely CLASS V, PROP V, C EXT V, P EXT V, C SUB V and P SUB V,
respectively. Thus, for the rules presented previously, the conjunctive relational views created
are:

CLASS_V(DBCourse) :-

CLASS_V(PLCourse) :-

CLASS_V(CSCourse) :-

C_SUB_V(DBCourse,CSCourse) :-

C_SUB_V(PLCourse,CSCourse) :-

CLASS_V(Author) :-

PROP_V(Author, creates, CSCourse) :-

PROP_V(Author, name, String) :-
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C_EXT_V(DBCourse,y) :- PROP(a,subject,b),P_SUB(q,subject),P_EXT(y,q,z),

C_SUB(Course,a),C_EXT(Course,y),z="Database Management"

C_EXT_V(PLCourse,y) :- PROP(a,subject,b),P_SUB(q,subject),P_EXT(y,q,z),

C_SUB(Course,a),C_EXT(Course,y),z="Programming"

C_EXT_V(Author,x) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z),z="Database Management"

C_EXT_V(Author,x) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z),z="Programming"

P_EXT_V(x,creates,y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z),z="Database Management"

P_EXT_V(x,creates,y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z),z="Programming"

P_EXT(x,name,w) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z),z="Database Management",

P_SUB(q3,name),P_EXT(x,q3,w)

P_EXT(x,name,w) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z),z="Programming",

P_SUB(q3,name),P_EXT(x,q3,w)

Note that the schema part of these conjunctive relational views needs to be “completed”, i.e.,
closed, under reflexivity and transitivity.

3.3.3 Composing RQL Queries with RVL Views

Having set up a logical framework that captures the RDF/S semantics, we then translated both
RQL queries and RVL views into this framework. The objective of this translation is to provide a
logical framework into which queries formulated against a view are combined with the definition
of the view, in order to produce queries against the original RDF/S data that can actually be
evaluated (thus avoiding the computation of the view data in its entirety). In relational databases,
composing SQL queries with SQL view definitions is fairly straightforward. Composing RQL
queries with RVL views is more challenging [18].

Consider, for example, the following query, which retrieves the database courses created by
the author named “Professor A”:

SELECT Y

FROM {X}myview:creates{Y}, {X}myview:name{Z}

WHERE Z = "Professor A"

USING NAMESPACE myview=&http://www.ics.forth.gr/LO.rdf#

which translates to:

ans(Y) :- {X}creates{Y}, {X}name{Z}, Z="Professor A"
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This rule is translated into the RQL/RVL internal model of the view, as follows:

ans(y) :- P_SUB_V(q',creates),P_EXT_V(x,q',y),

P_SUB_V(q",name),P_EXT_V(x,q",z), z="Professor A"

Having translated both the query and the view definition into the internal logical frame-
work, we can then compose this query with the view specification (all expressed in the inter-
nal models) by just performing a composition of (nonrecursive) Datalog programs. Note that
P SUB V(q′, creates) matches only the reflexivity instance P SUB V(creates, creates) (similarly
for P SUB V(q′′, name)). Thus, we obtain:

ans(y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z1),z1="Database Management",

PROP(c1,createdBy,d1),P_SUB(r1,createdBy),P_EXT(v,r1,x),

C_SUB(Course,c1),C_EXT(Course,v),

P_SUB(r2,subject),P_EXT(v,r2,u),u="Database Management",

P_SUB(r3,name),P_EXT(x,r3,z),

z="Professor A"

ans(y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z1),z1="Database Management",

PROP(c1,createdBy,d1),P_SUB(r1,createdBy),P_EXT(v,r1,x),

C_SUB(Course,c1),C_EXT(Course,v),

P_SUB(r2,subject),P_EXT(v,r2,u),u="Programming",

P_SUB(r3,name),P_EXT(x,r3,z),

z="Professor A"

ans(y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z1),z1="Programming",

PROP(c1,createdBy,d1),P_SUB(r1,createdBy),P_EXT(v,r1,x),

C_SUB(Course,c1),C_EXT(Course,v),

P_SUB(r2,subject),P_EXT(v,r2,u),u="Database Management",

P_SUB(r3,name),P_EXT(x,r3,z),

z="Professor A"

ans(y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z1),z1="Programming",

PROP(c1,createdBy,d1),P_SUB(r1,createdBy),P_EXT(v,r1,x),

C_SUB(Course,c1),C_EXT(Course,v),

P_SUB(r2,subject),P_EXT(v,r2,u),u="Programming",

P_SUB(r3,name),P_EXT(x,r3,z),

z="Professor A"

As we can observe, the answer to the query posed on the view is the union of four queries,
which we call -in order of listing- Q1, Q2, Q3 and Q4. Then, Q1 and Q4 minimize to Q′

1 and Q′

4,
respectively:
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ans(y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z1),z1="Database Management",

P_SUB(r3,name),P_EXT(x,r3,z),

z="Professor A"

ans(y) :- PROP(a1,createdBy,b1),P_SUB(q1,createdBy),P_EXT(y,q1,x),

C_SUB(Course,a1),C_EXT(Course,y),

P_SUB(q2,subject),P_EXT(y,q2,z1),z1="Programming",

P_SUB(r3,name),P_EXT(x,r3,z),

z="Professor A"

However, Q′

1 is a subquery of (hence it contains) Q3. Similarly, Q′

4 contains Q3. Hence, the
entire program can be minimized to Q′

1 ∪ Q′

4! The result of translating this reformulated query
back to RQL would be:

ans(Y) :- {Y;Course}createdBy{X},

{Y}subject{Z1}, Z1="Database Management",

{X}name{Z}, Z="Professor A"

ans(y) :- {Y;Course}createdBy{X},

{Y}subject{Z1}, Z1="Programming",

{X}name{Z}, Z="Professor A"

Thus, the query posed on the view is translated into a query posed to the source RDF/S descrip-
tion base, which can be actually evaluated (thus avoiding the computation of the view data in
its entirety).

4 RQL/RVL Query Processing in SeLeNe

The query service is one of the core and most important services in the SeLeNe system as described
in Deliverable 3 [52]. The query service is responsible for processing RQL/RVL queries posed to
the system over one or more autonomous RDF description bases.

An important factor that determines the implementation of query processing is related to the
distribution of the data, which in the case of a SeLeNe are RDF descriptions and RDF schemas
of LOs. There are three different architectural alternatives for SeLeNe, with different degrees of
distribution of the data, as described in Deliverable 5 [53]. These should all be examined in order
to discover implications for the implementation of the SeLeNe query system. These alternatives
are briefly discussed below:

• Centralized: In this scenario there is a single location where the RDF descriptions and
schemas are found in their entirety. This location can be a single machine or a computa-
tional cluster, which consists of physically adjacent machines. All client nodes are aware
of and send query requests only to this location. An example of a centralized system is a
web site that contains all the courses of a university or a certain department.

• Mediated: In this scenario the functionality, and consequently the query service, is pri-
marily facilitated by mediator nodes that are affiliated with a number of provider nodes.
Providers store their own autonomous description bases, whose schemas must register to a
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Figure 5: Query Service Architecture

mediator. These mediator nodes act as entry points to the SeLeNe system and offer direc-
tions as to where the required RDF descriptions and schemas can be found and accessed.
Client nodes have to contact a known mediator, which in turn will contact the necessary
providers and distribute the query requests accordingly. An example of a mediated archi-
tecture is a portal with educational material from various universities and other educational
research organizations.

• Autonomic: In this scenario each peer node acts autonomously in providing RDF descrip-
tions and query processing. RDF descriptions are maintained locally by each peer base and
there is no global knowledge about the available peer bases. Since each node can enter and
leave the system at will we need a flexible query routing and processing mechanism to sat-
isfy client requests. An example of this type of architecture is a world wide self e-learning
system where everyone is capable of publishing and retrieving educational material.

For each of the above scenarios there will need to be a different query service implementation,
taking into account both the involved distribution and heterogeneity of the RDF resources and
schemas.

In general, the query service can be seen as a set of modules that cooperate in order to
support the full functionality of the service. It comprises (a) the parsing of the query, (b) the
computation of possible routing of the query through the SeLeNe peer nodes, (c) the rewriting of
the query in terms of a different descriptive schema, (d) the optimization of the query to reduce
execution time and (e) finally the execution of the query in one or more description bases. The
above functionalities can be seen as modules that together constitute the recommended query
service architecture in Figure 5. The routing and the rewriting module are illustrated using
dashed lines because they may not be necessary in all the architectural alternatives (i.e., for
different architectural alternatives). For the rewriting module we also need appropriate mapping
rules expressed in terms of RVL view definitions. These rules define how the rewriting of the
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queries will be performed on RDF description bases and schemas. The routing module requires
appropriate advertisements of description bases on remote peer nodes. In the following subsections
we discuss how the query service is implemented in each of the architectural alternatives.

4.1 Centralized

In a centralized SeLeNe system the query processing mechanism is trivial, since a set of “fixed”
peer nodes, i.e. the authority servers, handle the entire query processing load. Every query posed
by a client is sent directly to the centralized RDF description base for evaluation. The authority
servers have global knowledge of the system and can use it to create and utilize a global query
plan that will return a correct and complete answer to the client request.

The query service in this scenario is comprised of the parsing module, for parsing the given
query, the optimization module, for optimizing the query using appropriate indices, cost models,
algebraic transformations, and the execution module, for obtaining the query results from the
centralized base. These three modules can be described as the core modules, since they offer
the basic functionality requested by a query service. The routing and the rewriting module are
not used since the central base holds the totality of RDF descriptions that conform to one or
more specific descriptive schemas (ontologies and taxonomies) with simple articulations (e.g., IsA
relations).

RDFSuite [3] can support the above functionality and it is a good candidate for implementing
the query service in this architectural alternative.

4.2 Mediated

In this scenario mediator nodes are primarily responsible for processing the queries since they are
aware of the relevant provider nodes and how to access their RDF description bases. Each client
node poses its queries to a known mediator, which is responsible for handling query requests in
the most appropriate way. More precisely, a query expressed in terms of a mediator’s schema
needs to be reformulated in terms of the schemas employed by the local bases of the providers
using the mapping rules. Thus, all the core modules of Figure 5, and the reformulation one, are
needed for the mediated query service.

The Semantic Web Integration Middleware (SWIM) can provide the above functionality, since
it supports mappings that can be utilized to support query mediation functionality required by
this scenario. Readers are referred to [18] for more details on SWIM.

4.3 Autonomic

The autonomic scenario suggests a P2P-like architecture where each peer node disposes its own
RDF description base without a central point of access as in the mediated scenario. Resource
descriptions are accessible as long as the provider node is connected to the system. To implement
query service in this scenario we need a distributed query processing mechanism [40]. This
mechanism must be capable of migrating query plans from one peer node to another, and should
adapt these plans to the characteristics of any particular SeLeNe (e.g., available peer nodes,
bandwidth, etc.). In addition to the core modules for implementation of the query service, in
a SeLeNe where only a partial knowledge about the RDF descriptions and schemas of peers is
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Figure 6: RDF/S Schema Namespace, Peer Active-Schema and Query Pattern Graphs

available, we will also need the routing module to dispatch query requests . The rewriting module
could be also used for reformulating queries in terms of the local RDF schemas employed by peer
nodes using appropriate mapping rules and views. We propose the following P2P semantic query
routing and processing mechanism, based on the ICS-FORTH SQPeer Middleware, and we sketch
the necessary constructs for its implementation.

In order to design an effective query routing and processing middleware for peer RDF/S bases,
we need to address the following issues:

1. How peer nodes formulate queries?

2. How peer nodes advertise their bases?

3. How peer nodes route a query?

4. How peer nodes process a query?

5. How distributed query plans are optimized?

In the following subsections, we will present the main design choices for SQPeer in response to
the above fundamental issues.

4.3.1 RQL Peer Queries

Each peer node in SQPeer provides RDF descriptions that conform to a number of RDF schemas.
The notion of Semantic Overlay Networks (SONs) [21] appears to be an intuitive way to group
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together peers sharing the same schema information. Peer nodes with the same schema can be
considered to belong to the same SON. In a more sophisticated scenario, peer nodes contributing
RDF descriptions specified by an RVL view are members of the same SON. This approach facil-
itates query routing, since a peer can easily identify relevant peers before sending query requests
on the network. In the upper part of Figure 6 we can see an example of the schema graph of a
specific namespace (i.e., n1) with four classes, C1, C2, C3 and C4, that are connected with three
properties, prop1, prop2 and prop3. There are also two subclasses, C5 and C6, of classes C1 and
C2, respectively, which are connected with sub-property prop4 of property prop1.

Queries in SQPeer are formulated by client-peers in RQL, according to the RDF schemas
they use to create their description bases or to define virtual views over their legacy databases.
Thus, we need to capture intensionally the meaning of peer queries, in order to reason about
query/view containment and guide query routing through the peer bases of the system. To this
end, we introduce the notion of query patterns.

An RQL query pattern graph, which describes the schema information employed by a query,
is created by identifying the involved path patterns. In the rest of this deliverable we focus
only on conjunctive RQL queries. In the bottom right corner of Figure 6 we can see an RQL
query returning all the resources represented by the variables X and Y. In the FROM clause the
employed path patterns imply a join on the Y resource variable between the target resource of
the property prop1 and the origin resource of the property prop2. The WHERE clause filters the
returned resources according to the value of variable Z. Figure 6 illustrates the query pattern
graph extracted by the above query, where X and Y resource variables are marked with “*” to
denote projections. A graphical end-user interface may be used to create and visualize such query
pattern graphs in a user-friendly way.

4.3.2 Peer Base Advertisement

In the context of a SON, each peer node should be able to advertise its description base in
order to be discovered by other peers. Peer base advertisement in SQPeer relies on virtual or
materialized RDF schema(s). Since these schemas contain numerous RDF classes and properties
not necessarily populated with data in a peer base, we need a fine-grained notion of schema
advertisements. The active-schema of a peer node is essentially a subset of the employed RDF
schema(s) for which all RDF classes and properties are (in the materialized scenario) or can be
(in the virtual view scenario) populated. The active-schema may be broadcast to (or requested
by) other peer nodes, thus informing the rest of the P2P system of what is exactly available inside
the peers’ bases. A same type of peer advertisements is foreseen in Deliverable 4.4 [48], where an
annotated RDF schema is kept in each peer for declaring what type of RDF data are stored in
its local base.

The bottom left part of Figure 6 illustrates the RVL statement of an active-schema used to
describe the data contained in a peer base. This statement “populates” the classes C5 and C6

and the property prop4 (in the VIEW clause) with appropriate instances copied from the peer’s
local base (in the FROM clause). In the middle-left part of the figure we can see the corresponding
active-schema graph obtained by this view. We note the similarity in the representation of active-
schemas and query pattern graphs. This view can be a materialized RDF/S schema with actual
resource descriptions or can be a virtual one, which can be populated with data from a relational
or an XML peer base.

A more complex example is illustrated in Figure 7, comprising four peers and their corre-
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Figure 7: Example of Peers and their Active-Schemas

sponding active-schemas. Peer P1 contains resources related through the properties prop1 and
prop2, while peer P4 contains resources related through the properties prop4 and prop2. Peer
P2 contains resources related by prop1, while peer P3 contains resources related by prop2.

Representing active-schemas and query pattern graphs in an intensional way makes it easier
to maintain a distributed knowledge of the P2P system, while yielding significant performance
gains. First, by representing in the same way what is queried by a peer and what is contained
in a peer base, we can reuse the RQL query/RVL view subsumption techniques, as proposed in
SWIM [18]. Second, compared to global schema-based advertisements, we expect that the load
of queries processed by each peer is smaller, since a peer receives only relevant to its content
queries. This also affects the amount of network bandwidth consumed by the P2P system.

4.3.3 Semantic Query Routing

Query routing is responsible for finding the relevant to a query peer bases. In other words,
query routing depends on the data distribution (vertical, horizontal and mixed) of peers bases
committing to a SON RDF/S schema.

An example of a vertical data distribution is exhibited by peers P2 and P3 in Figure 7. Peer
P2 contains resources related by prop1, while peer P3 contains resources related by prop2. In
order to answer the RQL query of Figure 6 the results of the subqueries have to be “joined”.
An example of horizontal data distribution can be seen between peers P1 and P4 of Figure 7.
Since prop4 is sub-property of prop1 and prop2 is contained in both peers, a complete answer
to a user query, implies to “union” the results of the subqueries sent to these two peers. Thus,
vertical distribution ensures correctness of query results, while horizontal distribution favours
completeness.

SQPeer relies on intensional techniques for matching a query against the active-schemas of the
peers. In particular, the query/view subsumption techniques of [18], are employed to determine
which part of a query can be answered by an active-schema and rewrite the query sent to a peer
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Figure 8: An Annotated RQL Query Graph

according to the available data in its base.
The query-routing algorithm takes as input a query graph and annotates each involved path

pattern with the peers that can actually answer it, thus outputting an annotated query graph.
A pseudocode description on how this algorithm works is given below.

Query-Routing Algorithm:

1. A peer P receives an RQL query Q.

2. Peer P parses the query Q and creates the corresponding query

pattern graph by obtaining the involved paths.

3. For each pattern, the matching algorithm is performed.

(a) Compare the path pattern with all known active-schemas.
(b) If the active-schema graph is subsumed by the selected path

pattern, then it is annotated with the name of the peer

owning the active-schema.

4. Output annotated query graph.

An example of a query graph, which is composed of two path patterns, Q1 and Q2, is il-
lustrated in Figure 8. In Figure 8 we can also see how the matching is performed with the
active-schemas of the peers shown in Figure 7. P1’s active-schema is equal to the path patterns
Q1 and Q2, so both path patterns are annotated with P1. P2’s active-schema is equal to path
pattern Q1 and P3’s active-schema is equal to Q2, so Q1 and Q2 are annotated with P2 and P3
respectively. Finally, P4’s active-schema is subsumed by path patterns Q1 and Q2, since prop4

is sub-property of prop1. Similarly to P1, Q1 and Q2 are annotated with P4. In the left part of
Figure 8 we can see the annotated graph created by this matching.

4.3.4 Semantic Query Processing

Query processing in SQPeer takes the responsibility of generating distributed query plans ac-
cording to the information returned by the query routing algorithm. These query plans are then
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Figure 9: A SQPeer Query Execution Example

executed by the relevant peers. Communication channels enable this distributed execution and
create the necessary foundation for exchanging appropriate data between the appropriate peers.

More precisely, channels [51] [58] are used in order to establish physical connections between
remote peer nodes. Through channels, peers are able to route query plans and exchange the
corresponding results according to the queries requested by client-peers. Adaptability during
the execution phase (see Section 4.3.5) can be carried out by modifying the deployment of the
channels through the system. Finally, channels permit each peer to further route and process
the queries received, since it can be connected with more peers independently of the previous
routing operations. Each channel has a root and a destination node. The root node of a channel
is responsible for the management of the channel and for creating a locally unique id for it. Data
packets are sent through each channel from the destination to the root node. Beside query results,
these packets can also contain “changing plan” and failure information or other statistics useful
for run-time query adaptability.

A query plan specifies how the query processing load should be distributed to the involved
peers. Thus, the query plan highlights the way the channels are created in SQPeer. The query-
processing algorithm receives as input an annotated query graph and returns as output its cor-
responding query plan. A pseudocode description on how this algorithm works is also given
below.

Query-Processing Algorithm:

1. Peer P receives an annotated query graph AQ for the RQL query Q.

2. If P doesn’t answer any part of the query Q

Send query to a neighbour peer (see also Section 4.3.6);
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Else

Create a new query plan QP;

3. Starting from a root of the graph, check every query path

pattern PP in a sequential order, until AQ is fully processed;

4. If PP is the root

Execute horizontal data distribution algorithm with input

(QP, PP, AQ);

Else

Execute vertical data distribution algorithm with input

(QP, PP, AQ);

Execute horizontal data distribution algorithm with input

(QP, PP, EQ
⋃

AQ), where EQ is the previously processed query;

5. Output formulated query plan QP.

Vertical data distribution algorithm with input (QP, PP, AQ):

1. Obtain set of peers, e.g., P′={P1,...,Pn}, from the annotated

query graph that can answer PP.

2. For each peer of the set, e.g., Px, create query plan

QPx = QP joinCp@P=Cq@Px AQ@Px, where Cp and Cq are the classes

on which the join of the two queries is executed.

3. Create query plan QP = QP1
⋃

QP2
⋃

...
⋃

QPn

Horizontal data distribution algorithm with input (QP, PP, AQ):

1. Obtain set of peers, e.g., P"={P1,...,Pn}, from the annotated

query graph that can answer PP.

2. For each peer of the set, e.g., Px, expand query plan as QP = QP
⋃

AQ@Px

Figure 9 illustrates an example of how the RQL query Q, shown in Figure 6, can be executed
over the P2P database system of Figure 7. The query is first sent to peer P1 which initially
executes the query-routing algorithm in order to obtain the annotated query graph of Figure 8.
P1 runs the query-processing algorithm and since it can answer a part of the query, creates a new
query plan. The algorithm selects as a root of the annotated query graph, the path pattern Q1,
for which it runs the horizontal distribution algorithm. This algorithm outputs query plan QP1,
shown in Figure 9, since P1, P2 and P4 can execute query path pattern Q1. Next, path pattern Q2
is selected and the vertical data distribution algorithm executes and returns the query plan QP2.
For each of the peers that can process Q2, we join the sub-queries sent with the results obtained
from query plan QP1. P1 additionally follows the horizontal data distribution for obtaining more
complete results. Since P1 and P4 can answer the whole query Q, P1’s query plan will evolve
to QP3: QP2

⋃
Q@P1

⋃
Q@P4. The final query plan and the deployment of the channels in

SQPeer can also be seen in Figure 9.
Possible rewritings of the queries sent to remote peers in terms of different descriptive schemas

may be necessary. This functionality can be implemented in the Semantic Web Integration Mid-
dleware (SWIM [18]), which supports powerful mappings to RDF/S of both structured relational
and semistructured XML databases.
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Figure 10: Data and Query Shipping Example

After the creation of the query plan, the peer holds responsibility for executing this plan and
deploying the necessary channels in the system. From the query plan the peer obtains the set
of peers that need to be contacted for executing the query. For each of these peers, a channel
is created with the root being the peer executing the algorithm and the destination being the
peer examined. Although each of these peers may contribute in the execution of the query plan
by replying to more than one sub-query, only one channel is necessary. For the creation of
the channels, the peer should also take into consideration certain optimization factors that are
presented in the following subsection.

4.3.5 Query Optimization

In SQPeer we distinguish two possible optimizations of distributed query plans. First, compile-
based optimization depends on statistics held by each peer and allows us to choose between
different execution policies for the query plans (data or query shipping). These statistics involve
response times from previously contacted peers or result sizes from previous executions of the
same query. The type and the speed of the connection between the peers can be used to decide
between different channel deployments. The processing load of the peers can be considered, since
a peer that processes fewer queries, even if its connection is slow, may offer a better execution
time. This processing load can be handled by the existence of slots in each peer, which show the
amount of queries that can be handled simultaneously by this peer.

Once the query plan is generated, a peer node can decide at compile-time between data, query
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or hybrid shipping execution policies. In the example of Figure 10 we can see two alternatives
on how P1 handles the generated query plan. In the left part of the figure we can see the data
shipping alternative, since P1 sends queries Q2 and Q3 to peers P2 and P3 and joins their results
locally. In the right part of the query we can see the query shipping alternative, since P1 decides
to forward the join operation down to P2, which in turn receives the results from P3 and executes
the join locally before sending the full answer to P1 for further processing. At the bottom of the
figure, we can see the deployment of the channels in SQPeer for each of these two alternative
policies.

On the other hand, run-time adaptability of query plans is an essential characteristic of
query processing when peer bases join and leave the system at will, or more generally when
system resources are exhausted. For example, the optimizer may alter a running query plan by
observing the throughput of a certain channel. This throughput can be measured by the number
of incoming or outgoing tuples. Changing query plans may alter an already installed channel, as
well as the query plans of the root and destination node of the channel. The root node of each
channel is responsible for identifying possible problems caused by environmental changes and for
handling them accordingly. It should also inform all the involved nodes that are affected by the
alteration of the plan. Finally, the root node should create a new query plan by re-executing
the routing and processing algorithms and not taking into consideration those peers that became
obsolete.

We should keep in mind that switching to a different query plan in the middle of the query
execution may cause some problems. Previous results, which were already created by the exe-
cution of the query at possible multiple peer nodes, have to be handled, since the new query
plan will produce new results. Two are the possible solutions to this issue. The ubQL ap-
proach [51] proposes to discard previous intermediate results and all on-going computations are
terminated. Alternatively [29] proposes a phased query execution, in which each time the query
plan is changed the system enters into a new phase. The final phase, which is called the cleanup
phase, is responsible for combining the sub-results from the other phases in order to obtain a full
answer. In SQPeer middleware, we have adopted the ubQL approach.

4.3.6 SQPeer Architectural Alternatives

SQPeer can be used in different P2P architectural settings. Even though the P2P architecture
affects the peers behaviour, our proposed query processing and routing algorithms work indepen-
dently of the particular architectural setting.

On the one hand, we have client-peers, which may frequently join or leave the system. These
peers have only the ability to pose RQL queries to the rest of the P2P system. Since these peers
usually have limited capabilities and they are connected for short periods of time, they do not
participate in query routing and processing in the way the other peers do.

On the other hand, we may have simple-peers that act autonomously and may also join
or leave the system but not so frequently as client-peers. Their corresponding RDF/S bases
are available during their connection and may share their data with the rest of the system.
Client-peers can contact them for posing queries that need to be processed in a distributed way.
Along with their insertion in the P2P system, simple-peers should broadcast their active-schema
information. Thus, a simple-peer identifies and connects physically with the SON(s) it belongs to
and becomes known to its new neighborhood. Simple-peers have also the ability to pose queries
to the system (as client-peers), but with the added functionality of executing these queries on
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Figure 11: SQPeer Query Processing in a Super Peer-Like System

their own local base.

Finally, a small percentage of the peers may play the role of super-peers. A super-peer
acts as a centralized server for a subset of simple-peers. Super-peers are mainly responsible
for routing queries through the system and for managing their group of simple-peers. Queries
received and processed by a simple-peer are first sent to its super-peer, which handles the routing
process and then sends the annotated query pattern back to the simple-peer for further processing
and execution. Super-peers should be highly-available nodes and should offer high computing
capabilities.

In this context we consider two architectural alternatives, distinguished according to the dis-
tribution of knowledge on a P2P system regarding peer base advertisements. The first corresponds
to a hybrid P2P architecture based on the notion of Super-Peer Nodes (like Morpheus or Kazaa).
The second is closer to an ad-hoc P2P architecture (like Freenet or Gnutella).

In a Super Peer-like system [60] [44] each peer is connected with at least one super-peer,
who is responsible for collecting the active-schema information (materialized or virtual) of all
its simple-peers. The peers that provide RDF descriptions for the same RDF/S schema are
grouped under the same super-peer. Thus, each peer implicitly knows all the active-schemas of
the peers that are semantically relevant to it in the sense that they employ the same RDF/S
schema or view namespace. In this scenario, we can identify as neighbours of a peer the nodes
belonging to the same super-peer, thus forming semantically related neighbourhoods. Each peer
can be connected to multiple super-peers, since it can provide resource descriptions conforming to
different namespaces. When a peer connects with a super-peer, it sends its corresponding active-
schema (push). All super-peers are aware of each other in order to be able to answer queries
expressed in terms of different RDF schemas. A client-peer can connect with a simple-peer and
send it a query for further processing in the system. The simple-peer forwards the query to
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Figure 12: SQPeer Query Processing Mechanism in an Ad-Hoc P2P System

the super-peer according to the schema concerning the query. If this schema is unknown to the
simple-peer, it sends the query randomly to one of its known super-peers, which then discovers
the appropriate super-peer through the super-peers’ backbone.

In Figure 11, we can see an example of how this scenario works. We consider a super-peer
SP1 and a set of client peers, P1 to P4, which are connected with SP1. SP1 is also connected with
other super-peers, for example SP2 and SP3, thus creating the necessary super-peer backbone.
When P1 receives the query Q, it initially needs to send Q to SP1 (Figure 11a). SP1 searches
the active-schemas of all its simple-peers and creates an annotated query graph containing the
information that P2 can answer only the Q1 path pattern, while P3 can answer the Q2 path
pattern. SP1 sends this annotated graph to P1 in order to generate the appropriate query plan
and create the two channels with P2 and P3 for gathering the results (Figure 11b). P2 and P3
send their results back to P1, who joins them locally in order to produce the final answer. In this
scenario, the query-routing algorithm is performed only by super-peers and the query processing
and execution is left to the simple-peers.

Alternatively, we can consider an ad-hoc P2P architecture. In this alternative, when a peer
first joins the system, it becomes aware only of its physically close neighbours and it can explicitly
request their active-schemas that are related to its own RDF/S namespaces (pull). By requesting
this information, the peer finds the relevant neighbourhood to its base and connects with it, thus
creating self-adaptive SONs. Then, when a peer receives a relevant query, it can locally apply
the query routing algorithm and create a query plan. If the peer receives a query, whose schema
is unknown, it should broadcast the query to a neighbour peer, until a relevant one is found.

In Figure 12 we can see an example, where peers P1 to P4 are aware only of their own active-
schemas. When P1 receives the query Q, since it does not know how to distribute it, it requests
its neighbours’ active-schemas, in order to apply the routing algorithm locally (Figure 12a). Since
P2 can answer the Q1 part of Q and P3 can answer the Q2 part of Q, P1 creates two channels
with those peers and sends them the corresponding queries. The results from those queries are
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returned to P1 and are joined locally to produce a correct answer (Figure 12b).

These two architectural alternatives exhibit different behaviour in the routing, processing
and execution of a query. In the ad-hoc architecture, SONs are created in a self-adaptive way,
while in the super-peer architecture SONs are created in a more static way, since each super-
peer is responsible for the creation and further management of SONs. The existence of SONs
leads to minimizing the broadcasting (flooding) in the P2P system, since a query is received and
processed only by the relevant peers in both architectures. It should be stressed that while in
the ad-hoc architecture, peers handle both the query routing and processing load, super-peers
are only responsible for routing and simple-peers for processing of the queries. Additionally,
super-peers contain a global knowledge of the active-schemas of the peers in a SON and therefore
can create a query plan offering completeness in the results. In the ad-hoc alternative, peers are
aware only of a small number of active-schemas in the SON, and thus they can’t guarantee result
completeness. Finally, super-peers may handle the role of a mediator, as in the mediated scenario
presented in Subsection 4.2.

5 Related Work

5.1 RVL and View Specification Languages

Several view specification languages have been proposed in the database literature. The most
relevant to RVL is work conducted in the context of ODMG-compliant object-oriented DBMS,
such as O2 [2, 54], MultiView [50], Chimera [28] and K2 [57]. These view specification languages
extend the relational approach for defining views as “named queries” with features for creating
virtual object schemas. Apart from the differences between the ODMG and RDF/S data models
(e.g., sub-properties, multiple classification of objects, etc.) and between the underlying design
choices (e.g., in transformation expressiveness), the main novelty of RVL compared to these
languages lies in its flexibility to create virtual classes (or properties) using RQL queries. This
functionality is particularly useful for Semantic Web applications managing large schemas in a
P2P way.

Some view specification languages have also been proposed for the RDF/S data model. In
[59], set-based operations have been introduced in order to define object-preserving views using an
untyped version of RQL. Unlike in RVL, the logical data independence of views is violated by this
language, since virtual and source classes are merged into one global schema, while restructuring
constructs for subsumption hierarchies are not supported. An alternative approach has been
proposed in [23], which relies on F-logic rules to define only virtual description bases. Unlike
RVL, this language does not provide the means to define virtual RDF/S schema graphs using, for
instance, meta-schema instantiation capabilities. In the same spirit, [5] proposes a variation of
RQL in order to produce as a query result an output RDF resource description graph instead of
variable bindings in some tabular form. To the best of our knowledge, RVL is the first language
offering a fully-fledged view specification for the RDF/S model.

5.2 RQL/RVL Query Processing and Routing

Several projects address query processing issues in P2P database systems. Query Flow [38] is
a system offering dynamic and distributed query processing using the notion of HyperQueries.
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HyperQueries are essentially sub-plans that exist in peer nodes and guide the processing of a
query through the network. Furthermore, ubQL [51] provides a suite of process manipulation
primitives that can be added on top of any traditional query language to support distributed
query optimization. ubQL distinguishes the deployment from the execution phase of a query and
supports adaptability of query plans during the execution phase. Both approaches require an a
priori knowledge of the relevant to a query peers. However, this knowledge is not available in
P2P database systems.

Mutant Query Plans (MQPs) [47] are logical query plans, where leaf nodes may consist of
URN/URL references, or of materialized XML data. The references to resource locations (URLs)
refer to peers where the actual data reside, while the abstract resource names (URNs) can be seen
as the thematic topics of the requested data in a SON. MQPs are themselves serialized as XML
elements and are exchanged among the peers. When a peer N receives a MQP M, N can resolve
URN references, materialize URL references, evaluate or re-optimize MQP sub-plans, or just
route M to another peer. When a MQP is fully evaluated, i.e., is reduced to XML code only, the
result is returned to the target peer, which has initiated the query. The efficient routing of MQPs
is preserved by information derived from multi-hierarchic topic namespaces, e.g., for educational
material on computer science and for geographical information. Unlike SQPeer, this approach
reduces the optimization opportunities of MQP by simply migrating possibly big XML fragments
of partially evaluated query plans. In addition, it is not clear how sub-topics are employed for
query routing.

AmbientDB [13] addresses P2P data management issues in a digital environment, i.e., audio
players exchanging music collections. AmbientDB assumes the existence of a common global
schema. However, each client-peer may contain its own schema as long as it provides the necessary
mappings to the global one. The query processing mechanism is based on a three-level translation
of a global query algebra into multi-wave stream processing plans, distributed over an ad-hoc
and self-organizing P2P network. AmbientDB relies on the standard relational data model and
algebra. Initially, a user query is posed in the “abstract global algebra” providing the standard
relational operators for selection, join, aggregation and sort over abstract table types, i.e., the
relational tables that need to be contacted. Then, this abstract query plan becomes concrete by
instantiating the abstract table types with concrete ones, i.e., the local or distributed tables that
exist in the peer bases. Finally, at the execution level, the concrete query plan is executed by
selecting between different query execution strategies. AmbientDB P2P protocol is responsible
for the query routing and relies on temporary (logical) routing trees, which are created on-the-fly
and are subgraphs of the Chord network. Chord can also be used to implement clustered indices
of distributed tables in AmbientDB as Distributed Hash Tables (DHTs). Each AmbientDB peer
contains the index table partition that corresponds to it after hashing the key-values of all tuples
in the distributed table. The user decides for the use of such DHTs, thus accelerating relevant
lookup queries. The proposed routing protocol works in a global-schema environment, where
the necessary mappings are handled by each peer. In a more complex scenario, where multiple
and different schemas exist and peers pose queries in more than one schemas, a semantics-based
routing functionality is not provided in advance.

Other projects address mainly query routing issues in SONs. In [25] indices are used to identify
peers that can handle containment queries (e.g., in XML). For each keyword in the query, a peer
node searches its indices and returns a set of nodes that can answer it. According to the operators
used to connect these keywords, the peer node decides whether to union or intersect the sets of
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relevant peers. In this approach, queries are directly sent to the set of peers returned by the
routing algorithm with no further details on how a set of semantically related peers can actually
execute a complex query involving vertical and horizontal distribution.

RDFPeers [17] is a scalable distributed RDF repository based on a P2P architecture. RDF-
triple-storing nodes are used to store RDF triples at three peers in the network according to
the subject, the predicate or the object value. An extension to Chord, called Multi-Attribute
Addressable Network (MAAN), is used to store these triples and to route disjunctive, range and
conjunctive multi-predicate queries to the appropriate peers. This approach ignores RDF schema
information in query routing, thus not taking into consideration possible subsumption of classes
or properties. In addition, distributed query processing and execution policies are not addressed.

The Edutella project [44] explores the design and implementation of a schema-based P2P in-
frastructure for the Semantic Web. In Edutella, peer content is described by different and exten-
sible RDF schemas. Super-peers are responsible for message routing and integration/mediation
of peer bases. The routing mechanism is based on appropriate indices to route a query initially
within the super-peer backbone and then between super-peers and their respective peers. A
query processing mechanism in such a schema-based P2P system is presented in [16]. Query
evaluation plans (QEPs) containing selection predicates, compression functions, joins, etc., are
pushed from clients to simple or super-peers where they are executed. Super-peers dispose an
optimizer for generating partial query plans determining the parts of the query to be sent to
the next (super-)peers and the operators to be locally executed for combining the results. The
proposed query processing facility does not take into account the possible existence of subsump-
tion relationships of RDF classes and properties. Additionally, this approach does not consider
run-time adaptability of query plans.

Although the use of indices and super-peer topologies facilitate query routing, the cost of
maintaining (XML or RDF) indices in each peer is important compared to the cost of maintaining
active-schemas (i.e. views), as in the case of SQPeer.

6 Summary and Future Work

We have presented RVL, a language that brings a new kind of capability to the management
of RDF/S metadata: users can create virtual schemas and resource descriptions customized
to the needs of specific applications. By distinguishing the abstraction layers in an RDF/S
application and by exploiting the RQL type system, RVL realizes virtual schema creation as the
instantiation of appropriate metaclasses and achieves its target functionality through the use of
only two operators: the instantiation and the subsumption operators.

Several issues need to be dealt with in order to fully support a view definition mechanism
for RDF/S. An important issue is checking the consistency of view specifications, i.e., checking
whether the graph they produce satisfies the constraints of our model. We wish to develop
methods for consistency checking that avoid the naive approach, in which the entire view data
is constructed and then validated. Furthermore, although we have argued for the benefits of
defining virtual views, it is possible to implement an RVL engine that would actually compute
and materialize the views. Such a capability would be of interest in metadata transformation
applications where, for example, subsidiary but independently functioning portals are created
from a given central one. This raises the classical problem of maintenance/update of materialized
views, a complex problem long pondered upon by the database community. In the context of

39



RDF/S, this problem is even more interesting, due to the peculiarities of the data model.

Additionally, more issues remain open and require further investigation. Specifically, the cases
dealt with in this deliverable are conjunctive RQL queries and conjunctive RVL view definitions.
In both these cases, we obtain a translation into non-recursive Datalog programs, to which we can
apply well-known optimization techniques. We intend to study the conditions under which similar
results can be obtained for a broader class of RQL queries and RVL view definitions. Another
issue is the exploitation of existing knowledge about the source schemas and data in order to
perform further optimizations during the reformulation process. The RQL/RVL internal model
can also accommodate constraints, such as those expressible in OWL [22]. It will be interesting
to study the optimization potential that stems from the use of such constraints (e.g., uniqueness
or disjointness constraints) in query reformulation and minimization.

There is a need for sophisticated RQL/RVL query routing and processing middleware to
implement the query service in SeLeNe. To address these issues in the most difficult architectural
alternative, i.e., an autonomic scenario, we have presented the SQPeer middleware. We discussed
how conjunctive RQL queries expressed against a SON RDF/S schema are represented as semantic
query patterns. For peer base advertisement we employ active-schemas, which denote the parts
of a SON RDF/S schema which is actually (or can be) populated in a peer base. We sketch a
semantic query routing algorithm which relies on query/view subsumption techniques to produce
semantic query patterns annotated with routing information. We also demonstrate how SQPeer
query plans are created and executed taking into account the data distribution in peer bases.
Finally, we have discussed several compile and run-time optimization opportunities for SQPeer
query plans, as well as possible architectural alternatives.

Finally, several issues remain open with respect to the implementation of the ICS-FORTH
SQPeer middleware. Further research should be done on the optimization of distributed and
adaptive queries in SQPeer borrowing ideas from related works [7] [46] [30]. We plan to study
the trade-off between result completeness and processing load using the concepts of Top N (or
Bottom N) queries [40]. In the same direction, we can use constraints regarding the number of
peer nodes that each query is broadcasted and further processed.
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Appendix: RVL Typing Rules

The type system foreseen by RQL [33] specifies a set of types, namely the metaclass of classes

(MC) (τMc
), metaclass of properties (MP) (τMp

), class (τC), property (τP [τ, τ ]), resource
URIs (τU ), literal (τL) (XML Schema data types), bag ({.}), sequence ([.]) and alternative

((.)) types. The notation τP [τ, τ ] for property types indicates the exact type of its domain
(metaclass and class types) and range (metaclass, class and literal types) (first and second position
in the sequence). For brevity, we use the notation τP for property types. RVL extends this
type system by specifying two more metaschema types, ωC and ωP , used by the instantiation
operator to create user-defined metaclasses of classes and properties, respectively. The restrictions
and inferences specified by RVL are captured by the typing rules presented in Table 1 (in the
Appendix). Each rule represents the drawing of a conclusion (the part below the horizontal line)
on the basis of a premise (the part above the horizontal line). For instance, rule 12 states that:
“If e is an expression of property type and e1 and e2 are expressions of types τ1 (resource, class
or property) and τ2 (resource, class, property or literal) respectively, then e(e1,e2) is a valid
expression of type sequence of types τ1 and τ2. Otherwise, a type error is returned”.
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Table 1: RVL Typing Rules
Operation Typing Rule

MC creation
e1 :ωC , e2 :τ, τ ∈{string,τMc

,τMp
,τC ,τP ,τU}

e1(e2) : τMc

(1)

MP creation
e1 :ωP , e2 :τ, τ ∈{string,τMc

,τMp
,τC ,τP ,τU}

e1(e2) : τMp

(2)

Class creation
e1 :τMc

, e2 :τ, τ ∈{string,τMc
,τMp

,τC ,τP ,τU}
e1(e2) : τC

(3)

Property Creation

e :τMp
, e1 :τ1, τ1∈{string,τMc

,τMp
,τC ,τP}

e2 :τ2, τ2∈{τMc
,τMp

,τC}, e3 :τ3, τ3∈{τMc
,τMp

,τC ,τL}
e(e1, e2, e3) : τP [τ2, τ3]

(4)

MC subsumption
e1 :τMc

, e2 :τMc

e1 < e2 >: [τMc
, τMc

]
(5)

MP subsumption
e1 :τMp

, e2 :τMp

e1 < e2 >: [τMp
, τMp

]
(6)

Class subsumption
e1 :τC , e2 :τC

e1 < e2 >: [τC , τC ]
(7)

Property Subsumption
e1 :τP , e2 :τP

e1 < e2 >: [τP , τP ]
(8)

MC population
e1 :τMc

, e2 :τC

e1(e2) : τC

(9)

MP population
e1 :τMp

, e2 :τP

e1(e2) : τP

(10)

Class population
e1 :τC , e2 :τU

e1(e2) : τU

(11)

Property population
e :τP , e1 :τ1, τ1∈{τU ,τC ,τP}, e2 :τ2, τ2∈{τU ,τC ,τP ,τL}

e(e1, e2) : [τ1, τ2]
(12)
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