
An Algebraic Approach for Specifying Compound
Terms in Faceted Taxonomies

Yannis Tzitzikas 1,5, Anastasia Analyti2, Nicolas Spyratos3,
Panos Constantopoulos2,4

1 Istituto di Scienza e Tecnologie dell’ Informazione, CNR-ISTI, Italy
2 Institute of Computer Science, ICS-FORTH, Greece

3 Laboratoire de Recherche en Informatique, Universite de Paris-Sud, France
4 Department of Computer Science, University of Crete, Greece

Email : tzitzik@isti.cnr.it, {analyti, panos}@ics.forth.gr, spyratos@lri.fr

Abstract. A faceted taxonomy is a set of taxonomies, each describing a given do-

main from a different aspect, or facet. The indexing of domain objects is done through

conjunctive combinations of terms from the facets, called compound terms. A faceted

taxonomy has several advantages over a single hierarchy of terms, including concep-

tual clarity, compactness and scalability. A drawback, however, is the cost of avoiding

invalid combinations, i.e. compound terms that do not apply to any object in the

domain. This need arises in both indexing and retrieval, and typically involves hu-

man effort for specifying the valid compound terms one by one. We here propose a

compound term composition algebra which can be used to generate valid compound

terms in a given faceted taxonomy in an efficient and flexible manner. It works on

the basis of the original simple terms of the facets and a small set of positive and/or

negative statements. In each algebraic operation, we adopt a closed-world assumption

with respect to the declared positive or negative statements. The taxonomy algebra

can be exploited in dynamically generating navigation trees, a significant browsing

aid.

1 Introduction

There are several application areas where a taxonomy is used for indexing the objects of a
knowledge domain (e.g. documents, books, product descriptions, Web pages). For instance,
Web catalogs, such as Yahoo! or Open Directory, use taxonomies, for indexing the pages
of the Web. These catalogs turn out to be very useful for browsing and querying the Web.
Although they index only a fraction of the pages that are indexed by search engines using
statistical methods (e.g. Google, AltaVista), they are hand-crafted by domain experts and
are therefore of high quality. Recently, the various search engines have begun to exploit these
catalogs in order to enhance the quality of retrieval and also to offer new functionalities.
Specifically, search engines now employ catalogs for computing ”better” degrees of relevance,
and for determining (and presenting to the user) a set of relevant pages for each page in the
answer set. In addition, some search engines (e.g. Google) now employ taxonomies in order to
enable limiting the scope (or defining the context) of search. For example, using Google, one
can first select a category, e.g. Sciences/CS/DataStructures, from the taxonomy of Open
Directory and then submit a natural language query, e.g. ”Tree”. The search engine will
compute the degree of relevance, with respect to the natural language query, ”Tree”, only of
those pages that fall in the category Sciences/CS/DataStructures in the catalog of Open

5Work done during the postdoctoral studies of the author at CNR-ISTI as an ERCIM fellow. The first part
of this work was done when the author was at ICS-FORTH.

1

Directory. Clearly, this enhances the precision of retrieval and reduces the computational cost
(e.g. see [8], [5]).
A taxonomy is a hierarchically-organized set of terms. In designing a taxonomy, one has

to define (a priori) appropriate terms and their subterms, according to various criteria. One
basic criterion is that each term must be valid, in the sense that it applies to, or indexes, at
least one object of the underlying domain. However, as pointed out long ago [7], the design
of a taxonomy can be done in a more convenient and a more systematic manner, if we first
identify a number of different aspects, or facets, of the domain and then design one taxonomy
per aspect. This process results in a faceted taxonomy, i.e. a set of taxonomies, called facets.
For example, assume that the domain of interest is a set of hotel Web pages in Greece, and

suppose that we want to provide access to these pages according to the Location of the hotels
and the Sports facilities they offer. Figure 1 shows these two facets. Each object is described
using a compound term, i.e., a set of terms containing one or more terms from each facet. For
example, a hotel in Crete providing sea ski and wind-surfing facilities would be described by
the compound term {Crete, SeaSki, Windsurfing}.

WindsurfingSeaSki

Sports

WinterSportsSeaSports

Sports

SnowSki SnowBoard

Mainland

Macedonia Ipiros

Islands

Cephallonia

Location

Crete

Location

Figure 1: Two facets

The use of a faceted taxonomy, i.e. of a set of taxonomies, instead of a single taxonomy, for
indexing the objects of interest, has several consequences. For example, consider two schemes
for describing the objects of a domain, one using a single taxonomy consisting of 100 terms,
and the other using a faceted taxonomy consisting of 10 facets each having 10 terms. The first
scheme has 100 indexing terms while the second has 1010, i.e. 10 billion, compound indexing
terms! Although both schemes have the same storage requirements, i.e. each one requires
storing 100 terms, the indexing terms of the second scheme are tremendously more than the
indexing terms of the first.
Overall, a faceted taxonomy has several advantages by comparison to a single hierarchical

taxonomy, such as conceptual clarity, compactness and scalability (e.g. see [6]). Unfortunately,
faceted taxonomies also have a serious drawback. Indeed, assuming that each facet has been
designed correctly, every single term will be valid. However, even if this assumption holds for
every term in every facet, it may not hold for every conceivable compound term. That is,
there may exist invalid compound terms, in the sense that there is no object of the underlying
domain indexed by all of their terms. For example, it may very well be that the terms Crete
(from Location) and SnowBoard (from Sports) are each valid, i.e., there are hotels located in
Crete and there are hotels that offer snow-board facilities. However, this does not guarantee
that the compound term {Crete, SnowBoard} is valid. In fact, there is no hotel in Crete
offering snow-board facilities. It follows that not all compound terms of a faceted taxonomy
are valid, even if each term of every facet is valid.
Invalid compound terms cause serious problems in indexing and browsing that prevent the

design and deployment of faceted taxonomies for real and large scale applications. Being able
to infer the valid compound terms of a faceted taxonomy would be very useful. It could be
exploited in the indexing process in order to aid the indexer and prevent indexing errors.
Such an aid is especially important in cases where the indexing is done by many people who
are not domain experts. For example, the indexing of Web pages in the Open Directory
(which is used by Netscape, Lycos, HotBot and several other search engines) is done by more
than 20.000 volunteer human editors (indexers). On the other hand, the inability to infer

2

valid compound terms may give rise to problems in browsing, as an invalid term will yield no
objects. However, if we could infer the valid compound terms in a faceted taxonomy then we
would be able to generate navigation trees on the fly, having only valid compound terms as
nodes.
The main goal of this paper is precisely to propose an algebra whose operators allow the

efficient and flexible specification of compound terms, thus alleviating the main drawback
of faceted taxonomies. Following our approach, given a faceted taxonomy, one can use an
algebraic expression to define the desired set of compound terms. In each algebraic operation,
the designer has to declare either a small set of valid compound terms from which other valid
compound terms are inferred, or a small set of invalid compound terms from which other
invalid compound terms are inferred. Then, a closed-world assumption is adopted for the
rest of the compound terms. In our example, this means that the designer can specify the
large number of valid compound terms of a faceted taxonomy by providing a relatively small
number of (valid or invalid) compound terms. This is an important feature as it minimizes the
effort needed by the designer. A distinctive feature of our approach is that there is no need to
store the set of compound terms defined by the expression. We only have to store the defining
expression as we provide an inference mechanism which can check whether a compound term
belongs to the result of an expression. Thus the compound taxonomies defined by our algebra
have low storage space requirements.
The remaining of this paper is organized as follows: Section 2 describes formally taxonomies,

compound taxonomies and facets. Section 3 describes the proposed algebra, and Section 4
illustrates its application by an example. Section 5 provides an inference mechanism for check-
ing whether a compound term belongs to the compound taxonomy defined by an algebraic
expression. Section 6 describes a mechanism for generating navigation trees. Finally, Section
7 discusses applications and concludes the paper. All proofs are given in the extended version
of this paper ([10]).

2 Taxonomies, Compound Taxonomies and Facets

Def 2.1 A terminology is a finite set of names, called terms.

Def 2.2 A taxonomy is a pair (T ,≤), where T is a terminology and ≤ is a reflexive and
transitive relation over T , called subsumption.

If a and b are terms of T and a ≤ b then we say that a is subsumed by b, or that b subsumes
a. We also say that a is narrower than b, or that b is broader than a. For example, Databases
≤ Informatics. We say that two terms a and b are equivalent, and write a ∼ b, if both a ≤ b
and b ≤ a hold, e.g., Computer Science ∼ Informatics. Note that the subsumption relation
is a preorder over T and that ∼ is an equivalence relation over the terms of T . Moreover ≤
is a partial order over the equivalence classes of terms.
When using diagrams to depict a taxonomy, such as the ones of Figure 1, term subsumption

is indicated by a continuous-line arrow from the narrower term to the broader term. Note that
we do not represent the entire subsumption relation but only a subset sufficient for generating
it. In particular, we do not represent the reflexive nor the transitive arrows of the subsumption
relation. Equivalence of terms is indicated by a continuous non-oriented line segment. In what
follows, we shall often write T instead of (T ,≤), whenever no ambiguity is possible.
We now introduce the concept of compound taxonomy, a basic concept for the rest of this

paper. First, we define compound terms over a given taxonomy and their ordering. In all
definitions that follow, we assume an underlying taxonomy (T ,≤).

Def 2.3 A compound term over T is any subset of T .

3

For example, the following sets of terms are compound terms over the taxonomy Sports of
Figure 1: s1 = {SeaSki, Windsurfing}, s2 = {SeaSports, WinterSports}, s3 = {Sports},
and s4 = ∅.
We denote by P (T) the set of all compound terms over T (i.e. the powerset of T).

Def 2.4 A compound terminology S over T is any set of compound terms that contains the
compound term ∅.

Clearly, P (T) is a compound terminology over T . The set of all compound terms over T
can be ordered using the following ordering derived from ≤.

Def 2.5 Let s, s′ be two compound terms over T . The compound ordering over T is defined
as follows: s � s′ iff ∀t′ ∈ s′ ∃t ∈ s such that t ≤ t′

That is, s � s′ iff s contains a narrower term for every term of s′. In addition, s may con-
tain terms not present in s′. Roughly, s � s′ means that s carries more specific information
than s′. Figure 2.(a) shows the compound ordering over the compound terms of our previous
example. Note that s1 � s3, as s1 contains SeaSki which is a term narrower than the unique
term Sports of s3. On the other hand, s1 �� s2, as s1 does not contain a term narrower than
WinterSports. Finally, s2 � s3 and s3 � ∅. In fact, s � ∅, for every compound term s.

(b)

{SeaSports}

{Sports}
{Sports}
s3

s1

{SeaSports, WinterSports}
s2

(a)

{SeaSki, Windsurfing}
{Greece,Sports}

{Greece}

{Greece,SeaSports}

Figure 2: Two examples of compound taxonomies

Clearly, � is a reflexive and transitive relation over S. Also note that while the relation ≤
is provided explicitly by the designer of the taxonomy T , the relation � is derived from ≤
according to the previous definition.
We say that two compound terms s, s′ are equivalent iff s � s′ and s′ � s. For example,

{SeaSki, SeaSports} and {SeaSki} are equivalent. Intuitively, equivalent compound terms
carry the same information.

Def 2.6 A compound taxonomy over T is a pair (S,�), where S is a compound terminology
over T , and � is the compound ordering over T restricted to S.

Figure 2 shows two example compound taxonomies.
Clearly, (P (T),�) is a compound taxonomy over T . Let s be a compound term. The broader

and the narrower compound terms of s are defined as follows:

Br(s) = {s′ ∈ P (T) | s � s′}
Nr(s) = {s′ ∈ P (T) | s′ � s}

Let S be a compound terminology over T . The broader and the narrower compound terms
of S are defined as follows:

Br(S) = ∪{Br(s) | s ∈ S}
Nr(S) = ∪{Nr(s) | s ∈ S}

4

As already mentioned, one way of designing a taxonomy is by identifying a number of different
aspects of the domain of interest and then designing one taxonomy per aspect. As a result
we obtain a set of taxonomies called facets. Given a set of facets we can define a faceted
taxonomy.

Def 2.7 Let {F1, ..., Fk} be a finite set of taxonomies, where Fi = (T i,≤i), and assume
that the terminologies T 1, ... ,T k are pairwise disjoint. Then the pair F = (T ,≤), where
T =

⋃k
i=1T i and ≤ =

⋃k
i=1 ≤i, is a taxonomy which we shall call the faceted taxonomy

generated by {F1, ..., Fk}. We shall call the taxonomies F1, ..., Fk the facets of F .

It is common practice to refer to a facet through its top term. For example, we refer to the
facets of Figure 1 as Location and Sports. Clearly, all definitions introduced so far apply
also to faceted taxonomies. In particular, compound terms can be derived from a faceted
taxonomy. For example, the set S = {{Greece}, {Sports}, {SeaSports},
{Greece, Sports}, {Greece, SeaSports}, ∅}, is a compound terminology over the terminology
T of the faceted taxonomy shown in Figure 1. The set S together with the compound ordering
of T (restricted to S) is a compound taxonomy over T . This compound taxonomy is shown
in Figure 2.(b). For reasons of brevity, hereafter we shall omit the term ∅ from the compound
terminologies of our examples and figures.
We say that a compound term s is valid (resp. invalid), if there is at least one (resp. no)

object of the underlying domain indexed by all terms in s. We assume that every term of T is
valid. However, a compound term over T may be invalid. Obviously, if s is a valid compound
term, all compound terms in Br(s) are valid. Additionally, if s is an invalid compound term,
all compound terms in Nr(s) are invalid. The formal definition of validity is given in [10].

3 The Compound Term Composition Algebra

Let F= (T ,≤) be the faceted taxonomy generated by a given set of facets {F1, ..., Fk}. The
problem is that F does not itself specify which compound terms, i.e. which elements of P (T),
are valid and which are not. To alleviate this problem, we introduce a method for defining a
compound terminology over T (i.e. a subset of P (T)) which consists of the desired compound
terms, i.e. those that the designer considers as valid.
The main tool for accomplishing this task is an algebra that we now define. To begin with

we associate the terminology T i of every facet with a compound terminology Ti that we call
the basic compound terminology of T i.

Def 3.1 Let Fi = (T i,≤) be a facet. The basic compound terminology of T i is the compound
terminology:

Ti = ∪{ Br({t}) | t ∈ T i}

As every term t of a facet is considered valid, all compound terms in Br({t}) are valid. Thus,
Ti is the set of compound terms over T i that are initially known to be valid. We use the basic
compound terminologies as the “building blocks” of our algebra.

Let S denote the set of all compound terminologies over T . We define an algebra over S,
which includes four operations and compound terminologies as operands. Compound terms
can be formed by combining terms from different facets, but also terms from the same facet.
A binary product operation and a unary self-product operation are defined to generate term
combinations respectively. Since not all term combinations are valid, the issue is how to
employ available domain knowledge in order to specify only valid compound terms. Such
knowledge may be available in positive or negative form: combinations known to be valid or
invalid. The issue is dealt by defining more general operations that include positive or negative
modifiers, which are sets of known valid or known invalid compound terms. The unmodified

5

product and self-product operations turn out to be special cases with the modifiers at certain
extreme values. Thus, the four operations of the algebra are: plus-product, minus-product,
plus-self-product and minus-self product.
For defining the desired compound taxonomy the designer has to formulate an algebraic

expression e, using these operations and initial operands the basic compound terminologies
{T1, .., Tk}.
Before we describe each operation in detail, we define the auxiliary binary operation ⊕ over

S, i.e. ⊕ : S × S → S, called product.

Def 3.2 Let S and S′ be two compound terminologies (S, S′ ∈ S). The product of S and S′,
denoted by S ⊕ S′, is defined as follows:

S ⊕ S′ = {s ∪ s′ | s ∈ S, s′ ∈ S′}

This operation results in an “unqualified” compound terminology whose compound terms are
all possible unions of compound terms from its arguments. The compound terms of the result
are ordered according to the compound ordering (see Definition 2.5). For example, consider
the compound terminologies S = {{Greece}, {Islands}} and S′ = {{Sports}, {SeaSports}}.
The compound taxonomy corresponding to S⊕S′ is shown in Figure 3, and consists of 8 terms.
Recall that for reasons of brevity, we omit the term ∅ from the compound terminologies of
our examples (∅ is an element of S, S′ and S ⊕ S′). It can be easily seen that the product
operation is commutative and associative and that it can be easily extended to an n-ary
operation: S1 ⊕ ... ⊕ Sn = { s1 ∪ ... ∪ sn | si ∈ Si}. Additionally, as ∅ ∈ S, S′, it holds that
S, S′ ⊆ S ⊕ S′.

S

{Sports}

{SeaSports}

S S’ S’

{SeaSports}

{Sports}{Greece}

{Islands}

{Greece,Sports}

{Greece}

{Islands}

{Islands,Sports} {Greece,SeaSports}

{Islands,SeaSports}

Figure 3: An example of a product ⊕ operation

Below we describe each operation of our algebra in detail.

3.1 The plus-product and the minus-product operations

Consider the compound terminologies S and S′ shown in the upper part of Figure 4, and
suppose we want to define a compound terminology that does not contain the compound
terms {Islands, WinterSports} and {Islands, SnowSki}, because they are invalid. For this
purpose we introduce two ”variations” of the ⊕ operation, namely the plus-product and the
minus-product. Each of these two operations has an extra parameter denoted by P and N ,
respectively. The set P is a set of compound terms that we certainly want to appear in the
result of the operation, i.e. they are valid. On the other hand, the set N is a set of compound
terms that we certainly do not want to appear in the result of the operation, i.e. they are
invalid.
To proceed we need to distinguish what we shall call genuine compound terms. Intuitively, a

genuine compound term combines non-empty compound terms from more than one compound
terminologies.

6

Def 3.3 The set of genuine compound terms over a set of compound terminologies S1, ..., Sn,
denoted by GS1,...,Sn , is defined as follows:

GS1,...,Sn = S1 ⊕ ... ⊕ Sn −
n⋃

i=1

Si

For example if S1 = {{Greece}, {Islands}}, S2 = {{Sports}, {WinterSports}}, and
S3 = {{Pensions}, {Hotels}} then

{Greece, WinterSports, Hotels} ∈ GS1,S2,S3 ,

{WinterSports, Hotels} ∈ GS1,S2,S3 , but
{Hotels} �∈ GS1,S2,S3

Assume that the compound terms of S1, ..., Sn are valid. We are interested in characterizing
the validity of all combinations of compound terms of S1, ..., Sn. As we already know the
validity of the compound terms of S1, ..., Sn, we are basically interested in characterizing the
validity of the compound terms in GS1,...,Sn . This is done through the following operations,
plus-product and minus-product.

We can now define the plus-product operation, ⊕P , an n-ary operation over S (⊕P : S × ...×
S → S), where the parameter P is a set of valid compound terms from the product of the
input compound terminologies. The set P is a subset of GS1,...,Sn (i.e., P ⊆ GS1,...,Sn), as we
already know that all compound terms in

⋃n
i=1 Si are valid.

Def 3.4 Let S1, ..., Sn be compound terminologies and P ⊆ GS1,...,Sn . The plus-product of
S1, ..., Sn with respect to P , denoted by ⊕P (S1, ..., Sn), is defined as follows:

⊕P (S1, ...Sn) = S1 ∪ ... ∪ Sn ∪ Br(P)

This operation results in a compound terminology consisting of the compound terms of the
initial compound terminologies, plus the compound terms which are broader than an element
of P . This is because, all compound terms in S1 ∪ ...∪ Sn ∪ Br(P) are valid. By adopting a
closed-world assumption, all compound terms in S1⊕...⊕Sn−⊕P (S1, ...Sn) = GS1,...,Sn−Br(P)
are invalid.
For example, consider the compound terminologies S and S′ of Figure 4 and suppose

that P = {{Islands, Seasports}, {Greece, SnowSki}}. The compound taxonomy of the
operation ⊕P (S, S′) is shown in Figure 4. In this figure we enclose in squares the ele-
ments of P . We see that the compound terminology ⊕P (S, S′) contains the compound term
s = {Greece, Sports}, as s ∈ Br({Islands, SeaSports}). However, it does not contain the
compound terms {Islands, WinterSports} and {Islands, SnowSki} as they do not belong
to S ∪ S′ ∪ Br(P).
The following proposition gives two simplifications of the operation for the two extreme

values of the P parameter. The first property says that the product is a special case of the
plus-product, while the second property says that if P = ∅ then the plus-product operation
defines a compound terminology that contains only the compound terms of the operands.

Prop. 3.1 Given compound terminologies Si, i = 1, ..., n,

(1) If P = GS1,...,Sn then ⊕P (S1, ..., Sn) = S1 ⊕ ... ⊕ Sn, and

(2) if P = ∅ then ⊕P (S1, ..., Sn) =
⋃n

i=1 Si.

Now we define the minus-product operation, N , an n-ary operation over S (N : S×...×S →
S), where the parameter N is a set of invalid compound terms from the product of the input
compound terminologies. The set N is a subset of GS1,...,Sn (i.e., N ⊆ GS1,...,Sn), as all
compound terms in

⋃n
i=1 Si are valid.

7

{SeaSports}

(S,S’)S’S

{SnowSki}

P

{WinterSports}{SeaSports}

{WinterSports}

{Sports}

P

{Islands}

{Sports}

{SnowSki}

{Greece,Sports}

{Greece,SeaSports}{Islands,Sports}

{Islands,SeaSports}

{Greece}

{Islands}

{Greece,WinterSports}

{Greece}

{Greece,SnowSki}

 ={{Islands,SeaSports},
{Greece, SnowSki}}

Figure 4: An example of a plus-product, ⊕P , operation

Def 3.5 Let S1, ..., Sn be compound taxonomies and N ⊆ GS1,...,Sn . The minus-product of
S1, ..., Sn with respect to N , denoted by N (S1, ..., Sn), is defined as follows:

N (S1, ...Sn) = S1 ⊕ ... ⊕ Sn − Nr(N)

This operation results in a compound terminology consisting of all compound terms in the
product of the initial compound terminologies, minus all compound terms which are narrower
than an element of N . This is because, all compound terms in Nr(N) are invalid. By adopting
a closed-world assumption, all compound terms in N (S1, ...Sn) = S1 ⊕ ...⊕ Sn −Nr(N) are
valid.
For example, consider the compound terminologies S and S′ of the previous example and

suppose that N = {{Islands, WinterSports}}. The result of the operation N (S, S′) is
shown in Figure 5. We see that the compound terminology N (S, S′) does not contain the
compound terms {Islands, WinterSports} and {Islands, SnowSki}, as they are elements of
Nr(N). Notice that the compound taxonomies of figures 4 and 5 coincide. These examples
demonstrate two alternative ways of defining the desired compound taxonomy.

(S,S’) NS

{Sports}

{SnowSki}

N

{WinterSports}{SeaSports}

{SeaSports}{Islands} {WinterSports}

{Sports}

S’

{Greece,Sports}

{Islands,SeaSports}

{Greece,WinterSports}{Islands,Sports}{Greece,SeaSports}

{Greece,SnowSki}

{SnowSki}

{Greece}

{Islands}

{Greece}

={{Islands,WinterSports}}

Figure 5: An example of a minus-product, N , operation

The following proposition gives two simplifications of the operation for the two extreme
values of the N parameter. Note that these two simplifications are the opposite of these of
the ⊕P operation, given in Proposition 3.1.

Prop. 3.2 Given the compound terminologies Si, i = 1, ..., n,

(1) If N = GS1,...,Sn then N (S1, ..., Sn) =
⋃n

i=1 Si, and

(2) if N = ∅ then N (S1, ..., Sn) = S1 ⊕ ... ⊕ Sn.

8

3.2 The Self-product operations

The operators introduced so far allow defining a compound terminology which consists of
compound terms that contain at most one compound term from each basic compound ter-
minology. However, a valid compound term may contain any set of terms of the same facet
(multiple classification). To capture such cases, we define the self-product,

∗
⊕, a unary opera-

tion which gives all possible compound terms of one facet. Subsequently, we shall modify this
operation with the parameters P and N .
Let BS be the set of basic compound terminologies, that is BS= {T1, ..., Tk}.

Def 3.6 Let Ti be a basic compound terminology. The self-product of Ti, denoted by
∗
⊕ (Ti),

is defined as:
∗
⊕ (Ti) = P (Ti).

In the above definition, P (Ti) denotes the powerset of the terminology Ti, not the powerset
of the basic compound terminology Ti.
For example, consider the facet Sports of Figure 1. The compound terms {SeaSports, WinterSports}

and {SeaSki, Windsurfing, WinterSports} are elements of
∗
⊕ (Sports).

The notion of genuine compound terms is also necessary here.

Def 3.7 The set of genuine compound terms over a basic compound terminology Ti, denoted
by GTi , is defined as follows: GTi =

∗
⊕ (Ti) − Ti

Now we define the plus-self-product operation,
∗
⊕P , a unary operation (

∗
⊕P : BS → S) where

the parameter P is a set of compound terms that we want to appear in the result of the
operation. The set P is a subset of GTi .

Def 3.8 Let Ti be a basic compound terminology and P ⊆ GTi . The plus-self-product of Ti

with respect to P , denoted by
∗

⊕P (Ti), is defined as follows:
∗
⊕P (Ti) = Ti ∪ Br(P)

This operation results in a compound terminology consisting of the compound terms of
the initial basic compound terminology, plus all compound terms which are broader than an
element of P . For example, the result of the operation

∗
⊕P (Sports), where

P = {{SeaSki, Windsurfing}, {SnowSki, SkiBoard}} is shown in Figure 6. The analogous

of Prop. 3.1 with regard to the extreme cases of P holds, namely,
∗
⊕GTi

(Ti) =
∗
⊕ Ti and

∗
⊕∅= Ti.

P
{Sports}

{SnowBoard}{SeaSki}{Windsurfing}{SnowSki}

{SeaSports} {WinterSports}

{SnowSki}{Windsurfing}{SeaSki} {SnowBoard}

{Sports}

(Sports)Sports
P

{WinterSports}{SeaSports}

Windsurfing}
{SnowSki,
SnowBoard}

{SeaSki,

={{SeaSki,Windsurfing},
{SnowSki,SkiBoard}}

Figure 6: An example of a plus-self-product,
∗
⊕P , operation

The following definition introduces the minus-self-product operation,
∗
⊕N , a unary operation

(
∗
N : BS → S) where the parameter N is a set of compound terms that we do not want to

appear in the result of the operation. The set N is a subset of GTi .

9

Def 3.9 Let Ti be a basic compound terminology and N ⊆ GTi . The minus-self-product of

Ti with respect to N , denoted by
∗
N (Ti), is defined as follows:
∗
N (Ti) =

∗
⊕ (Ti) − Nr(N)

This operation results in a compound terminology consisting of all compound terms in the
self-product of Ti, minus the compound terms which are narrower than an element in N . For
example, we can obtain the compound terminology of Figure 6 by the operation

∗
N (Sports),

where N = {{SeaSports, WinterSports}}. Concerning the extreme cases of N , the analogous

of Prop. 3.2 holds:
∗
GTi

(Ti) = Ti, and
∗
∅ (Ti) =

∗
⊕ Ti.

3.3 Algebraic Expressions

For defining the desired compound taxonomy, the designer has to formulate an expression e,
where an expression is defined as follows:

Def 3.10 An expression over a set of facets {F1, ..., Fk} is defined according to the following
grammar:

e ::= ⊕P (e, ..., e) | N (e, ..., e) |
∗
⊕P Ti |

∗
N Ti | Ti

The outcome of the evaluation of an expression e is denoted by Se and is called the compound
terminology of e, and any element of Se is called compound term of e. In addition, (Se,�) is
called the compound taxonomy of e.
All compound terms in Se are valid, and the rest in P (T e)− Se are invalid, where T e is the

union of the terminologies of the facets appearing in e.

We are interested only in well-formed expressions, defined as follows:

Def 3.11 An expression e is well-formed iff:

(i) each basic compound terminology Ti appears at most once in e,

(ii) each parameter P that appears in e, is a subset of the associated set of genuine compound
terms, and

(iii) each parameter N that appears in e, is a subset of the associated set of genuine compound
terms.

For example, the expression (T1 ⊕P T2) N T1 is not well-formed as T1 appears twice in the
expression.
Constraints (i), (ii), and (iii) ensure that we have no conflicts, meaning that the valid and

invalid compound terms of an expression e increase as the length of e increases6. For example,
if we omit constraint (i) then an invalid compound term according to an expression T1 ⊕P T2

could be valid according to a larger expression (T1 ⊕P1 T2) P2 T1. If we omit constraint (ii)
then an invalid compound term according to an expression T1 ⊕P1 T2 could be valid according
to a larger expression (T1 ⊕P1 T2)⊕P2 T3. Additionally, if we omit constraint (iii) then a valid
compound term according to an expression T1 ⊕P T2 could be invalid according to a larger
expression (T1 ⊕P T2) N T3.
This monotonic behaviour in the evaluation of a well-formed expression results in a number of

useful properties, found in [10]. In addition, due to their monotonicity, well-formed expressions
can be formulated in a systematic, gradual manner (intermediate results of subexpressions
are not invalidated by larger expressions).
In this paper, we consider only well-formed expressions. The algorithm needed for check-

ing whether an expression is well-formed, and the model-theoretic semantics of well-formed
algebraic expressions are given in [10].

6Proof of this property is given in [10].

10

4 Example

Suppose that the domain of interest is a set of hotel Web pages and that we want to index
these pages using a faceted taxonomy. First, we must define the taxonomy. Suppose it is
decided to do the indexing according to three facets, namely the location of the hotels, the
kind of accommodation, and the facilities they offer. Specifically, assume that the designer
employs (or designs from scratch) the facets shown in Figure 7.

Location

Ammoudara Hersonissos Furn.
Appartments

Rooms Bungalows

Indoor

Jacuzzi SwimmingPool

Outdoor

Accommodation Facilities

Heraklion

Figure 7: Three-facets

The faceted taxonomy has 13 terms (|T |=13) and P (T) has 890 compound terms7. However,
available domain knowledge suggests that only 96 compound terms are valid. Omitting the
compound terms which are singletons or contain top terms of the facets, the following 23 valid
compound terms remain:

{Heraklion, Furn.Appartments, }, {Heraklion, Rooms},
{Ammoudara, Furn.Appartments}, {Ammoudara, Rooms},
{Ammoudara, Bungalows}, {Hersonissos, Furn.Appartments},
{Hersonissos, Rooms}, {Hersonissos, Bungalows},
{Hersonissos, SwimmingPool}, {Hersonissos, Indoor},
{Hersonissos, Outdoor}, {Ammoudara, Jacuzzi},
{Rooms, SwimmingPool}, {Rooms, Indoor},
{Bungalows, SwimmingPool}, {Bungalows, Outdoor},
{Bungalows, Jacuzzi}, {Hersonissos, Rooms, SwimmingPool},
{Hersonissos, Rooms, Indoor}, {Hersonissos, Bungalows, SwimmingPool},
{Hersonissos, Bungalows, Outdoor}, {Ammoudara, Bungalows, Jacuzzi}.

Rather than being explicitly enumerated, the 96 valid compound terms can be algebraically
specified. In this way, the specification of the desired compound terms can be done in a
systematic, gradual, and easy manner. For example, the following plus-product operation can
be used:

⊕P (Location, Accommodation, Facilities), where

P = {{Heraklion, Furn.Appartments},
{Heraklion,Rooms},
{Ammoudara, Furn.Appartments},
{Ammoudara,Rooms},
{Hersonissos, Furn.Appartments},

7Recall that equivalent compound terms are considered the same. Thus, |P (T)| is not 213 but 890. This is

computed as follows: It holds that |
∗
⊕ (Location) |=8, |

∗
⊕ (Accomodation) | = 8, and |

∗
⊕ (Facilities) | = 10.

Thus, |P (T)| = |(
∗
⊕ (Location)) ⊕ (

∗
⊕ (Accomodation)) ⊕ (

∗
⊕ (Facilities)| | = (8 + 8 ∗ 8 + 8 ∗ 10 + 8 ∗ 8 ∗ 10) +

(8 + 8 ∗ 10) + 10 = 890.

11

{Ammoudara,Bungalows, Jacuzzi},
{Hersonissos,Rooms, Indoor},
{Hersonissos,Bungalows,Outdoor}}

Note that the compound terms in P are only 8. Alternatively, the same result can be obtained
more efficiently through the expression:

(Location N Accommodation) ⊕P Facilities,

where

N = {{Heraklion,Bungalows}}, and
P = {{Hersonissos,Rooms, Indoor},

{Hersonissos,Bungalows,Outdoor},
{Ammoudara,Bungalows, Jacuzzi}}

Note that now the total number of compound terms in P and N is just 4. In summary,
the faceted taxonomy of our example, includes 13 terms, 890 compound terms, and 96 valid
compound terms which can be specified by providing only 4 (carefully selected) compound
terms and an appropriate algebraic expression.

Let us now discuss the methodology for formulating the expression e and the corresponding
parameters P and N . Consider two facets F and F ′. If the majority of the compound terms
over these two facets are valid then it is better to use a minus-product operation so as to
specify only the invalid compound terms. Concerning the defining of the set N , it is more
efficient to put in N ”short” compound terms that consist of ”broad” terms. The reason
is that from such compound terms a large number of new invalid compound terms can be
inferred. Conversely, if the majority of compound terms are invalid, then it is better to
employ a plus-product operation so as to specify only the valid compound terms. Concerning
the definition of the set P , it is more efficient to put in P ”long” compound terms that consist
of ”narrow” terms, since from such compound terms a large number of new valid compound
terms can be inferred.

5 Checking the Validity of a Compound Term

We now turn to the problem of checking whether an arbitrary compound term s (s ∈ P (T))
belongs to the compound terminology Se of a given expression e. The straightforward way
to achieve this is to first compute and store the compound terminology Se and then to check
whether s ∈ Se. However, the number of computations needed for computing Se, as well as
the storage requirements, may be very large. An alternative which we choose is to develop
an algorithm which can check whether s ∈ Se without having to compute Se. Consequently,
only the expression e must be stored.
Below we present the algorithm IsV alid(e, s) which takes as arguments a (well-formed)

expression e and a compound term s, and returns TRUE if s ∈ Se and FALSE otherwise (i.e.
if s �∈ Se). This algorithm has polynomial time complexity, specifically O(|T |3 ∗ |P ∪ N|),
where P denotes the union of all P parameters and N denotes the union of all N parameters
appearing in e (for more see [10]).
To present the algorithm we need some more notations. Let e be an expression over a facet set

{F1, ..., Fk}. The facets of e, denoted by F (e), are defined as: F (e) = {Fi | Fi appears in e}.
Clearly, F (e) ⊆ {F1, ..., Fk}. We shall denote by F (t) the facet to which a term t ∈ T belongs,
e.g. in Figure 1, we have F (Crete) = Location and F (SeaSki) = Sports.

12

Algorithm 5.1 IsV alid(e, s)
Input: An expression e and a compound term s ⊆ T
Ouptut: TRUE if s belongs to Se, or

FALSE, otherwise

if s = ∅ then return (TRUE)
If ∃ t ∈ s such that F (t) �∈ F (e), then return(FALSE)
if s is singleton then return(TRUE)
case(e) {
⊕P (e1, ..., en):

if ∃ p ∈ P such that p � s then return(TRUE)
For i = 1, ..., n

if IsV alid(ei, s) then return(TRUE)
return(FALSE)

⊕N (e1, ..., en): if ∃n ∈ N such that s � n
then return(FALSE)
For i = 1, ..., n

Let si = {t ∈ s | F (t) ∈ F (ei)}
if IsV alid(ei, si)=FALSE then return(FALSE)

return(TRUE)
∗
⊕P (Ti): if ∃p ∈ P such that p � s then return(TRUE)

if s ∈ Ti then return(TRUE)
else return(FALSE)

∗
�N (Ti): if ∃n ∈ N such that s � n then return(FALSE)

else return(TRUE)
Ti: If s ∈ Ti then return(TRUE)

else return(FALSE)
}

The algorithm is based on the parse tree of the expression e. For example, consider the
faceted taxonomy of Figure 7 and assume that the desired compound taxonomy is defined by
the expression e = (Location N Accommodation) ⊕P Facilities, where

N = {{Heraklion, Bungalows}}
P = {{Hersonissos, Rooms, Indoor},

{Hersonissos, Bungalows, Outdoor},
{Ammoudara, Bungalows, Jacuzzi}}

Figure 8 shows the parse tree of this expression.

−

+

Location

N

P
Facilities

Accommodation

Figure 8: The parse tree of an expression

Then, it holds:
IsV alid(e, {Hersonissos, Bungalows, SwimmingPool})=TRUE

IsV alid(e, {Heraklion, Furn.Appartments})=TRUE

The trace of the execution of the call
IsV alid(e, {Hersonissos, Bungalows, SwimmingPool}) is:

13

call IsV alid(e, {Hersonissos, Bungalows, SwimmingPool})
/* ∃p ∈ P s.t. p � {Hersonissos, Bungalows, SwimmingPool} */

return(TRUE)

The trace of the execution of the call IsV alid(e, {Heraklion, Furn.Appartments}) is:

call IsV alid((Location �N Accommodation) ⊕P Facilities, {Heraklion, Furn.Appartments})
/* � ∃p ∈ P s.t. p � {Heraklion, Furn.Appartments} */

call IsV alid((Location �N Accommodation), {Heraklion, Furn.Appartments})
call IsV alid(Location, {Heraklion})

return(TRUE)
call IsV alid(Accommodation, {Furn.Appartments})

return(TRUE)
return(TRUE)

return(TRUE)

Additionally, we give the trace of the execution of the call
IsV alid(e, {Hersonnissos, Bungalows, Jacuzzi}) .

call IsV alid((Location �N Accommodation) ⊕P Facilities, {Hersonnissos, Bungalows, Jacuzzi})
/* � ∃p ∈ P s.t. p � {Hersonissos, Bungalows, Jacuzzi} */

call IsV alid((Location �N Accommodation), {Hersonnissos, Bungalows, Jacuzzi})
return(FALSE)

call IsV alid(Facilities, {Hersonnissos, Bungalows, Jacuzzi})
return(FALSE)

return(FALSE)

6 Generating Navigation Trees

Let e be the expression that defines a desired compound taxonomy (Se,�). In this section
we describe a method for deriving a navigation tree for (Se,�), that can be used during the
following activities:

• Indexing the objects of the domain. This tree can speed up the indexing process and
prevent indexing errors.

• Browsing. This tree can aid the user to reach the objects that satisfy a given information
need.

• Testing whether the compound taxonomy contains only the desired set of compound
terms.

A navigation tree is a directed acyclic graph (N, R) where N is the set of nodes and R is the
set of edges. The nodes in N correspond to valid compound terms. Moreover, N contains
nodes that enable the user to start browsing in one facet and then cross to another, and so
on, until reaching the desired level of specificity.
Let us now introduce some notations. Given a term t, we denote by Brd(t) the set of all terms

that are broader than t, i.e. Brd(t) = {t′ |t ≤ t′}. Given a compound term s = {t1, ..., tk},
let Brd(s) be the set of all terms t such that t is broader than some term ti, i = 1, ..., k, i.e.
Brd(s) = Brd(t1) ∪...∪ Brd(tk). By Brd(s)/ ∼ we denote the set of equivalence classes of
the terms8 in Brd(s). For brevity hereafter we shall use Brd(s) to denote Brd(s)/ ∼.

8Equivalence of terms was defined at the beginning of Section 2.

14

The navigation tree (N, R) that we construct has the following property:

for each compound term s ∈ Se, the navigation tree has a path (starting from
the root) for each topological sort9 of the terms of the directed acyclic graph
(Brd(s), ≤).

For example consider the faceted taxonomy shown in Figure 1, and suppose that
{Crete, SeaSports} ∈ S. The navigation tree in this case will include the following paths:

Location.Islands.Crete.Sports.SeaSports
Location.Islands.Sports.Crete.SeaSports
Location.Islands.Sports.SeaSports.Crete
Location.Sports.Islands.SeaSports.Crete
...
...
Sports.SeaSports.Location.Islands.Crete

As a further user aid whenever facet crossing occurs, a new node is created which presents the
name of the facet (specifically its top term prefixed by the string ”by”) that we are crossing to.
This facet crossing mechanism corresponds to the use of so-called ”guide terms” for thesaurus
expansion.
There are two approaches to deriving the navigation tree. The first approach is to generate

a ”complete” static navigation tree through an algorithm that takes e as input and returns a
navigation tree. The second approach is to design a mechanism that generates the navigation
tree dynamically during browsing.
Without loss of generality below we assume that each facet Fi has a greatest term with

respect to subsumption which we denote by top(Fi). Each node n of the navigation tree
(N, R) is associated with a triple (s(n), F c(n), Nm(n)) where:

• s(n) is a compound term.
As we shall see below, we construct navigation trees with nodes whose compound terms
are valid.

• Fc(n) is a so-called focus term.
The focus term of a node n is a distinguished term among those that appear in s(n)
such that the children of n that are not used for facet-crossing are immediate children
of Fc(n). This means that from n, we either proceed to a different facet or we expand
Fc(n).

• Nm(n) is a name for n.
The name of a node is used for presenting the node at the user interface. It coincides
with the focus term of n, unless n is a node for facet crossing. In the latter case the
name of n is the name of the top term of the facet we are crossing to, prefixed by the
string ”by”.

Below we describe an algorithm which takes as input the expression e that defines the
compound taxonomy and returns a navigation tree (N, R). Roughly, the navigation tree is
constructed as follows: At first we create a node for the top term of each facet that appears
in e. Specifically, for each facet Fi we create a node whose compound term is the top term of
Fi i.e. top(Fi); we set as name and focus term of each such node the term top(Fi). Now, for
each node n we create two groups of children. The compound terms of the nodes in the first
group are the results of replacing the focus term of n (i.e. Fc(n)) by an immediately narrower
term of Fc(n), while the second group consists of nodes for facet crossing.

9Topological sort of a set of terms is a sort that respects the partial order of the terms. That is, if t, t′ ∈
Brd(s) and t ≤ t′, then t should always appear to the left of t′ in the topological sort.

15

Instead of presenting the algorithm for constructing the entire navigation tree, in Algorithm
NavTreeInit(e), we present the initialization step, i.e. the creation of a top node for each
facet appearing in e and, in Algorithm CreateChildren(n), we present the steps for creating
the children of a node n of the navigation tree. These steps can be synthesized (in a depth-first-
search manner) to get an algorithm that constructs the entire navigation tree. The algorithms
use the function IsValid(e, s) which returns True if s is a valid compound term according
to e and False otherwise. The procedure createNode (Nm(n), s(n), F c(n)) creates a node
with the given parameters. The function Nar(t) returns the immediately narrower terms of
t. The procedure AddChild (n, n′) makes n′ child of n.

Algorithm 6.1 NavTreeInit(e)
Input: An algebraic expression e
Output: An initial top node for each facet in e

// Initialization: Creation of a top node for each facet
For each F ∈ F (e)

createNode(top(F), {top(F)}, top(F))

Algorithm 6.2 CreateChildren(n)
Input: A node n of the navigation tree
Output: The children of n

B.1 // Creating the children of a node on the basis of the focus term
For each t ∈ Nar(Fc(n))

Let s′ := (s(n) − Fc(n)) ∪ {t}
If IsValid(e, s′) then

n′:=createNode(t, s′, t)
AddChild(n, n′)

B.2 // Creating the children of a node for ”facet crossing”
For each Fi ∈ F (e) − F (Fc(n))

Let ti := s(n)∩T i

If ti = ∅ then
Let s′ := s(n) ∪ {top(Fi)}
If IsValid(e, s′) then

n′:=createNode(”by” + top(Fi), s′, top(Fi))
AddChild(n, n′)

else
If ∃t′ ∈ Nar(ti) such that
IsValid((s(n) − {ti}) ∪ {t′}) then

n′:=createNode(”by”+top(Fi), s(n), ti)
AddChild(n, n′)

Figure 9 shows a part of the navigation tree that is generated by this algorithm for the
taxonomy shown in that Figure and expression e = Sports ⊕N Location, where
N = {{WinterSports, Islands}, {SeaSports, Olympus}}. In the navigation tree, each node
n is presented by its name, Nm(n). For example, the node n22 has Nm(n22) = Mainland,
s(n22) = {{Sports, Mainland}}, Fc(n22) = Mainland. The nodes n23 and n27 are generated
by part B.1 of the algorithm, while node n30 is generated by part B.2.

7 Concluding Remarks

The novelty of our approach lies in enriching a faceted scheme with an algebra for specifying
the valid compound terms. This method can be used in order to construct taxonomies or

16

nodes for facet crossing

Olympus

Olympus

Olympus

Olympus

Pilio

Pilio

Pilio

Pilio

bySports

bySports WinterSports

Pilio
SeaSports byLocation

Islands

byLocation

bySports

bySports SeaSports byLocation

SeaSports

SeaSports

WinterSports

SeaSports

Mainland

bySports

Mainland

Mainland

byLocation

WinterSports

byLocation

byLocation

WinterSportsSports

Crete

Islands

Location

Pilio

Crete

Crete

Crete

n27

n30

n23

n22

Location
Sports

WinterSportsSeaSports
Islands Mainland

Figure 9: Example of a navigation tree

thesauri, which unlike existing thesauri, do not present the problem of missing terms or
missing relationships (for more about this problem see [1]). We have not elaborated facet
analysis, i.e. which facets should be selected and how they should be constructed. This
process can be carried out either formally (see for example [4], [13], or [2]), or informally,
as it is usually done by the designers of Web catalogs. Moreover, and in order to avoid
misunderstanding we have to note here that our algebra is not related with the algebras that
have been proposed for ontology engineering (e.g. [14, 3]). Our algebra is the only one that
focuses on the problem of compound terms. It actually combines into a unified theory the
extensions presented in [12]. There, the ideas of the plus and minus-product operations are
called PEFT and NEFT respectively and they could be applied once on all facets. That is,
PEFT and NEFT could not be synthesized. In the current work we presented an algebra
which allows combining these two operations. In addition the algebra provides operators for
capturing the cases of multiple classification within a facet, i.e. the self-product operations.
The advantages of our approach are the following:

• The algebra that we propose is quite flexible and quite easy to use. The designer does
not have to write a program or to be familiar with logic-based languages. He just decides
the order by which the facets appear in the expression and sets the parameters P and N
which are just sets of compound terms. The simplicity of the compound terms considered
(conjunctions of terms only) apart from allowing a very efficient inference mechanism,
makes our approach easy to use and scalable. We believe that it can be adopted by
catalog designers (librarians, etc) who are not familiar with logic-based representation
languages.

• The operations are defined in a way that ensures that no consistency problems arise.
This means that when the designer adds a new facet to the expression and defines the
parameters P or N , he does not have to worry about inconsistencies.

• The compound terminologies defined by our algebra have low storage space requirements.
There is no need to store the compound terminology of an expression. Only the expres-
sion has to be stored, as we provided an efficient inference mechanism which can check

17

whether a compound term belongs to the compound terminology of the expression.

Our algebra can be used in any application that indexes objects using a controlled structured
vocabulary, i.e. a taxonomy. For example it can be used for designing taxonomies for prod-
ucts, for fields of knowledge (e.g. for indexing the books of a library), etc. Moreover, we
demonstrated how we can generate dynamically navigation trees which are suitable for brows-
ing and can be also exploited during the indexing process (to aid the indexer and prevent
indexing errors).
Currently, our algebra is been used for building the taxonomy of a tourist portal. The

results that the designers report to us, concerning flexibility and ease of use, are so far very
encouraging. An interesting application that we are going to investigate and implement in
the near future, is to employ this algebra in order to design compound taxonomies for Web
portals. Suppose that we want to create indexing terms that allow partitioning of 106 Web
pages, in blocks of 10 pages. For doing this, we need at least 100 thousand (105) different
terms, if we assume that each page is indexed by one term. If we want these terms to be
the leaves of a complete balanced decimal tree, then this tree would have: 105 + 104 + ... +
10 + 1= 111,111 terms in total. By adopting a faceted taxonomy, we can obtain the same
discrimination capability with much fewer terms. For example, with 5 facets each one having
10 leaves, the number of compound terms is greater that 10×10×10×10×10 = 105. Assume
that each facet is a complete balanced decimal tree, then the entire faceted taxonomy would
have: (10 + 1) × 5 = 55 terms in total. Notice the tremendous difference between 111,111
and 44. However, it is probably impossible to find 88 terms such that all of their combinations
are valid.
The faceted taxonomy is expected to have many more terms and many combinations of these

terms are expected to be invalid. However, our algebra offers a powerful means for specifying
the valid compound terms. Returning back to our example, we believe that using our algebra
we can obtain the desired discrimination capability with a relatively smaller number of terms
and stored descriptions in P and N , by comparison to the 111,111 terms of a single hierarchical
taxonomy.
Summarizing, instead of building huge hierarchical taxonomies we propose the employment

of faceted taxonomies plus the usage of our algebra. In this way the designer can obtain
taxonomies consisting of big numbers of valid indexing terms with less effort. Moreover the
resulting compound taxonomies have low storage space requirements. Finally we have to
note that the advantages of the compound faceted taxonomies that we propose (compactness,
conceptual clarity, scalability, valid compound terms) can facilitate several other associated
tasks. Specifically, they can certainly facilitate the design of mediators over several taxonomy-
based sources (using the approach presented in [11]), and the personalization of Web catalogs
(using the approach presented in [9]).

References

[1] Peter Clark, John Thompson, Heather Holmback, and Lisbeth Duncan. “Exploiting a
Thesaurus-based Semantic Net for Knowledge-based Search”. In Procs of 12th Conf. on
Innovative Applications of AI (AAAI/IAAI’00), pages 988–995, 2000.

[2] Elizabeth B. Duncan. “A Faceted Approach to Hypertext”. In Ray McAleese, editor,
HYPERTEXT: theory into practice, BSP, 1989.

[3] J. Jannink, S. Pichai, D. Verheijen, and G. Wiederhold. “Encapsulation and composition
of ontologies”. In Proceedings of 1998 AAAI Workshop on AI & Information Integration,
1998.

[4] P. H. Lindsay and D. A. Norman. Human Information Processing. Academic press, New
York, 1977.

18

[5] Deborah L. McGuinness. “Ontological Issues for Knowledge-Enhanced Search”. In Pro-
ceedings of FOIS’98, Trento, Italy, June 1998. Amsterdam, IOS Press.

[6] Ruben Prieto-Diaz. “Implementing Faceted Classification for Software Reuse”. Commu-
nications of the ACM, 34(5):88–97, 1991.

[7] S. R. Ranganathan. “The Colon Classification”. In Susan Artandi, editor, Vol IV of
the Rutgers Series on Systems for the Intellectual Organization of Information. New
Brunswick, NJ: Graduate School of Library Science, Rutgers University, 1965.

[8] G. Salton. “Introduction to Modern Information Retrieval”. McGraw-Hill, 1983.

[9] Nicolas Spyratos, Yannis Tzitzikas, and Vassilis Christophides. “On Personalizing the
Catalogs of Web Portals”. In 15th International FLAIRS Conference, FLAIRS’02, pages
430–434, Pensacola, Florida, May 2002.

[10] Yannis Tzitzikas, Anastasia Analyti, Nicolas Spyratos, and Panos Constantopoulos. “An
Algebra for Specifying Compound Terms for Faceted Taxonomies”. Technical Report
TR-314, Institute of Computer Science-FORTH, October 2002.

[11] Yannis Tzitzikas, Nicolas Spyratos, and Panos Constantopoulos. “Mediators over
Ontology-based Information Sources”. In Proceedings of the 2nd International Confer-
ence on Web Information Systems Engineering, WISE 2001, pages 31–40, Kyoto, Japan,
December 2001.

[12] Yannis Tzitzikas, Nicolas Spyratos, Panos Constantopoulos, and Anastasia Analyti. “Ex-
tended Faceted Taxonomies for Web Catalogs”. In Proceedings of the 3rd International
Conference on Web Information Systems Engineering, WISE 2002, pages 192–204, Sin-
gapore, December 2002.

[13] B. C. Vickery. “Knowledge Representation: A Brief Review”. Journal of Documentation,
42(3):145–159, 1986.

[14] Gio Wiederhold. “An Algebra for Ontology Composition”. In Proceedings of 1994 Mon-
terey Workshop on Formal Methods, pages 56–61, September 1994.

19

