
SeLeNe Report: Metadata Management and Learning Object
Composition in a Self eLearning Network

Philippe Rigaux and Nicolas Spyratos

Laboratoire de Recherche en Informatique
Université Paris-Sud Orsay, France

rigaux@lri.fr, spyratos@lri.fr

Abstract

In this report, we propose a simple data model for the composition and metadata management of
learning objects (LOs) in a distributed setting that we call a Self-eLearning Network, or SeLeNe for
short. The model features an abstract definition of LO, as well as operations that allow to compose new
LOs from simpler ones, and to query a database of LOs spread over the network. The querying process is
supported by a coordinator, or mediator which relies on descriptions of the LO content through indexes.
The index of an LO is extracted automatically from the indexes of its components.

The model provides support for the specification of a concrete SeLeNe environment in which the
authors of LOs are the basic peers and where communication between peers is assisted by the mediator.
We illustrate the features and functionalities of such a system with a case study in which the LOs are
XML documents.

1 Introduction

In this report, we consider the architecture and functioning of a Self eLearning Network, or SeLeNe for
short, in which a community of authors co-operate through a coordinator, or mediator, in creating Learning
Objects (LOs) to be used by a community of learners.

Each author is a “provider” of LOs to the network but also a “consumer”, in the sense that he creates
LOs based not only on other LOs that he himself has created but also on LOs that other authors have created
and made available to the network. We assume that each author is free to use his own organization, format
and tools to manage his LOs locally, independently of all other authors. Thus we view a SeLeNe as a peer
network, in which the basic peers are the authors co-operating through the network for serving a community
of learners. The present report focuses on the definition of LOs, and their use during the collaborative
process enabling the creation of new LOs. We ignore content management issues and focus on those aspects
of metadata management that we consider essential to the creation, use and exchange of LOs.

In a nutshell, a SeLeNe is a distributed repository of educational metadata describing LOs available on
the Web, collaboratively built and used by anyone who wishes to use existing LOs, or construct new ones
in some knowledge domain. A SeLeNe allows authors to create LOs either from scratch or from LOs that
other authors have created and made available to the network. To make a LO available to the network its
author must register it with a mediator, i.e., a central server that keeps track of all LOs available and answers
queries by authors searching for LOs of a specific kind.

Each registered object is accompanied by an index, a composition graph and a dependency graph. The
index gives information about the content (thus guiding the search of authors for LOs that match a given

1

task), the composition graph shows the structure of the LO (thus guiding the automatic derivation of com-
posite LO indexes from those of their components), and the dependency graph shows the possible ways
in which the LO can be used in the learning process (thus guiding the choice of a sequence in which the
component LOs should be learned by a specific user). In this introductory section, we give an overview of
the basic aspects of a SeLeNe, i.e., the creation or authoring of LOs, the mediating process and the learning
process. In doing so, we often use the term “network” as a synonym for “Self eLearning Network”.

Authoring of Learning Objects

The basic building blocks for constructing LOs are the atomic LOs. Intuitively, an atomic LO is any piece
of information (text, image, sound, etc.) that can be identified uniquely, using an identifier provided by
the network. The LO content can be described using a set of terms from a commonly agreed, standard
terminology (e.g., the ACM Computing Classification System); this set of terms is called the index of the
LO, and we say that each term of this set indexes the LO. We shall refer to the commonly agreed, standard
terminology as the network terminology, or terminology for short.

The granularity of an atomic object is entirely up to its author, i.e., an atomic object can be a piece of
text, such as a whole book, a chapter or a section of a book, a paragraph or even a phrase; similarly, it can
be an image or part of an image, a musical score or part thereof, and so on. As we mentioned earlier, atomic
LOs are the basic building blocks for constructing new LOs called composite LOs.

A composite LO consists of a set of parts, i.e., a set of other LOs, each of which can be atomic or
composite. For example, in the case study that we shall present in Section 5, a composite object will
be an XML document and its parts will be other XML documents or fragments thereof. Like an atomic
object, a composite object is associated with an identifier provided by the network and a description giving
information about its content. However, this time, the index of a composite LO is derived from the indexes
of its parts. For the purposes of this report, we assume the composition graph of a composite LO to be a
tree, with the LO as the root and its parts as the roots of its sub-trees. We refer to the LOs appearing in the
tree as the components of the root LO. If a component is atomic then this component is a leaf. Using the
composition graph, we can derive the index of a composite LO (recursively) as follows:

� the index of each atomic LO is provided by its author;

� the index of each composite LO is the union of the indexes of its parts.

For example, consider two atomic LOs and their indexes (as given by their authors):
��� : {Quick-sort, Java} ��� : {Bubble-sort, Pascal}

The index of ��� says that it contains material on the Quick-sort algorithm written in Java, and that of ���

that it contains material on the Bubble-sort algorithm written in Pascal. Then if one defines a composite LO,
say �	� , with parts � � and � � , its index will be derived automatically from those of � � and � � :

� � : {Quick-sort, Java, Bubble-sort, Pascal}
Trivially, the composition graph of an atomic LO consists of a single node together with the identifier

and the index of the atomic LO. As we shall see, the composition graph of a LO, together with the indexes
of its leaves, contains all the information needed by the mediator in order to make the LO available to the
network.

Each LO, whether atomic or composite, has a content. As we have already mentioned, the content of an
atomic object can be a piece of text, an image, a sound, and so on, while the content of a composite object
should be defined based on the contents of its components. However, content management issues lie outside
the scope of the present report.

Typically, an author wishing to compose a new LO will use some of the objects in his local database as
components and will also query the mediator in search of relevant LOs available over the network. He will

2

then inspect the answer in order to select those LOs most relevant to the LO being composed, based on their
indexes. He may also wish to consult their contents, therefore user-friendly tools for browsing content are
especially useful here.

We stress the fact that we view each LO, whether atomic or composite, as an identifier. If the LO is
a document in electronic form, then such an identifier could be a URI where the LO content resides; one
could then browse its content by “clicking” on that URI. Similarly, if the LO is a book in the traditional
report form, then such an identifier could be an ISBN identifier, and so on. For the purposes of this report,
however, we take an abstract point of view and we assume that a LO identifier is just a natural number.

The Mediating Process

The mediator is a software module that acts as a central server, keeping track of the objects currently avail-
able to the network in order to answer queries asked by authors (and/or learners) [TSC01]. To carry out
these tasks, the mediator maintains two pieces of information:

1. A commonly agreed taxonomy, i.e., a terminology together with a subsumption relation between terms
(to which all authors adhere).

2. For each term
�
, the extension of

�
, i.e., the set ��� ��� of all LOs indexed by

�
.

In order to make a LO available to the network, its author must register it with the mediator. Registration
of a LO consists in making the composition graph (along with the indexes of its leaves) and the dependency
graph of the LO available to the mediator. Upon registration, the mediator updates the extension ��� ��� of
every term

�
appearing in the composition graph, by adding to ��� ��� the identifier of each LO indexed by

�
.

Authors and learners in search of LOs of a specific kind address their queries to the mediator. A query is
either a single term or a boolean combination of terms, and its answer is a set of LOs computed in a manner
that we shall see shortly.

It is important to note that the answer to a query is a set of LOs and that the issuer of the query can
access not only the content of each LO contained in the answer, but also its composition and dependency
graph.

The Learning Process

Learners access the LOs available over the network in order to learn from their contents. A learner can either
be assisted by an instructor (who might very well be the author of the LO himself) or do self-learning. In
either case, the appropriate LOs are accessed by querying the mediator.

Once a LO has been selected, the learning process is assisted by the dependency graph of the LO. Indeed,
based on the background of the learner, the dependency graph can assist in selecting the components to
be learned and in defining the sequence in which the selected components should be learned. Each such
sequence is what we call a learning trail or simply a trail.

Clearly, the definition of a learning trail depends on the individual learner and the specific LO used
during the learning process. One can even envisage the possibility of combining more than one LO in order
to define the desired learning trail for a given learner. In this case, each learning trail can be thought of as a
LO and the combined trail as a new, composite LO.

In case where a learning trail concerns not just one learner but a group of learners (e.g., a whole class,
or a specialized diploma course) it may be useful to materialize the trail, i.e., to “freeze” its content in time,
by printing it out in the form of a book (in the traditional report form). In doing so, an interesting problem
is producing automatically the “Table of Contents” of such a book, based on the composition graph of the

3

trail. Clearly, materializing the same trail at two different points in time may not yield the same book, as in
the meantime some of the trail components may have been updated by their authors.

There are several learning scenarios that have been considered in the literature, that take into account
the nature of the learning process, for example, whether the trail is chosen by the instructor and “imposed”
to the learners, or whether the learner participates in the definition of the trail, or even if the trail is defined
“collaboratively” in which case one talks of an “emerging” trail. The study of learning scenarios, however,
lies outside the scope of the present report.

In the remaining of this report we present formally the basic assumptions on which a SeLeNe functions,
in Section 2, the authoring of learning objects, in Section 3, and the mediating process, in Section 4. We also
present a case study, in Section 5, in which the learning objects and their components are XML documents.
Finally, we offer some concluding remarks and suggestions for further research, in Section 6.

2 The Basic Assumptions

From an abstract point of view, the functioning of a SeLeNe relies on the following basic assumptions:

� The existence of a countably infinite set whose elements are used by all authors for identifying the
created LOs that are made available to the network. In fact, we assume that the creation of a LO is
tantamount to choosing a (new) element from that set. For notational convenience we assume this
set to be the set of positive integers, and the creation of a LO to be tantamount to choosing a (new)
integer. Moreover, we assume that each created LO is associated with three entities, its parts, its trails
and its index.

� The existence of a taxonomy whose terms are used by all authors for indexing the created LOs. There
are several standardized taxonomies that one might use, depending on the knowledge domain, e.g., the
ACM Computing Classification System. However, for the purposes of this report, we shall assume an
abstract taxonomy, consisting of a terminology � and a subsumption relation � . The terminology �
is just an abstract set but it will help thinking of its elements as being keywords of some kind; we shall
refer to the elements of � as terms. As for the subsumption relation, it is a reflexive and transitive
relation over � (i.e., a pre-order over �). If for terms � and

�
we have ��� �

, it will be helpful to think
that, conceptually, � is covered or subsumed by

�
, or that

�
covers or subsumes � (e.g., Quicksort �

Algorithm). Finally, two terms � and
�

are called equivalent, or synonym, denoted ��� �
, if ��� �

and� ��� .
� The existence of a table, or catalogue � , relating the terminology � with the set of all LOs currently

available in the network. The contents of � will be described by two functions:

1. the extension � , mapping each term
�

to a set ��� ��� of LOs, defined by : �	� ��� ����
��� � ��� � � � � ;

2. the index � , mapping each LO � to a set � � � � of terms, defined by:
� � � � � ��
���� � ��� � � � � .

3 Authoring of Learning Objects

As mentioned earlier, each created LO is associated with three entities, its parts, its trails and its index.

Definition 1 (The Parts of a LO) Each learning object � is associated with a set of learning objects, called
the parts of � and denoted as ����� � � � � � . If ����� � � � � �����

then � is called atomic, else it is called composite.

4

Clearly, what the parts of an object are should be left entirely up to its author. We can represent a
LO and its parts graphically, as follows: if

has � as a part then we draw an arrow from

to � . Thus, if

����� � � � � ����� ��� � � � ������� � ����� then we represent this graphically as in Figure 1.

o

ono1 o2 ...

Figure 1: A LO and its parts

Based on the concept of part, we can now define the concept of component.

Definition 2 (Components of a LO) Let � be a LO and let � � � � � � � � �	� ��� � � � ���
�
� � ����� . The set of compo-
nents of � , denoted as ��� � � � � , is defined recursively as follows:

if � is atomic then ��� � � � � � �
else ��� � � � � � � � � � � � � ��� ��� � � � � ��� ��� � � � � ��������� ��� � � ��� � .

Clearly, a LO � and its associated set of components can be represented as a directed acyclic graph with
� as the single root. We shall refer to this graph as the composition graph of � . We make two assumptions
on the composition graph, both reflecting reasonable, real-life constraints:

1. All nodes of the composition graph are different, i.e., no LO in the composition graph is a component
of itself.

2. Every LO in the composition graph (except the root) is part of one and only one LO.

We note that these assumptions say, roughly, that a composite LO should not contain redundancies. An
immediate consequence of these assumptions is that the composition graph is a tree.

When an author creates a composite LO, apart from making the components visible (through the compo-
sition graph), it is natural to give an indication as to the possible sequences in which the various components
should be taught by an instructor, or learned by a self-teaching learner. This can be done by giving a partial
order “precedes” on the components of the LO, saying what component precedes, or is pre-requisite for,
what other components. Such a partial order can also be represented as a directed acyclic graph, that we
shall refer to as the dependency graph of the LO.

Definition 3 (The Dependency Graph of a LO) Let � be a composite LO. The dependency graph of � ,
denoted as ��� � � � � , is a partial order over the set of components of � .

We note that the dependency graph is different than the composition graph. In particular, the dependency
graph may have more than one root, each root indicating a possible starting component in teaching (or
learning) from the composite LO.

We also note that most of the recent textbooks (at least in Computer Science) do contain such a depen-
dency graph for assisting the instructor in designing his course, or the self-learning student in learning from
the textbook.

Indeed, in analogy to what happens with a traditional textbook, a composite LO might be used in several
different ways. For example, depending on background, a learner might skip some components (chapters
and/or sections), or might decide to follow a specific order in learning the various components. Similarly, an
instructor might decide to use a composite learning object in various ways in designing a course, depending
on his own background and that of the learners.

Assuming that the author of a composite LO is the one most familiar with its content, any sequence of
components that “respects” the dependency graph given by the author is a “good” sequence in which the
components should be taught, or learned.

5

Definition 4 (Learning Trail) Let � be a composite LO. A learning trail, or simply trail in � is any path in
the transitive closure of the dependency graph.

4 The Mediating Process

As we mentioned in the introduction, the mediator is a software module that acts as a central server, keeping
track of the LOs currently available to the network in order to answer queries asked by authors (and/or
learners). To carry out these tasks, the mediator maintains two pieces of information:

1. The network taxonomy, updating its terminology and/or its subsumption relation whenever this is
necessary.

2. For each term
�
, the extension of

�
, i.e., the set ��� ��� of all LOs indexed by

�
; as we shall see shortly,

the extension is used for the evaluation of queries.

In order to make a LO available to the network, its author must register it with the mediator. Registration
of a LO � by an author consists in providing the following items to the mediator:

� the composition graph of � and the indexes of its leaves,

� the dependency graph of � .

Upon registration, the mediator performs two actions:

1. computes the index of every composite LO ��� in the dependency graph of � , recursively, based on the
indexes of the atomic LOs (leaves), as follows:

if ����� � � � ��� � ��� � � � � � ������� � � � � then � � ��� ��� � � � � ��� � � � � � ������� � � � � �

2. updates the extension ��� ��� of every term
�

in � as follows:

for each ��� in ��� � � � � , if
�

is in � � ��� � then � � � ��� � ��� ����� � ��� �

Authors and learners in search of LOs of a specific kind address their queries to the mediator. A query
is either a single term or a boolean combination of terms, as stated in the following definition.

Definition 5 (Query language) A query over the network taxonomy is any string derived by the following
grammar, where

�
is a term and � is the empty query:

� ��� � �
	 ���� � 	 ����� � 	 ������� � 	 � � �
	 �
(Our use of negation corresponds to domain restricted negation).

The answer to a query � , denoted by ��� � � � � , is a set of LOs defined as follows:

��� � � � � : if
� �
�� � � � ���

then � � ��� else � � ��� � � � �
	 � � � �
�� � ��� �
��� � � � � :

if � � �
then ��� � � ���

else
begin

6

if � � �	� ��� � , ��� � � � ��� ��� � � � � � � ��� � � � � �
if � � �	� ��� � , ��� � � � ��� ��� � � � � � � ��� � � � � �
if � � �	� � � � � , ��� � � � ��� ��� � � �	� ��� ��� � � � � �

end
��� � � � ��� �

It is important to note that the answer to a query is a set of LOs and that the issuer of the query can
access not only the content of each LO contained in the answer, but also its composition and dependency
graph.

We conclude this section by stressing the fact that the composition graph, the dependency graph, and the
index of a LO constitute only part of the metadata that accompany a LO. Other kinds of metadata are also
used when one searches for LOs that match given needs. For example, the format in which a LO is available,
the language in which it is written, the date of creation, and so on, are examples of metadata associated to a
LO. However, the composition graph, the dependency graph, and the index of a LO are probably the most
challenging from a technical point of view.

5 A Case Study

We are currently implementing a prototype to experiment in a practical setting the functionalities of the
model. In this prototype the LOs and their components are XML documents, and the system relies on XML
tools and languages for addressing and transformation tasks.

The architecture of the system is summarized in Figure 2. Here are some comments, before looking
into the technical details. First the composite LOs are represented in this specific implementation by XML
documents which are valid with respect to the DocBook DTD [WM99]. The hierarchical nature of XML
documents fits well with the composition mechanism of our model, which allows to construct composite
LOs from simpler ones. Each fragment of the XML structure (i.e, each subtree) corresponds to a LO, and
the leaves are the atomic LOs introduced in the model. When submitting a document to the system, it is
required that each of the leaves is labelled with a set of terms form the network terminology.

XSLT

Client

XSLT

DocBook

documents

Mediator

Storage

Indexing

Query

Visualization Materializationwith XPath

Indexing

Index1

Index2

Index3

<query>

<query>

re
gi

st
ra

tio
n

evaluation

/monitoring

Figure 2: Overview of the system’s architecture

From these documents, a program (written with the XML transformation language, XSLT) produces the
index for each document. Indexes are sent to the mediator which stores them in a repository, creates indexes
on objects, and proposes querying services. Finally users can create composite LOs as DocBook documents

7

augmented with the <query> element. The content of such an element is a query which is executed by the
mediator and replaced by the result of the query. From this the user can:

� either browse through the query result, visualize the fragments coming from atomic documents, and
possibly remove some of them,

� or materialize the document, including the result of queries, and store it locally.

We now embark in a detailed description of each part.

5.1 The terminology

The terminology used in the system is the ACM Computing Classification System (see http://www.acm.org/class/).
It is initially designed to classify published works in the field of computer science. We use an XML repre-
sentation, stored at the mediator and accessible through a Web interface to users and authors who want to
pick up terms for, respectively, indexing their documents or expressing queries. Here is a small part of this
terminology.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- http://www.wikipedia.org/wiki/Computer_science-->

<term name="Computer_Science">

<term name="Artificial_intelligence">

<term name="Knowledge_representation"/>

<term name="Machine_learning">
<term name="analytical_learning"/>
<term name="artificial_neural_networks"/>

<term name="algorithms_for_pattern_discovery"/>
(...)

</term>

(...)
</term>

<term name="Databases">
<term name="Database_management_system">

<term name="Closed_source">
<term name="Oracle"/>
<term name="Teradata"/>

(...)
</term>

<term name="Open_source">
<term name="MySQL"/>
<term name="PostgreSQL"/>

(...)<
</term>
</term>

<term name="SQL">

8

(...)
</term>

<term name="Relational_model">
<term name="Relational_schema">

<term name="Constraint"/>
(...)

</term>
</term>

</term>
</term>

5.2 Documents

DocBook is a DTD for writing structured documents using SGML or XML. It is particularly well-suited
to books and papers about computer hardware and software, though it is by no means limited to them.
DocBook is an easy-to-understand and widely used DTD: dozens of organizations use DocBook for millions
of pages of documentation, in various print and online formats, worldwide. Many publishers use DocBook
to represent and exchange their books or parts of their books, and given the wide acceptance of this DTD
and its maturity, it seems reasonable to adopt it as a de facto standard.

It is worth mentioning however that any other DTD would do, the important assumption here being that
all authors in the system provide their LO content in a common format. This assumption is mostly motivated
by practical considerations. Indeed the exchange of fragments and their integration is greatly facilitated by
the homogeneity of the representation. In particular, it is easy with minimal effort to ensure that inserting a
DocBook fragment in a DocBook document keeps the whole document valid with respect to the DTD.

We distinguish in a DocBook document the following tags that identifiy the structure of the document:
book, chapter, section and subsection. Elements of type subsection are considered to form
the leaves of the composition graph, to which an index must be associated. The inference mechanism
described in the model is then used to create the indexes for the upper-level elements book, chapter and
section. As an example, here is a (quite simplified) document:

<book title="Databases">

<chapter title="Conceptual modelling">
Some text ...
<section title="The Entity-relationship model">

Some text ...
</section>

<section title="Schema design using functional dependencies">
Some text ...

</section>
</chapter>

<chapter title="Database programming">
Some text ...

</chapter>
</book>

Beyond the (somehow heavy) syntax of XML, we are interested in the structure of the information
contained in this document. This structure is defined by the tags and is better represented as a tree, shown
in Figure 3.

9

Element
book

Databases

Element
chapter

Conceptual modelling

Text
-

Some text

Element
section

The E/R model

Text
-

Some text

Element
section

Schema design using FD

Text
-

Some text

Element
chapter

Database programming

Text
-

Some text

Figure 3: The hierarchical structure of the document

Essentially, nodes of type Text represent the content, while nodes of type Element represent the
structure. The role of the author, before submitting such a document to he mediator, is to index the elements
located at the lower level in the structure (here <section>) with terms from the terminology. This is
simply done by adding an attribute to the <section>, as illustrated in the document below:

<book title="Databases">

<chapter title="Conceptual modelling">
Some text ...
<section title="The Entity-relationship model" term="E/R">

Some text ...
</section>

<section title="Schema design using functional dependencies"
term="FD">

Some text ...
</section>

</chapter>

<chapter title="Database programming">
Some text ...

</chapter>
</book>

We obtain a new structure derived from the previous one, and illustrated in Figure 4. The document
represented in this figure contains indexes for all the elements, at any level. The indexes for <chapter>
and <book> elements have been derived automatically from the indexes of the leaves in the way explained
earlier.

Finally the composition graph together with the indexes of the leaves is sent to the mediator who stores,
with each term of the terminology, the path to the XML subtree(s) that relate(s) to this term. Currently we
use the XPath language [XPa99] to refer to these subtrees, and complete XPath expressions with the URL
of the document. The table below shows the information handled by the mediator to refer to the nodes of
the document used so far.

10

Element
book

Databases

Attr
term

databases

Element
chapter

Conceptual modelling

Attr
term

modelling

Text
-

Some text

Element
section

The E/R model

Attr
term
E/R

Text
-

Some text

Element
section

Schema design using FD

Attr
term

FD

Text
-

Some text

Element
chapter

Database programming

Attr
term

programming

Text
-

Some text

Figure 4: A document enriched with indexes

Term XPath expression
databases /book
modelling /book/chapter[1]
E/R /book/chapter[1]/section[1]
E/R /book/chapter[1]/section[2]
programming /book/chapter[2]

Finally let us illustrate how one can create composite documents by inserting queries. The example
of Figure 5 shows the structure of a DocBook document, enriched with <query> elements that allow to
express queries. In this particular example, the document is that of a student who collect course notes,
introduces his own course notes, and mixes them with fragments/LO extracted from the set of available
sources. When submitted to the mediator via a client/server dialog whose description is omitted here, the
<query> is replaced by the content of the answer to the query (or, more generally, by the concatenation of
the contents of the set of XML subtrees obtained as query results).

Element
book

My courses

Element
chapter

My database course

Element
section

My notes on data modelling

Element
Text

Text
-

My personnal notes

Element
query

Text
-

modelling

Element
chapter

Element
query

Text
-

JDBC programming

Figure 5: A derived document

11

6 Concluding remarks

Intuitively, a LO should be regarded as a textbook (in its traditional form), and its composition graph as the
context in which learning trails can be defined. The dependency graph, in turn, should be regarded as the set
of all possible trails that can be followed, at least as far as the author of the LO sees his LO. Of course, the
users of the LO, whether learners or instructors, may find other ways of using it (i.e., other trails).

From an abstract point of view, both, the composition graph and the dependency graph, can be seen as
two different kinds of relations that one can define over the set of LOs available to the network. If one uses
a semantically rich model (e.g., RDF), one can define these and other relations at the level of LOs, and write
algorithms for their computation, whenever necessary.

One important issue that can be handled by our mediator is personalized interaction with the network.
Indeed, from a conceptual point of view, all one has to do is to let the network user express his needs in
terms of a set of named queries, or views of the form:

<term-name> = <query-to-the mediator>

The set of terms thus declared (plus, eventually, a user-defined subsumption relation) will then constitute
the user-defined taxonomy, that will serve as the personalized interface to the network. Queries to this
personalized taxonomy can be answered by simple substitution, based on the user declarations defining the
terms of the personalized taxonomy. Work on the personalization aspects is ongoing and will be reported
later.

References

[ACK � 01] S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The ICS-FORTH
RDFSuite: Managing Voluminous RDF Description Bases. In Proc. Intl. Conf. on Semantic
Web, 2001.

[KK01] J. Kahan and M.-. Koivunen. Annotea: an Open RDF Infrastructure for Shared Web Annota-
tions. In Proc. Intl. World Wide Web Conference (WWW), pages 623–632, 2001.

[KSV � 02] B. Kieslinger, B. Simon, G. Vrabic, G. Neumann, J. Quemada, N. Henze, S. Gunnersdottir,
S. Brantner, T. Kuechler, W. Siberski, and W. Nejdl. ELENA Creating a Smart Space for
Learning. In Proc. Intl. Semantic Web Conference, volume 2342 of LNCS. Springer Verlag,
2002.

[NWQ � 02] W. Nejdl, B. Worlf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer, and
T. Risch. EDUTELLA: a P2P networking Infrastruture Based on RDF. In Proc. Intl. World
Wide Web Conference (WWW), page 604:615, 2002.

[NWS � 03] W. Neidl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and A. Loser.
Super-Peer Based Routing and Clustering Strategies for RDF-based Peer-to-Peer networks. In
Proc. Intl. World Wide Web Conference (WWW), 2003.

[SEL] SeLeNe: Self eLearning Networks. See http://www.dcs.bbk.ac.uk/ ap/projects/selene/.

[TSC01] Y. Tzitzikas, N. Spyratos, and P. Constantopoulos. Mediators over Ontology-based Information
Sources. In Proc. Intl. Conf. on Web Information Systems Engineering (WISE’01), 2001.

[WM99] N. Walsh and Leonard Muellner. DocBook, the definitive guide. O’Reilly, 1999.

12

[XPa99] The XPath language recommandation (1.0). World Wide Web Consortium, 1999.
http://www.w3.org/TR/xpath.

13

