
ISR 2020 Advanced Course Proposal

Automated Complexity Analysis for Term Rewriting

Carsten Fuhs

Abstract

Complexity analysis for term rewriting aims to infer bounds on the length of the longest
rewrite sequence as a function of the size of the considered start terms. In this course, we
look into static analysis techniques that can be used as ingredients for automatic complexity
analysis tools for term rewriting. Such tools take as input a term rewrite system and provide
as output asymptotic upper or lower worst-case complexity bounds (e.g., O(n2)) for this
term rewrite system.

1 Outline

Complexity analysis for term rewrite systems (TRSs) investigates the length of the longest
rewrite sequence (or: longest derivation) as a function of the size of its start term. If the set of
start terms is not restricted, this complexity function is known as the derivational complexity
of the TRS [11]. It is in general not computable; that is why the development of techniques
and tools has focused on sufficient criteria for the inference of (not necessarily tight) upper and
lower asymptotic bounds of the complexity function.

Research in this area initially dealt with upper bounds on the derivational complexity
induced by termination proof techniques: if termination of a given TRS is proved using a
particular technique, this implies that the derivational complexity of the TRS cannot exceed a
bound specific to the proof technique and its parameters [11].

However, from a program analysis perspective, derivational complexity is not a suitable
complexity measure: even a simple TRS with the two rules double(0) → 0 and double(s(x)) →
s(s(double(x))) to double a natural number has exponential derivational complexity. The issue is
that derivational complexity considers start terms of arbitrary shape; in particular, start terms
with nested defined symbols like double(double(. . . double(s(0)) . . .)) are allowed and may cause
exponential derivational complexity. In contrast, computing the double of a natural number
double(s(. . . s(0) . . .)) (intuitively: applying the function double to data) has linear complex-
ity. This latter notion, where defined symbols in the start term are allowed only at its root,
is significantly closer to complexity analysis for conventional programming languages. The
corresponding complexity function is known as the runtime complexity [10] of a TRS.

In this course, we will discuss a selection of automated techniques for inferring asymptotic
lower and upper bounds on derivational and runtime complexity of TRSs. For upper bounds,
the dependency pair method from termination analysis [1] has been adapted to allow for a
certain modularity in the analysis [10, 14, 3]. Further techniques to find upper bounds include
transformations between different complexity problems for rewriting [5, 7] or from rewriting
to programs on integer numbers [13]. As witnesses for lower bounds, one can find “decreasing
loops” or identify a family of start terms tn parametric in the term size n for which one can
prove inductively that corresponding rewrite sequences of a certain length exist [6].

If time permits, we may also briefly look at the application of complexity analysis tools
for term rewriting as backends for the complexity analysis of programming languages such as
Prolog [9], OCaml [2], and Java [12].

1



2 Duration and Exercises

The course is designed for 2 slots of 90 minutes each. These will also include selected exercises
and the possibility to work with existing complexity analysis tools such as AProVE [8] and
TcT [4].

References

[1] Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1–2):133–178, 2000.

[2] Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the complexity of functional
programs: higher-order meets first-order. In Proc. ICFP ’15, pages 152–164, 2015.

[3] Martin Avanzini and Georg Moser. A combination framework for complexity. Information
and Computation, 248:22–55, 2016.

[4] Martin Avanzini, Georg Moser, and Michael Schaper. TcT: Tyrolean complexity tool. In
Proc. TACAS ’16, volume 9636 of LNCS, pages 407–423, 2016. http://cl-informatik.
uibk.ac.at/software/tct/.

[5] Florian Frohn and Jürgen Giesl. Analyzing runtime complexity via innermost runtime
complexity. In Proc. LPAR ’17, volume 46 of EPiC, pages 249–268, 2017.

[6] Florian Frohn, Jürgen Giesl, Jera Hensel, Cornelius Aschermann, and Thomas Ströder.
Lower bounds for runtime complexity of term rewriting. Journal of Automated Reasoning,
59(1):121–163, 2017.

[7] Carsten Fuhs. Transforming derivational complexity of term rewriting to runtime com-
plexity. In Proc. FroCoS ’19, volume 11715 of LNAI, pages 348–364, 2019.

[8] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas
Ströder, Stephanie Swiderski, and René Thiemann. Analyzing program termination and
complexity automatically with AProVE. Journal of Automated Reasoning, 58:3–31, 2017.
http://aprove.informatik.rwth-aachen.de/.

[9] Jürgen Giesl, Thomas Ströder, Peter Schneider-Kamp, Fabian Emmes, and Carsten Fuhs.
Symbolic evaluation graphs and term rewriting: A general methodology for analyzing logic
programs. In Proc. PPDP ’12, pages 1–12, 2012.

[10] Nao Hirokawa and Georg Moser. Automated complexity analysis based on the dependency
pair method. In Proc. IJCAR ’08, volume 5195 of LNAI, pages 364–379, 2008.

[11] Dieter Hofbauer and Clemens Lautemann. Termination proofs and the length of deriva-
tions. In Proc. RTA ’89, volume 355 of LNCS, pages 167–177, 1989.

[12] Georg Moser and Michael Schaper. From Jinja bytecode to term rewriting: A complexity
reflecting transformation. Information and Computation, 261:116–143, 2018.

[13] Matthias Naaf, Florian Frohn, Marc Brockschmidt, Carsten Fuhs, and Jürgen Giesl. Com-
plexity analysis for term rewriting by integer transition systems. In Proc. FroCoS ’17,
volume 10483 of LNAI, pages 132–150, 2017.

[14] Lars Noschinski, Fabian Emmes, and Jürgen Giesl. Analyzing innermost runtime complex-
ity of term rewriting by dependency pairs. Journal of Automated Reasoning, 51(1):27–56,
2013.

2

http://cl-informatik.uibk.ac.at/software/tct/
http://cl-informatik.uibk.ac.at/software/tct/
http://aprove.informatik.rwth-aachen.de/

	Outline
	Duration and Exercises

