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Abstract

RDF is becoming a core technology in the Semantic Web. Providing the ability to
describe metadata information that can be easily navigated, and the ease of storing it in
existing relational database systems, have made RDF a very popular way of expressing
and exchanging metadata information. However, the use of RDF in dynamic applications
over distributed environments that require timely notification of metadata changes raises
the need for mechanisms for monitoring and processing such a changes. Event-Condition-
Action (ECA) rules are a natural candidate to fulfill this need. In this paper, we study
ECA rules in the context of RDF metadata. We give a detailed description of a language
to define ECA rules on RDF repositories. We specify the syntax and semantics of the
language, and we illustrate its use by examples. We also describe the architecture of a
system implementing this language, both for centralised and distributed environments.

1 Introduction

In this paper we describe RDFTL (RDF Triggering Language), an event-condition-action
rule language providing reactive functionality over RDF metadata stored in RDF repos-
itories. RDF is one of the technologies proposed to realise the vision of the Semantic
Web, and it is being increasingly used in distributed web-based applications. Many such
applications need to be reactive, i.e. to be able to detect the occurrence of specific events
or changes in the RDF descriptions, and to respond by automatically executing the appro-
priate application logic. Event-condition-action (ECA) rules are one way of implementing
this kind of functionality. An ECA rule has the general syntax

on event if condition do actions
The event part specifies when the rule is triggered. The condition part is a query which
determines if the information system is in a particular state, in which case the rule fires.
The action part states the actions to be performed if the rule fires. These actions may in
turn cause further events to occur, which may in turn cause more ECA rules to fire.

There are several advantages in using ECA rules to implement this kind of functional-
ity, rather than implementing it directly in application code. Firstly, ECA rules allow an
application’s reactive functionality to be specified and managed within a rule base rather
than being encoded in diverse programs, thus enhancing the modularity, maintainabil-
ity and extensibility of applications. Secondly, ECA rules have a high-level, declarative
syntax and are thus amenable to analysis and optimisation techniques which cannot be
applied if the same functionality is expressed directly in application code. Thirdly, ECA
rules are a generic mechanism that can abstract a wide variety of reactive behaviours, in
contrast to application code that is typically specialised to a particular kind of reactive
scenario.

The work presented here has largely been motivated by our work in the SeLeNe project
(see http://www.dcs.bbk.ac.uk/selene/). The primary goal of the SeLeNe project is
to investigate techniques for managing evolving RDF repositories of educational metadata
and for providing a wide variety of services over such repositories, including syndication
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and personalisation services. Peers in a SeLeNe (Self e-Learning Network) will store
RDF/S descriptions relating to learning objects (LOs) registered with the SeLeNe and
also RDF/S descriptions relating to users of the SeLeNe. Peers may also store system-
related RDF/S descriptions. A SeLeNe may be deployed in a centralised or in a distributed
environment. In a centralised environment, there will be just one ‘peer’ server which will
manage all of the RDF/S descriptions. In a distributed environment, each peer will
manage some fragment of the overall RDF/S descriptions.

SeLeNe’s reactive functionality will provide the following aspects of the user require-
ments discussed in [8]:

• automatic notification to users of the registration of new LOs of interest to them;

• automatic notification to users of the registration of new users who have information
in common with them in their personal profile;

• automatic notification to users of changes in the description of resources of interest
to them;

• automatic propagation of changes in the description of one resource to the descrip-
tions of other, related resources, e.g. propagating changes in the description of a LO
to the description of any composite LOs defined in terms of it.

Studying the use of ECA rules for RDF in such a large scale distributed application
was a major motivation for the evolution of our RDFTL language, allowing investigation
of the way the system implementing the language operates in a distributed environment
in cooperation with a distributed query processor and local RDF repositories.

One precursor of the work presented here is the XML ECA Language described in [2,
12]. This XML ECA language uses a fragment of XPath for querying the XML documents
and an XML update language for performing the actions. The implementation of this
language was in a centralised environment.

Outline of this paper: Section 2 discusses the path expression sub-language used
in all parts of RDFTL rules for navigating through RDF graphs. Section 3 discusses the
syntax of RDFTL rules and gives some examples of its use. Section 4 specifies the execu-
tion semantics of RDFTL rules. The architecture supporting RDFTL in both centralised
and distributed environments is described in Section 5. Finally, we conclude in Section 6
with future work and further challenges.

2 RDFTL Path Expressions

RDFTL operates over RDF Graphs and thus complies with current RDF standards of
syntax, semantics and datatypes. When defining an ECA rule in RDFTL, it is necessary
to specify the portion of metadata that each part of the rule deals with: for example,
the RDF nodes that will be affected by an event, or the value of an RDF literal used to
evaluate a condition. In order to deal with this, RDFTL uses a path-based query sub-
language for defining queries over an RDF graph. In this section we describe the way this
path-based query sub-language operates over RDF graphs. We first describe the built-
in functions used by the sub-language for navigating around an RDF graph. We then
present the abstract syntax and denotational semantics of the sub-language, following the
approach of [14, 15].

The built-in functions used to perform basic navigation operations within an RDF
graph and to relate the RDF datatypes to one another are as follows:

The resource function takes a URI as its argument and returns a singleton containing
the RDF resource described by the URI, or all the resources in the graph when the URI
is equal to the empty string.
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The sources function takes an RDF Predicate and an RDF Object as arguments and
returns the set S of RDF Subjects such that, for each x ∈ S, (x, Predicate, Object) is a
triple in the RDF graph.

The targets function takes an RDF Predicate and an RDF Subject as arguments and
returns the set S of RDF Objects such that, for each x ∈ S, (Subject, P redicate, x) is a
triple in the RDF graph.

The element function returns the ith element of an RDF collection if passed the integer
i as an argument, or returns all the elements of the collection if no argument is supplied.

The value function returns the value of a given RDF resource in the form of a string.
An extra function that checks whether a node is the root of an RDF collection is

defined, exploiting the functionality of the functions above. The isCollection(x) function
returns true if and only if the RDF node x is an RDF resource and the node returned
by the targets function with predicate rdf : type and subject x as parameters is one
of the RDF classes rdf : Bag, rdf : Seq or rdf : Alt. rdf : type is an instance of the
rdf : Property type and is used to state that a resource is an instance of a class. In the
case of an RDF collection it denotes that a node (the root of the RDF collection) is an
instance of the RDF class rdf : Bag, rdf : Seq or rdf : Alt. The rdf : Bag, rdf : Seq
and rdf : Alt classes are all subclasses of the rdf : Container class. Formally they are no
different to each other and are used only to make the RDF files more readable by humans,
indicating that a collection is intended to be unordered (rdf : Bag), numerically ordered
(rdf : Seq) or that its typical use is the selection of one of its members (rdf : Alt). The
predicate rdf : i, where i ∈ N, is used to relate an RDF collection node to its ith member.

Having defined all the functions that are needed in order to navigate around an RDF
graph, we give below the abstract syntax of RDFTL’s path expressions, where uri ∈
URI , arc name ∈ Predicate, i ∈ Number, s ∈ String qry ∈ Query, p ∈ Path, and
q ∈ Qualifier:

qry ::= ”resource(”uri”)” (”/”p)?

p ::= p”/”p | p”[”q”]” | ”target(”arc name”)” | ”source(”arc name”)” |

”element(”i”)” | ”element()”

q ::= q ”and”q | q ”or” q | ”not” q | p | p ” = ” s | p” 6= ” s

Based on this abstract syntax and the data model defined earlier, we now give the
denotational semantics of RDFTL’s path expressions. We write SJpKx to indicate the set
of nodes selected by path expression p starting from the node x as context node, and we
write QJqKx to denote whether the qualifier q is satisfied when the context node is x :
S : Expression → Node → Set(Node)
S Jresource(uri)K x = {x1 | value(x1) = uri}
S Jp1/p2K x = {x2 | x1 ∈ S Jp1K x , x2 ∈ S Jp2K x1}
S Jp[q]K x = {x1 | x1 ∈ S JpK x , Q JqK x1 }
S Jtarget(arc name)K x = {x1 | x1 ∈ targets(arc name, x)}
S Jsource(arc name)K x = {x1 | x1 ∈ sources(arc name, x)}
S Jelement()K x = if isCollection(x)

then {x1 | x1 ∈ (S Jtarget()K x − S Jtarget(rdf : type)K x)} else error;
S Jelement(i)K x = if isCollection(x) and targets(rdf : type, x) = rdf : Seq

then {x1 | x1 ∈ S Jtarget(rdf : i)K x} else error;
Q : Qualifier → Node → Boolean
Q Jq1 and q2K x = Q Jq1K x ∧ Q Jq2K x
Q Jq1 or q2K x = Q Jq1K x ∨ QJq2K x
Q Jnot qK x = ¬ Q JqK x
Q JpK x = S JpK x 6= ∅
Q Jp = sK x = {x1 | x1 ∈ S JpK x, value(x1) = s} 6= ∅
Q Jp 6= sK x = {x1 | x1 ∈ S JpK x, value(x1) 6= s} 6= ∅
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3 The RDFTL Language

Having described the path expressions RDFTL uses for querying RDF metadata, we now
proceed to describe the RDFTL ECA language as a whole. RDFTL allows the definition
of event-condition-action rules over RDF metadata, operating directly on the graph/triple
representation of the RDF. An early draft of this language was described in [12]. RDFTL
has evolved considerably from that early draft and now matches more closely the RDF
data model. RDFTL rules consist of three parts, the event part specifying the event that
will trigger the rule, the condition part specifying the condition that must hold for the
rule to fire, and the action part specifying the actions to be taken whenever the rule fires.
We consider each of these parts of a rule in turn below.

The event part of a rule is an expression of one of the following three forms:

1. [let-expressions IN] (INSERT | DELETE) e [AS INSTANCE OF class] [USING

NAMESPACE nspace]

This detects insertions or deletions of resources described by the expression e. e
is a path expression expressed in the sub-language described in Section 2, which
evaluates to a set of nodes. Optionally, class is the name of the RDF Schema class
to which at least one of the nodes identified by e must belong in order for the rule
to trigger. To ensure uniqueness and be more specific on the resources that trigger
the rule we can also optionally specify the namespace they belong to.

let-expressions is an optional set of local variable definitions of the form let variable
:= e′, where e′ is again a path expression.

The rule is triggered if the set of nodes returned by e includes any new node (in
the case of an insertion) or any deleted node (in the case of a deletion) that is an
instance of the class, if specified. The system-defined variable $delta is available for
use within the condition and actions parts of the rule, and its set of instantiations
is the set of new or deleted nodes that have triggered the rule.

2. [let-expressions IN] (INSERT | DELETE) triple

This detects insertions or deletions of arcs specified by triple, which has the form
(source node, arc name, target node). The wildcard ‘ ’ is allowed in the place of
any of a triple’s components.

The rule is triggered if an arc labelled arc name from source node to target node is
inserted/deleted. The variable $delta has as its set of instantiations the values of
source node of the arc(s) which have triggered the rule.

3. [let-expressions IN] UPDATE upd triple

This detects updates of arcs. upd triple is a special form of triple. Its form is
(source node, arc name, old target node → new target node). Here, old target node
is where the arc labelled arc name from source node used to point before the update,
and new target node is where this arc points after the update. Again, the wildcard
‘ ’ is allowed in the place of any of these components.

The rule is triggered if an arc labelled arc name from source node changes its tar-
get from old target node to new target node. The variable $delta has as its set of
instantiations the values of source node of the arc(s) which have triggered the rule.

The condition part of rule is a boolean-valued expression which may reference the
$delta variable. This expression may consist of conjunctions, disjunctions and negations
of path expressions.

The actions part of a rule is a sequence of one or more actions. Actions can INSERT or
DELETE a resource — specified by its URI — and INSERT, DELETE or UPDATE an arc. The
actions language has the following form for each one of these cases (note that this actions
language can also serve more generally as an update language for RDF):
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1. [let-expressions IN] INSERT e AS INSTANCE OF class

[USING NAMESPACE nspace]

[let-expressions IN] DELETE e [AS INSTANCE OF class]

[USING NAMESPACE nspace]

for expressing insertion and deletion of a resource.

2. [let-expressions IN] (INSERT | DELETE) triple (’,’ triple)*

for expressing insertion or deletion of the arcs(s) specified.

3. [let-expressions IN] UPDATE upd triple (’,’ upd triple)*

for updating arc(s) by changing their target node.

The AS INSTANCE OF keyword classifies, according to the RDF Schema, the resource
to be deleted or inserted. In the case of insertions, the classification of the new resource
is obligatory, while in the case of deletions it is optional. Specification of the names-
pace where the resource belongs, using the USING NAMESPACE nspace construct, is also
optional.

The triples in the case of arc manipulation have the same form as in the event sub-
language. In the case of arc insertion and deletion they have the form (source node,
arc name, target node) while in the case of arc update, the old and the new target node
are also specified, so that the triple has the form (source node, arc name, old target node
→ new target node).

The wildcard ‘ ’ may also appear inside triples in the action sub-language, as follows:
In the case of a new arc insertion, ’ ’ is allowed in the place of the source node and has
the effect of inserting the new arc for all stored resources. In the case of arc deletion, if ’ ’

replaces the arc name then all the arcs from source node pointing to target node will be
deleted; if ’ ’ replaces the source node, the action deletes all the arcs labelled arc name;
replacing the target node by ’ ’ deletes the arc arc name from the source node regardless
of where it points to. In case of a arc update, ’ ’ can be used in place of the source node
or the old target node; in the first case, it indicates replacement of the target node for
all arcs labelled arc name; in the second case, use of ’ ’ indicates update of the target
node regardless of its previous value. The use of combinations of the above wildcards in
a triple is also allowed, in order to express more complex update semantics that combine
those given above.

Examples. These examples refer to the Learning Object metadata illustrated in Figure
1 and to the fragment of a user’s personal metadata illustrated in Figure 2. In Figure 2,
ext1 is the IMS-LIP schema and ext3 is SeLeNe’s User Profile schema (see [7] for details
of these schemas).

Suppose a LO is inserted whose subject is the same as one of user 128’s areas of
interest. Then the following rule adds a new arc linking the newly inserted LO into the
new_LOs collection in user 128’s personal messages:

ON INSERT resource() AS INSTANCE OF LO

IF $delta/target(dc:subject)

= resource(http://www.dcs.bbk.ac.uk/users/128)

/target(ext1:interest)/element()/target(ext1:interest_typename)

DO LET $new_los := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(ext3:messages)/target(ext3:new_LOs) IN

INSERT ($new_los,seq++,$delta);;

Here, the event part checks if a new resource belonging to the LO class has been inserted.
The condition part checks if the inserted LO has a subject which is the same as of one user
128’s areas of interest. The LET clause in the rule’s action defines the variable $new_los

to be user 128’s new LOs collection. Finally, the INSERT clause inserts a new arc from
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Figure 1: Example of LO Metadata
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Figure 2: Example of User Metadata
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$new_los to the newly inserted LO (we use the syntax seq++ to indicate an increment in
the collection’s element count).

As another example, if the description of a LO whose subject is the same as one of user
128’s areas of interest changes, then a new arc is inserted from user 128’s updated_LOs

collection to the modified LO:

ON UPDATE (resource(),dc:description,_->_)

IF $delta/target(dc:subject)

= resource(http://www.dcs.bbk.ac.uk/users/128)

/target(ext1:interest)/element()/target(ext1:interest_typename)

DO LET $updated_lo_list := resource(http://www.dcs.bbk.ac.uk/users/128)

/target(ext3:messages)/target(ext3:updated_LOs) IN

INSERT ($updated_lo_list,seq++,$delta);;

4 RDFTL Rule Execution Semantics

In this section we describe the rule execution semantics of RDFTL, i.e. the way that ECA
rules are executed in response to a triggering event, and the resulting RDF graph. Our
ECA rule execution semantics are expressed as a recursive function, execSched, which
takes as input an RDF graph and a schedule. The schedule consists of a sequence of
updates which are to be executed on the RDF graph, an update having the same syntax
as a rule action except that there are no occurrences of the $delta variable within it.
The execution of an update may cause events to occur. These may cause rules to fire,
modifying the schedule with new sub-sequences of updates. The rule execution continues
in this fashion until the schedule becomes empty.

The events detectable by our system are determined by the syntax of the event parts
of our ECA rules as described in Section 3, where we also specified for each kind of event
when a rule is deemed to have been triggered, and what is its set of instantiations for the
$delta variable1.

The condition and action parts of an RDFTL rule may or may not contain occur-
rences of the $delta variable. If neither the condition nor the action part contain occur-
rences of $delta, then the rule is a set-oriented rule, otherwise it is an instance-oriented
rule. A set-oriented rule fires if it is triggered and its condition evaluates to True. An
instance-oriented rule fires if it is triggered and its condition evaluates to True for some
instantiation of $delta.

A rule’s action part consists of one or more actions. If a set-oriented rule fires, then
one copy of its action part is prefixed to the current schedule. If an instance-oriented rule
fires then one copy of its action part is prefixed to the current schedule for each value
of $delta for which the rule’s condition evaluates to true, in each case substituting all
occurrences of $delta within the action part by one specific instantiation for $delta; the
ordering of these multiple copies of the rule’s action part is arbitrary2.

All rules have ‘immediate’ coupling mode, meaning that if a rule fires then the updates
generated by its actions are prefixed to the current schedule (as, for example, in the SQL3
trigger standard [10]). If multiple rules fire as a result of an event occurrence, then the
updates of higher-priority rules precede those of lower-priority ones on the schedule. We
thus require that there is a total ordering imposed on the set of ECA rules (as, for example,
in SQL3 [10]). We also assume that all rules have the same binding mode, whereby any

1We note that our system supports semantic rather than syntactic triggering — syntactic triggering happens
if instances of an event occur, while semantic triggering happens if instances of an event occur and make changes
to the RDF graph.

2We assume that instance-oriented rules are well-defined, in the sense that the same final RDF graph will
result when rule execution terminates irrespective of the order in which copies of a rule’s actions are scheduled.
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occurrences of the $delta variable appearing in a rule’s condition or action parts are
bound to the state of the RDF graph in which the rule’s condition is evaluated3.

Below we specify our rule execution semantics as a recursive function execSched which
takes an RDF graph and schedule, and repeatedly executes the update at the head of the
schedule, amending the schedule with the updates generated by rules that fire along the
way. If execSched terminates, it outputs the final RDF graph and the final, empty,
schedule. In this specification, [ ] denotes the empty list, (x : y) a list with head x and tail
y, and ++ is the list append operator. We also assume the following standard function
for ‘left folding’ a binary function f into a list:

foldl f a [] = a

foldl f a (x:xs) = foldl f (f x a) xs

The function exec u gr executes an update u on the current RDF graph gr, and returns
the new RDF graph, gr, together with the set of nodes and arcs, changes, inserted or
deleted by u. Each rule’s instantiations for its $delta variable will subsequently be
extracted from this changes set.

We assume that ECA rules are identified by unique identifiers of type RuleId. The
expression deltas ch r denotes the set of instantiations of the $delta variable for rule r,
given the current set of overall changes ch. So r is triggered when deltas ch r is non-
empty. condition r returns the rule’s condition query and actions r its list of actions.
isSetOriented r returns whether or not r is a set-oriented rule.

The function triggers takes an update, and returns a list comprising the identifiers of
the rules that may be triggered by that update, in decreasing order of the rules’ priority.
triggers does this by performing a syntactic analysis of updates and rule event parts, and
is conservative in the sense that if triggers u does not return a rule identifier, then there
is no RDF graph in which execution of u can trigger that rule.

The function schedRules applies the function schedRule to each rule that may be
triggered by u, in decreasing order of these rules’ priority. schedRule determines whether
a rule has indeed triggered in which case the function updateSched is called. This de-
termines if a rule has fired, and if so calls updateSched to update the schedule’s prefix.
Within updateSched, eval q gr evaluates a query q with respect to an RDF graph gr, and
substitute e d replaces any occurrences of $delta within e by d:

execSched : (RDFGraph,Schedule) -> (RDFGraph,Schedule)

execSched (gr,[]) = (gr,[])

execSched (gr,u:s) =

let (changes,gr) = (exec u gr) in

execSched (schedRules (changes,gr,(u:us)))

schedRules : (Changes,RDFGraph,Schedule) -> (RDFGraph,Schedule)

schedRules (ch,gr,u:s) =

let (ch,gr,prefix) = (foldl schedRule (ch,gr,[]) (triggers u)) in

(gr,prefix++s)

schedRule : RuleId -> (Changes,RDFGraph,Schedule,Schedule) ->

(Changes,RDFGraph,Schedule,Schedule)

schedRule r (ch,gr,prefix) =

if (deltas ch r) = {}

then (ch,gr,prefix)

else updateSched (ch,gr,deltas ch r,r,prefix)

3Our rules could be enriched to handle a greater variety of coupling modes and binding modes, but this is
an area of future work. A detailed description of the coupling and binding possibilities for ECA rules can be
found in [13].
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updateSched (ch,gr,deltas,r,prefix) =

if (isSetOriented r)

then if (eval (condition r) gr)

then (ch,gr,prefix ++ (actions r))

else (ch,gr,prefix)

else (ch,gr,prefix ++ [u | d<-deltas; eval (substitute (condition r) d) gr];

u<-substitute (actions r) d]

5 System Architecture

As part of our research there is in progress the implementation of a system for processing
RDFTL rules in both centralised and distributed environments. The main component of
our system is the RDFTL ECA Engine (see below). This provides an ‘active’ wrapper over
a ‘passive’ RDF repository, which exploits the query, storage and update functionality of
such a repository. We thus assume the availability of a Query Service and an Update Ser-
vice provided by the RDF repository. In our current implementation, the RDF repository
is RDFSuite [1, 5] from ICS-FORTH.

In a centralised environment, one ECA Engine is installed on the central server hosting
the RDF/S repository. Any update request to this repository passes through the ECA
Engine, which enables both event detection and update processing at that server.

In a distributed environment, an ECA rule generated at one site of the network might
be triggered, evaluated, and executed at different sites. There may thus be an installation
of the ECA Engine at several network sites. The architecture that we are implementing
is illustrated in Figure 3. Each ‘super-peer’ server shown in that diagram may be coordi-
nating a group of further ‘peer’ servers, as well as itself hosting a fragment of the overall
RDF/S descriptions in the network. At each super-peer there is installed one ECA Engine
operating as a Web Service.

Whenever a new ECA rule r is registered at a peer P, it will be sent to P’s super-peer
for storage. As we will see below, from there r will also be sent to all other super-peers,
and a replica of it will be stored at those super-peers that are relevant to r i.e. where an
event may occur that may trigger r’s event part, or which may participate in evaluating
r’s condition part, or where r’s actions may have to be scheduled for execution.

In the dynamic applications that we envisage, ECA rules are likely not to be hand-
crafted but automatically generated by higher-level presentation and application services.
Within the event, condition and action parts of ECA rules there might or might not be
references to specific RDF resources i.e. ECA rules may be resource-specific or generic.
We currently assume that at run-time rules are triggered by events occuring within a
single peer’s local RDF repository and that individual rule actions execute within a single
peer’s RDF repository. In other words, there is no need for distributed event detection or
distributed execution of individual actions (although the condition parts of rules may be
distributed, and different actions from one rule may execute at different peers). These as-
sumptions hold true for the SeLeNe system, but generalising our techniques and architure
to support distributed event detection and action execution is an area of future work.

Each ECA engine consists of several sub-components:

• The RDFTL Language Interpreter takes as input an RDFTL rule definition and
registers it in a Rule Base. The Language Interpreter consists of a Parser which
verifies the syntactic correctness of the rule, and a Translator which translates any
path queries within the rule into the query syntax of the underlying RDF repository.
In our present implementation, RDFTL path expressions are translated into RQL
[6] which is the query language supported by RDFSuite.

• The Event Detector detects the occurrence of events within the local RDF repository
and the triggering of ECA rules registered within the local rule base. The Event
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Figure 3: Distributed System Architecture
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Detector determines which rules have been triggered by the most recent update to
the local RDF repository by invoking the Query Service to evaluate the event queries
of rules that may have been triggered.

• The Condition Evaluator determines which of the triggered rules should fire. It does
this by submitting appropriate queries to the Query Service to etermine which of the
triggered rules’ conditions are true. This may require distributed query processing
across a number of peers, which is provided by the Query service.

• The Action Scheduler generates from the action parts of rules that have fired a
list of updates to be prefixed to the appropriate execution schedules, and generates
the appropriate messages to update these execution schedules. These execution
schedules may be either the local execution schedule, or any number of remote
execution schedules managed by remote ECA Engines.

• The Peer Connection Manager establishes connection for data transfer and message
passing between the local ECA Engine and the local RDF repository, in case of a
centralised environment, and in addition between different peers’ ECA Engines in
the case of a distributed environment.

5.1 Operating in a centralised environment

In a centralised environment, one ECA Engine and one RDF repository manager are in-
stalled at one server. All update requests to the RDF repository are passed through the
ECA Engine which, in coordination with the repository’s Update Service, enables both
event detection and update processing at the server. Whenever a new ECA rule is reg-
istered, the RDFTL language interpreter performs syntax validation and translation of
path expressions to the repository’s query language. The rule is then stored in the rule
base. At run-time, the ECA engine monitors all update requests to the repository. When-
ever an update occurs that triggers one or more ECA rules, the ECA engine evaluates the
condition parts of these rules, by submitting the appropriate queries to the repository’s
Query Service. The actions of any rules that have fired are then placed onto the local
execution schedule, as described in Section 4 above.

5.2 Operating in a distributed environment

There are two possible scenarios for the way in which super-peers may coordinate the
information managed by their peers — mediated and peer-to-peer. In a mediated scenario,
each peer manages a local RDF Schema to which its RDF descriptions conform. Each
super-peer manages a global RDF Schema GS which semantically integrates the set of
local RDF Schemas of its own peer group LS1, . . . , LSn as well as the global schemas
of the other super-peers GS1, . . . , GSm to which it is connected — thus, in effect, each
super-peer has the role of a mediator. The set of mappings between GS and LS1, . . . , LSn,
GS1, . . . , GSm is managed by the super-peer. These schemas and mappings may evolve
with time, but this will be driven by changes to the local or global RDF Schemas.

In a P2P scenario each peer again stores a fragment of the overall distributed RDF
descriptions, but this need not conform to the global RDF Schema of its coordinating
super-peer, and changes to local and global RDF Schemas may occur as a result of changes
to the peers’ RDF descriptions. Moreover, peers may dynamically join or leave the SeLeNe
network. We discuss first this scenario, and then consider the simpler mediated scenario.

5.3 P2P Scenario

Whenever a new ECA rule r is registered at a peer P, it will be sent to P’s super-peer for
storage. From there r will also be sent to all other super-peers, and a replica of it will be
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stored at those super-peers that are relevant to r i.e. where an event may occur that may
trigger r’s event part, or which may participate in evaluating r’s condition part, or where
r’s actions may have to be scheduled for execution. In order to determine the relevance of
super-peers to particular ECA rules, a simple index can be kept at each peer and super-
peer. There are a number of possibilities for doing this (see for example [3, 11, 9, 4]),
and this is our solution:

As the RDF descriptions stored at each peer change over time, so each peer maintains
an annotated copy of its local RDF Schema, which shows for each node in the schema
whether or not there is RDF data of this type at this peer (a ’0’ or ’1’ bit).

This information is also propagated to the peer’s coordinating super-peer. This super-
peer maintains a combined RDF Schema which is annotated so that each node shows the
set of peers in its own peer group that manage data of this type (a set of peer IDs), and
also the remote super-peers to which it is connected and whose peer group manages such
data (a set of super-peer IDs).

The latter information is gathered and maintained as follows. If a node in the RDF
Schema of a super-peer, SP, changes from not having any data in this peer group to
having data, or vice versa, this change is notified to SP’s neighbouring super-peers, so
that these too can update the relevant annotation in their RDF Schemas. If one of these
RDF Schemas changes from not having data associated with a particular RDF Schema
node to having such data, this change is notified to this super-peer’s neighbours. The
process repeats, thereby propagating the necessary changes throughout the network of
super-peers. Note that in general the super-peers may hold heterogeneous RDF Schemas,
and so need to provide an RDF Schema mapping service.

Finally, as well as this annotated RDF Schema, each super-peer also keeps for each
node annotated with a ’1’ in its RDF Schema a list of the RDF resources of this type
that each peer in its peer group references — we call these lists of RDF resources resource
indexes.

Registering an ECA rule. When a new rule is generated at a peer, it is sent to
the peer’s own super-peer for storage in its local rule base. The super-peer annotates
the event, condition and action parts of the rule with the local peers that are relevant
to each part (a list of peer IDs). This can be determined by matching each part of the
rule against the super-peer’s annotated RDF Schema and/or its resource indexes — the
former is useful if no resource is specified in this part of the rule and the latter is useful
if a resource is specified. As the annotated RDF Schema and resource indexes at the
super-peer evolve, so the annotations on the ECA rules can also be evolved to maintain
consistency.

The rule is also sent to all connected super-peers that may be relevant to it — this
is determined from the super-peer ID annotations on the originating super-peer’s RDF
Schema. These super-peers repeat the process of matching each part of the rule against
their own annotated RDF Schema, and storing the resulting annotated rule in their own
rule base if it is indeed relevant to any of their peer group. We note that, due to schema
heterogeneity, the rule may first have to be translated so that its parts are expressed with
respect to the local RDF Schema. This first round of super-peers then propagate the rule
to relevant super-peers to which they are connected, and the process continues, thereby
propagating the rule through the whole network. The final result is a replica of the rule
at each super-peer which is relevant to the rule, annotated with local information about
which peers may be affected by each part of the rule.

As the information at super-peers changes with time, it may be that an ECA rule is
no longer relevant to that super-peer, in which case the rule can be deactivated in the
super-peer’s local rule base. Conversely, an ECA rule stored somewhere else may become
relevant to a super-peer.

For the first case, if a peer, P, changes so that it no longer has any data associated with
a particular RDF Schema node, this change is propagated to the combined RDF Schema
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stored at the P’s super-peer, SP. Using this updated RDF Schema, the annotation of each
part of each rule in SP’s rule base is updated. If as a result there is a rule r such that the
annotation of each part of r is empty, then the rule can be deactivated in SP’s rule base
(it is not deleted, in case subsequent changes in data require it to be reactivated).

Conversely, if a peer, P, changes so that it now has data associated with a particular
RDF Schema node, this change is again propagated to the RDF Schema stored at the
P’s super-peer, SP. The annotation of each part of each rule in SP’s rule base is again
updated. Moreover, if the combined RDF Schema at SP has changed from having no data
associated with a particular RDF Schema node to now having such data, this change is
notified to SP’s neighbouring super-peers. If any of these neighbours have ECA rules
which may have been made relevant by the new change at SP, they send these ECA rules
to SP. These super-peers also request from their neighbours (other than SP) their current
set of ECA rules which are potentially relevant to the change, and they forward these rules
on to SP. This process repeats until all the potentially relevant ECA rules throughout the
network have been sent to SP.

Rule triggering and execution. At run-time, whenever an event E occurs at a
peer P, it will notify its super-peer. This will determine whether E may trigger any
ECA rule annotated with P’s ID. If a rule r might have been triggered, the super-peer
will send P r’s event query to evaluate. If r has indeed been triggered, its condition
will need to be evaluated, after generating an instantiation of it for each value of the
$delta variable if this is present in the condition. The annotations on r can be used to
determine to which local peers and other super-peers sub-queries of the condition should
be dispatched for evaluation. If the $delta variable is present in the condition, it will
have been instantiated and so we also consult the super-peers’ resource indexes for more
precise information about which local peers are relevant to sub-queries of the instantiated
condition.

If a condition evaluates to true, each corresponding rule action will be sent to, and
scheduled, by the super-peers that will execute it. Again this can be determined by the
annotations on the rule action and consulting the super-peers’ resource indexes.

5.4 Mediated Scenario

In this case the schemas and mappings may again evolve with time, but this will be
driven by changes to the local or global RDF Schemas, under the control of the overall
application. It will not be possible for a peer’s RDF description not to conform to the
peer’s local RDF Schema. Peers cannot dynamically join or leave the network, and so
there is no need for an advertisement process from peers to super-peers. As with the
P2P scenario, each super-peer maintains for each node in its global RDF Schema a list
of the RDF resources of this type that each peer in its peer group references (a resource
index). Registration of new ECA rules is handled as in the P2P scenario. However, in the
mediated scenario RDF Schemas are likely to evolve much less frequently than in the P2P
scenario, and so annotations on existing ECA rules are likely to need much less frequent
update. Rule triggering and execution is handled as in the P2P scenario.

6 Concluding Remarks and Future Work

In this paper we have described a language for defining ECA rules on RDF repositories,
including its syntax, semantics and the architecture of a system implementing the lan-
guage, both for centralised and distributed environments. For the immediate future, we
plan to explore more deeply the expressiveness RDFTL — it is straight-forward to show
that RDFTL is computationally complete but we wish to investigate also its query and
update expressiveness. We will also finish the implementation of both the centralised and
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distributed sytems over the ICS-FORTH RDFSuite repository, evaluate our implementa-
tions in the context of the SeLeNe project, and determine empirically their performance
and scalability characteristics.

More generally, there is as yet no accepted standard query or update language for
RDF. If ECA rules are to be supported on RDF repositories, then whatever standards
eventually emerge, there is also the parallel issue of designing the event language to match
up with the update language. In this paper we have seen how this was done in the context
of our particular RDF ECA language. In general, the ability to analyse and optimise ECA
rules needs to be balanced against their complexity and expressiveness, and this issue also
needs to be borne in mind in future developments in ECA rule languages for RDF. Another
important area is combining ECA rules with transactions and consistency maintenance
in RDF repositories.
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