Automated Termination and Complexity Analysis of Programs

Carsten Fuhs

Birkbeck, University of London

EuroProofNet Summer School on

Verification Technology, Systems \& Applications 2022
Saarbrücken, Germany
5 \& 7 September 2022
https://www.dcs.bbk.ac.uk/~carsten/vtsa2022/

Quality Assurance for Software by Program Analysis

Two approaches:

Quality Assurance for Software by Program Analysis

Two approaches:

- Dynamic analysis:

Run the program on example inputs (testing).

+ goal: find errors
- requires good choice of test cases
- in general no guarantee for absence of errors

Quality Assurance for Software by Program Analysis

Two approaches:

- Dynamic analysis:

Run the program on example inputs (testing).

+ goal: find errors
- requires good choice of test cases
- in general no guarantee for absence of errors
- Static analysis:

Analyse the program text without actually running the program.

+ can prove (verify) correctness of the program
\rightarrow important for safety-critical applications
\rightarrow motivating example: first flight of Ariane 5 rocket in 1996

```
https://www.youtube.com/watch?v=PK_yguLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501
```

- manual static analysis requires high effort and expertise
\Rightarrow for broad applicability:
Build automatic tools for static analysis!

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as "black boxes".

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as "black boxes". What properties of programs do we want to analyse?

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as "black boxes".
What properties of programs do we want to analyse?

- Partial Correctness
\rightarrow will my program always produce the right result?

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as "black boxes".
What properties of programs do we want to analyse?

- Partial Correctness
\rightarrow will my program always produce the right result?
- Assertions by the programmer. assert $x>0$
\rightarrow will this always be true?

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as "black boxes".
What properties of programs do we want to analyse?

- Partial Correctness
\rightarrow will my program always produce the right result?
- Assertions by the programmer. assert $x>0$
\rightarrow will this always be true?
- Equivalence. Do two programs always produce the same result? \rightarrow correctness of refactoring

Static Analysis: the User's Perspective (1/2)

For the user (programmer): Use static analysis tools as "black boxes".
What properties of programs do we want to analyse?

- Partial Correctness
\rightarrow will my program always produce the right result?
- Assertions by the programmer. assert $x>0$
\rightarrow will this always be true?
- Equivalence. Do two programs always produce the same result? \rightarrow correctness of refactoring
- Confluence. For languages with non-deterministic rules/commands: Does my program always produce the same result?

Confluence is a property that establishes the global determinism of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis '17]
\rightarrow does the order of applying compiler optimisation rules matter?

Static analysis: the user's perspective (2/2)

- Memory Safety
\rightarrow are my memory accesses always legal?
int* $x=$ NULL; *x = 42;
\rightarrow undefined behaviour!
\rightarrow memory safety matters: Heartbleed (OpenSSL attack)

Static analysis: the user's perspective (2/2)

- Memory Safety
\rightarrow are my memory accesses always legal?
int* $x=$ NULL; *x = 42;
\rightarrow undefined behaviour!
\rightarrow memory safety matters: Heartbleed (OpenSSL attack)
- Termination
\rightarrow will my program give an output for all inputs in finitely many steps?

Static analysis: the user's perspective (2/2)

- Memory Safety
\rightarrow are my memory accesses always legal?
int* $x=$ NULL; *x = 42;
\rightarrow undefined behaviour!
\rightarrow memory safety matters: Heartbleed (OpenSSL attack)
- Termination
\rightarrow will my program give an output for all inputs in finitely many steps?
- (Quantitative) Resource Use aka Complexity
\rightarrow how many steps will my program need in the worst case?
(runtime complexity)
\rightarrow how large can my data become? (size complexity)

Static analysis: the user's perspective (2/2)

- Memory Safety
\rightarrow are my memory accesses always legal?
int* x = NULL; *x = 42;
\rightarrow undefined behaviour!
\rightarrow memory safety matters: Heartbleed (OpenSSL attack)
- Termination
\rightarrow will my program give an output for all inputs in finitely many steps?
- (Quantitative) Resource Use aka Complexity
\rightarrow how many steps will my program need in the worst case?
(runtime complexity)
\rightarrow how large can my data become? (size complexity)
Note: All these properties are undecidable!
\Rightarrow use automatable sufficient criteria in practice
- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...

Termination
Complexity
Non-Termination

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language

Termination

Non-Termination

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language
- Proofs usually have many steps \rightarrow construct proof tree

Termination
Complexity
Non-Termination

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language
- Proofs usually have many steps \rightarrow construct proof tree
- Founding tool of Termination Competition, since 2004
- Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language
- Proofs usually have many steps \rightarrow construct proof tree
- Founding tool of Termination Competition, since 2004
- Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
- Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language
- Proofs usually have many steps \rightarrow construct proof tree
- Founding tool of Termination Competition, since 2004
- Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
- Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)
(1) dedicated program analysis by symbolic execution and abstraction

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language
- Proofs usually have many steps \rightarrow construct proof tree
- Founding tool of Termination Competition, since 2004
- Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
- Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)
(1) dedicated program analysis by symbolic execution and abstraction
(2) extract rewrite system

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language
- Proofs usually have many steps \rightarrow construct proof tree
- Founding tool of Termination Competition, since 2004
- Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
- Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)
(1) dedicated program analysis by symbolic execution and abstraction
(2) extract rewrite system
rewrite system \Rightarrow termination of program

- Program analysis tool developed in Aachen, London, Innsbruck, ...
- Fully automated, hundreds of techniques for termination, time complexity bounds, ...
- Highly configurable via strategy language
- Proofs usually have many steps \rightarrow construct proof tree
- Founding tool of Termination Competition, since 2004
- Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
- Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)
(1) dedicated program analysis by symbolic execution and abstraction
(2) extract constrained rewrite system (constraints in integer arithmetic)
(3) termination of constrained rewrite system \Rightarrow termination of program

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable property
Approach: Often in two phases

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable property
Approach: Often in two phases

Front-End

- Input: Program in Java, C, Prolog, Haskell, ...
- Output: Mathematical representation amenable to automated analysis (usually some kind of transition system)
- Often over-approximation, preserves the property of interest

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable property
Approach: Often in two phases

Front-End

- Input: Program in Java, C, Prolog, Haskell, ...
- Output: Mathematical representation amenable to automated analysis (usually some kind of transition system)
- Often over-approximation, preserves the property of interest

Back-End

- Performs the analysis of the desired property
\Rightarrow Result carries over to original program

I. Termination Analysis

Why Analyse Termination?

Why Analyse Termination?

(1) Program: produces result

Why Analyse Termination?

(1) Program: produces result
(2) Input handler: system reacts

Why Analyse Termination?

(1) Program: produces result
(2) Input handler: system reacts
(3) Mathematical proof: the induction is valid

Why Analyse Termination?

(1) Program: produces result
(2) Input handler: system reacts
(3) Mathematical proof: the induction is valid
(9) Biological process: reaches a stable state

Why Analyse Termination?

(1) Program: produces result
(2) Input handler: system reacts
(3) Mathematical proof: the induction is valid
(9) Biological process: reaches a stable state

Variations of the same problem:
(2) special case of (1)
© can be interpreted as (1)
(0) probabilistic version of ©

Why Analyse Termination?

(1) Program: produces result
(2) Input handler: system reacts
(3) Mathematical proof: the induction is valid
(9) Biological process: reaches a stable state

Variations of the same problem:
(2) special case of ©

0 can be interpreted as ©
(0) probabilistic version of (1)

2011: PHP and Java issues with floating-point number parser

- http://www.exploringbinary.com/ php-hangs-on-numeric-value-2-2250738585072011e-308/
- http://www.exploringbinary.com/ java-hangs-when-converting-2-2250738585072012e-308/

The Bad News

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

- We want to solve the (harder) question if a given program terminates on all inputs.

The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

- We want to solve the (harder) question if a given program terminates on all inputs.
- That's not even semi-decidable!

The Bad News

Theorem (Turing 1936)

The question if a given program terminates on a fixed input is undecidable.

- We want to solve the (harder) question if a given program terminates on all inputs.
- That's not even semi-decidable!
- But, fear not ...

Termination Analysis, Classically

Turing 1949

Hnaily the chocker has to vorify that the proooss comes to an ond. Hore again ho should be assistod by tho programer giving a furthor dofinito ansortion to be verified. This may take the form or a quantity which is assertal to dooreaso continually and vanish when tho machino stops.
"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."

Termination Analysis, Classically

Turing 1949

Hnaily the chocker has to vorify that the proooss comes to an ond. Hore again ho should be assistod by tho programer giving a furthor dofinite ansortion to be verified. This may take the form or a quantity which is assertad to dooreaso continually and vaniah whon tho machino stops.
"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."
(1) Find ranking function f ("quantity")

Termination Analysis, Classically

Turing 1949

Hnaily the chocker has to vorify that the proooss comes to an ond. Hore again ho should be assistod by tho programer giving a furthor dofinito ansortion to be verified. This may take the rom or a quantity which is assertad to dooreaso continually and vaniah whon tho machino stops.
"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."
(1) Find ranking function f ("quantity")
(2) Prove f to have a lower bound ("vanish when the machine stops")

Termination Analysis, Classically

Turing 1949

Hnaily the chocker has to vorify that the proooss comes to an ond. Hore again ho should be assistod by tho programer giving a furthor dofinito ansortion to bo vorified. This may take the form of a quantity which is assertad to dooreaso continually and vanish when the auchino stops.
"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."
(1) Find ranking function f ("quantity")
(2) Prove f to have a lower bound ("vanish when the machine stops")
(3) Prove that f decreases over time

Termination Analysis, Classically

Turing 1949

Hnaily the chocker has to vorify that the proooss comes to an ond. Hore again ho should be assistod by tho programer giving a furthor dofinito ansortion to be verified. This may take the form or a quantity which is assertal to docreaso continually and vanish whon tho machino stops.
"Finally the checker has to verify that the process comes to an end. [...] This may take the form of a quantity which is asserted to decrease continually and vanish when the machine stops."
(1) Find ranking function f ("quantity")
(2) Prove f to have a lower bound ("vanish when the machine stops")
(3) Prove that f decreases over time

Example (Termination can be simple)

$$
\begin{aligned}
& \text { while } x>0 \\
& x=x-1
\end{aligned}
$$

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?
Approach: Encode termination proof template to logical constraint φ, ask SMT solver

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?
Approach: Encode termination proof template to logical constraint φ, ask SMT solver
\rightarrow SMT $=$ SATisfiability Modulo Theories, solve constraints like

$$
b>0 \quad \wedge \quad\left(4 a b-7 b^{2}>1 \quad \vee \quad 3 a+c \geq b^{3}\right)
$$

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?
Approach: Encode termination proof template to logical constraint φ, ask SMT solver
\rightarrow SMT $=$ SATisfiability Modulo Theories, solve constraints like

$$
b>0 \quad \wedge \quad\left(4 a b-7 b^{2}>1 \quad \vee \quad 3 a+c \geq b^{3}\right)
$$

Answer:

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?
Approach: Encode termination proof template to logical constraint φ, ask SMT solver
\rightarrow SMT $=$ SATisfiability Modulo Theories, solve constraints like

$$
b>0 \quad \wedge \quad\left(4 a b-7 b^{2}>1 \quad \vee \quad 3 a+c \geq b^{3}\right)
$$

Answer:
(1) φ satisfiable, model M (e.g., $a=3, b=1, c=1$):
$\Rightarrow P$ terminating, M fills in the gaps in the termination proof

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?
Approach: Encode termination proof template to logical constraint φ, ask SMT solver
\rightarrow SMT $=$ SATisfiability Modulo Theories, solve constraints like

$$
b>0 \quad \wedge \quad\left(4 a b-7 b^{2}>1 \quad \vee \quad 3 a+c \geq b^{3}\right)
$$

Answer:
(1) φ satisfiable, model M (e.g., $a=3, b=1, c=1$):
$\Rightarrow P$ terminating, M fills in the gaps in the termination proof
(2) φ unsatisfiable:
\Rightarrow termination status of P unknown
\Rightarrow try a different template (proof technique)

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?
Approach: Encode termination proof template to logical constraint φ, ask SMT solver
\rightarrow SMT $=$ SATisfiability Modulo Theories, solve constraints like

$$
b>0 \quad \wedge \quad\left(4 a b-7 b^{2}>1 \quad \vee \quad 3 a+c \geq b^{3}\right)
$$

Answer:
(1) φ satisfiable, model M (e.g., $a=3, b=1, c=1$):
$\Rightarrow P$ terminating, M fills in the gaps in the termination proof
(2) φ unsatisfiable:
\Rightarrow termination status of P unknown
\Rightarrow try a different template (proof technique)
In practice:

- Encode only one proof step at a time
\rightarrow try to prove only part of the program terminating
- Repeat until the whole program is proved terminating

The Rest of Today's Session

Termination proving in the back-end
(1) Term Rewrite Systems (TRSs)
(2) Imperative Programs (as Integer Transition Systems, ITSs)
(3) Both together! Logically Constrained Term Rewrite Systems

The Rest of Today's Session

Termination proving in the back-end
(1) Term Rewrite Systems (TRSs)
(2) Imperative Programs (as Integer Transition Systems, ITSs)
(3) Both together! Logically Constrained Term Rewrite Systems

Processing practical programming languages in the front-end
(9) Java
(6) (via LLVM)
I. 1 Termination Analysis of Term Rewrite Systems

What's Term Rewriting?

What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic
Core functional programming language without many restrictions (and features) of "real" FP:

What's Term Rewriting?

Syntactic approach for reasoning in equational first-order logic
Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy \rightarrow non-determinism!
- no fixed order of rules to apply (Haskell: top to bottom)
\rightarrow non-determinism!
- untyped (unless you really want types)
- no pre-defined data structures (integers, arrays, ...)

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

$$
0, \mathrm{~s}(0), \mathrm{s}(\mathrm{~s}(0)), \ldots
$$

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

$$
0, \mathrm{~s}(0), \mathrm{s}(\mathrm{~s}(0)), \ldots
$$

Example (A Term Rewrite System (TRS) for Division)

$$
\mathcal{R}=\left\{\begin{aligned}
\operatorname{minus}(x, 0) & \rightarrow x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{s}(\operatorname{quot}(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{aligned}\right.
$$

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

$$
0, \mathrm{~s}(0), \mathrm{s}(\mathrm{~s}(0)), \ldots
$$

Example (A Term Rewrite System (TRS) for Division)

$$
\mathcal{R}=\left\{\begin{aligned}
\operatorname{minus}(x, 0) & \rightarrow x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow \mathrm{s}(\operatorname{quot}(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{aligned}\right.
$$

Calculation:

$$
\operatorname{minus}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0)) \quad \rightarrow_{\mathcal{R}} \quad \operatorname{minus}(\mathrm{s}(0), 0) \quad \rightarrow_{\mathcal{R}} \quad \mathrm{s}(0)
$$

Why Care about Termination of Term Rewriting?

- Termination needed by theorem provers

Why Care about Termination of Term Rewriting?

- Termination needed by theorem provers
- Translate program P with inductive data structures (trees) to TRS, represent data structures as terms
\Rightarrow Termination of TRS implies termination of P

Why Care about Termination of Term Rewriting?

- Termination needed by theorem provers
- Translate program P with inductive data structures (trees) to TRS, represent data structures as terms
\Rightarrow Termination of TRS implies termination of P
- Logic programming: Prolog [van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09; Giesl et al, PPDP '12]

Why Care about Termination of Term Rewriting?

- Termination needed by theorem provers
- Translate program P with inductive data structures (trees) to TRS, represent data structures as terms
\Rightarrow Termination of TRS implies termination of P
- Logic programming: Prolog
[van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09; Giesl et al, PPDP '12]
- (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]

Why Care about Termination of Term Rewriting?

- Termination needed by theorem provers
- Translate program P with inductive data structures (trees) to TRS, represent data structures as terms
\Rightarrow Termination of TRS implies termination of P
- Logic programming: Prolog [van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09; Giesl et al, PPDP '12]
- (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]
- Object-oriented programming: Java [Otto et al, RTA '10]

Example (Division)

$$
\mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \rightarrow & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}(x, y) \\
\mathrm{quot}(0, \mathrm{~s}(y)) & \rightarrow & 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{array}\right.
$$

Term rewriting: Evaluate terms by applying rules from \mathcal{R}

$$
\operatorname{minus}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0)) \rightarrow_{\mathcal{R}} \operatorname{minus}(\mathrm{s}(0), 0) \rightarrow_{\mathcal{R}} \mathrm{s}(0)
$$

Example (Division)

$$
\mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \rightarrow & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \rightarrow & 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{array}\right.
$$

Term rewriting: Evaluate terms by applying rules from \mathcal{R}

$$
\operatorname{minus}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0)) \rightarrow_{\mathcal{R}} \operatorname{minus}(\mathrm{s}(0), 0) \rightarrow_{\mathcal{R}} \mathrm{s}(0)
$$

Termination: No infinite evaluation sequences $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} t_{3} \rightarrow_{\mathcal{R}} \ldots$

Example (Division)

$$
\mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \rightarrow & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \rightarrow & 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{array}\right.
$$

Term rewriting: Evaluate terms by applying rules from \mathcal{R}

$$
\operatorname{minus}(\mathrm{s}(\mathrm{~s}(0)), \mathrm{s}(0)) \rightarrow_{\mathcal{R}} \operatorname{minus}(\mathrm{s}(0), 0) \rightarrow_{\mathcal{R}} \mathrm{s}(0)
$$

Termination: No infinite evaluation sequences $t_{1} \rightarrow_{\mathcal{R}} t_{2} \rightarrow_{\mathcal{R}} t_{3} \rightarrow_{\mathcal{R}} \ldots$ Show termination using Dependency Pairs

Example (Division)

$$
\mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \rightarrow & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \rightarrow 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{array}\right.
$$

Dependency Pairs [Arts, Giesl, TCS '00]

Example (Division)

$$
\begin{gathered}
\mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \rightarrow & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}(x, y) \\
q u o t(0, \mathrm{~s}(y)) & \rightarrow & 0 \\
\operatorname{quot}^{\mathrm{s}(x), \mathrm{s}(y))} & \rightarrow & \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{array}\right. \\
\mathcal{D P}=\left\{\begin{array}{rll}
\operatorname{minus}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \text { quot }^{\sharp}(\operatorname{minus}(x, y), \mathrm{s}(y))
\end{array}\right.
\end{gathered}
$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs $\mathcal{D P}$
- Show: No ∞ call sequence with $\mathcal{D P}$ (eval of $\mathcal{D P}$'s args via \mathcal{R})

Example (Division)

$$
\begin{gathered}
\mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \rightarrow & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \rightarrow & 0 \\
\operatorname{quot}^{(\mathrm{s}(x), \mathrm{s}(y))} & \rightarrow & \mathrm{s}\left(\text { quot }^{\sharp}(\operatorname{minus}(x, y), \mathrm{s}(y))\right)
\end{array}\right. \\
\mathcal{D P}=\left\{\begin{array}{rll}
\operatorname{minus}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \text { quot }^{\sharp}(\operatorname{minus}(x, y), \mathrm{s}(y))
\end{array}\right.
\end{gathered}
$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs $\mathcal{D P}$
- Show: No ∞ call sequence with $\mathcal{D P}$ (eval of $\mathcal{D P}$'s args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified):

Example (Division)

$$
\begin{aligned}
& \int \operatorname{minus}(x, 0) \rightarrow x \\
& \text { quot }(\mathrm{s}(x), \mathrm{s}(y)) \quad \rightarrow \quad \mathrm{s}(q u o t(\operatorname{minus}(x, y), \mathrm{s}(y))) \\
& \mathcal{D P}=\left\{\begin{array}{rll}
\operatorname{minus}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \rightarrow & \operatorname{quot}^{\sharp}(\operatorname{minus}(x, y), \mathrm{s}(y))
\end{array}\right.
\end{aligned}
$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs $\mathcal{D P}$
- Show: No ∞ call sequence with $\mathcal{D P}$ (eval of $\mathcal{D P}$'s args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified): while $\mathcal{D P} \neq \emptyset$:

Example (Division)

$$
\begin{gathered}
\mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \succsim & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \succsim & \operatorname{minus}(x, y) \\
\operatorname{quot}^{(}(0, \mathrm{~s}(y)) & \succsim & 0 \\
\operatorname{quot}^{(\mathrm{s}(x), \mathrm{s}(y))} & \succsim & \mathrm{s}\left(\operatorname{quot}^{2}(\operatorname{minus}(x, y), \mathrm{s}(y))\right)
\end{array}\right. \\
\mathcal{D} \mathcal{P}=\left\{\begin{array}{rll}
\operatorname{minus}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \succsim & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \succsim & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \succsim & \operatorname{quot}^{\sharp}(\operatorname{minus}(x, y), \mathrm{s}(y))
\end{array}\right.
\end{gathered}
$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs $\mathcal{D P}$
- Show: No ∞ call sequence with $\mathcal{D P}$ (eval of $\mathcal{D P}$'s args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified): while $\mathcal{D P} \neq \emptyset$:
- find well-founded order \succ with $\mathcal{D P} \cup \mathcal{R} \subseteq \succsim$

Example (Division)

$$
\begin{aligned}
& \int \operatorname{minus}(x, 0) \succsim x \\
& \mathcal{R}=\left\{\begin{array}{lll}
\operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) & \succsim & \underset{\operatorname{cinus}}{ }(x, y)
\end{array}\right. \\
& \text { quot }(0, \mathrm{~s}(y)) \succsim 0 \\
& \text { quot }(\mathrm{s}(x), \mathrm{s}(y)) \succsim \mathrm{s}(q u o t(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{aligned}
$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs $\mathcal{D P}$
- Show: No ∞ call sequence with $\mathcal{D P}$ (eval of $\mathcal{D P}$'s args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified): while $\mathcal{D P} \neq \emptyset$:
- find well-founded order \succ with $\mathcal{D P} \cup \mathcal{R} \subseteq \succsim$
- delete $s \rightarrow t$ with $s \succ t$ from $\mathcal{D P}$

Example (Division)

$$
\begin{aligned}
& \int \operatorname{minus}(x, 0) \succsim x \\
& \mathcal{R}=\left\{\begin{array}{lll}
\operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) & \succsim & \underset{\operatorname{cinus}}{ }(x, y)
\end{array}\right. \\
& \text { quot }(0, \mathrm{~s}(y)) \succsim 0 \\
& \text { quot }(\mathrm{s}(x), \mathrm{s}(y)) \quad \succsim \mathrm{s}(q u o t(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{aligned}
$$

Dependency Pairs [Arts, Giesl, TCS '00]

- For TRS \mathcal{R} build dependency pairs $\mathcal{D P}$
- Show: No ∞ call sequence with $\mathcal{D P}$ (eval of $\mathcal{D P}$'s args via \mathcal{R})
- Dependency Pair Framework [Giesl et al, JAR '06] (simplified): while $\mathcal{D P} \neq \emptyset$:
- find well-founded order \succ with $\mathcal{D P} \cup \mathcal{R} \subseteq \succsim$
- delete $s \rightarrow t$ with $s \succ t$ from $\mathcal{D P}$
- Find \succ automatically and efficiently

Polynomial Interpretations

Get \succ via polynomial interpretations [•] over \mathbb{N} [Lankford '75]

Example

$$
\operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)
$$

Polynomial Interpretations

Get \succ via polynomial interpretations [•] over \mathbb{N} [Lankford '75]

Example

$$
\operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)
$$

Use [.] with

- [minus] $\left(x_{1}, x_{2}\right)=x_{1}$
- $[\mathrm{s}]\left(x_{1}\right)=x_{1}+1$

Polynomial Interpretations

Get \succ via polynomial interpretations [•] over \mathbb{N} [Lankford '75]

Example

$$
\forall x, y . \quad x+1=[\operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y))] \geq[\operatorname{minus}(x, y)]=x
$$

Use [•] with

- [minus] $\left(x_{1}, x_{2}\right)=x_{1}$
- $[\mathrm{s}]\left(x_{1}\right)=x_{1}+1$

Extend to terms:

- $[x]=x$
- $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=[f]\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$
\succ boils down to $>$ over \mathbb{N}

Example (Constraints for Division)

$$
\begin{aligned}
& \mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \succsim & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \succsim & \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \succsim & 0 \\
\operatorname{quot}(\mathrm{~s}(x), \mathrm{s}(y)) & \succsim & \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{array}\right.
\end{aligned}
$$

Example (Constraints for Division)

$$
\begin{aligned}
& \mathcal{R}=\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \succsim & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \succsim & \succsim \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \succsim & \vdots \\
\operatorname{quot}(\mathrm{s}(x), \mathrm{s}(y)) & \succsim & \mathrm{s}(\text { quot }(\operatorname{minus}(x, y), \mathrm{s}(y)))
\end{array}\right. \\
& \mathcal{D P}=\left\{\begin{array}{rll}
\operatorname{minus}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \succ & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \succ & \operatorname{minus}^{\sharp}(x, y) \\
\operatorname{quot}^{\sharp}(\mathrm{s}(x), \mathrm{s}(y)) & \succ & \operatorname{quot}^{\sharp}(\operatorname{minus}(x, y), \mathrm{s}(y))
\end{array}\right.
\end{aligned}
$$

Use interpretation [•] over \mathbb{N} with

$$
\begin{aligned}
{\left[\text { quot }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{\left[\text { minus }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[0] } & =0
\end{aligned}
$$

$$
\begin{aligned}
{[\text { quot }]\left(x_{1}, x_{2}\right) } & =x_{1}+x_{2} \\
{[\operatorname{minus}]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[\mathrm{~s}]\left(x_{1}\right) } & =x_{1}+1
\end{aligned}
$$

\curvearrowright order solves all constraints

Example (Constraints for Division)

$$
\left.\begin{array}{rl}
\mathcal{R} & =\left\{\begin{array}{rll}
\operatorname{minus}(x, 0) & \succsim & x \\
\operatorname{minus}(\mathrm{~s}(x), \mathrm{s}(y)) & \succsim & \operatorname{minus}(x, y) \\
\operatorname{quot}(0, \mathrm{~s}(y)) & \succsim & 0
\end{array}\right. \\
\operatorname{quot}(\mathrm{s}(x), \mathrm{s}(y)) & \succsim
\end{array}\right) \mathrm{s}(\mathrm{quot}(\operatorname{minus}(x, y), \mathrm{s}(y))), ~ \begin{array}{rll}
\mathcal{D P} & =\left\{\begin{aligned}
\end{aligned}\right.
\end{array}
$$

Use interpretation [•] over \mathbb{N} with

$$
\begin{aligned}
{\left[\text { quot }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{\left[\text { minus }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[0] } & =0
\end{aligned}
$$

$$
\begin{aligned}
{[\text { quot }]\left(x_{1}, x_{2}\right) } & =x_{1}+x_{2} \\
{[\text { minus }]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[\mathrm{~s}]\left(x_{1}\right) } & =x_{1}+1
\end{aligned}
$$

\curvearrowright order solves all constraints
$\curvearrowright \mathcal{D P}=\emptyset$
\curvearrowright termination of division algorithm proved

Remark

Polynomial interpretations play several roles for program analysis:

Use interpretation [•] over \mathbb{N} with

$$
\begin{aligned}
{\left[\text { quot }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & \text { [quot] }\left(x_{1}, x_{2}\right) & =x_{1}+x_{2} \\
{\left[\text { minus }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & {[\text { minus }]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[0] } & =0 & {[\mathrm{~s}]\left(x_{1}\right) } & =x_{1}+1
\end{aligned}
$$

\curvearrowright order solves all constraints
$\curvearrowright \mathcal{D P}=\emptyset$
\curvearrowright termination of division algorithm proved

Remark

Polynomial interpretations play several roles for program analysis:

- Ranking function: [quot ${ }^{\sharp}$] and [minus ${ }^{\sharp}$]

Use interpretation [•] over \mathbb{N} with

$$
\begin{aligned}
{\left[\text { quot }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & \text { [quot] }\left(x_{1}, x_{2}\right) & =x_{1}+x_{2} \\
{\left[\text { minus }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & {[\text { minus }]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[0] } & =0 & {[\mathrm{~s}]\left(x_{1}\right) } & =x_{1}+1
\end{aligned}
$$

\curvearrowright order solves all constraints
$\curvearrowright \mathcal{D P}=\emptyset$
\curvearrowright termination of division algorithm proved

Remark

Polynomial interpretations play several roles for program analysis:

- Ranking function: [quot ${ }^{\sharp}$] and [minus ${ }^{\sharp}$]
- Summary: [quot] and [minus]

Use interpretation [•] over \mathbb{N} with

$$
\begin{aligned}
{\left[\text { quot }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & \text { [quot] }\left(x_{1}, x_{2}\right) & =x_{1}+x_{2} \\
{\left[\text { minus }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & {[\text { minus }]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[0] } & =0 & {[\mathrm{~s}]\left(x_{1}\right) } & =x_{1}+1
\end{aligned}
$$

\curvearrowright order solves all constraints
$\curvearrowright \mathcal{D P}=\emptyset$
\curvearrowright termination of division algorithm proved

Remark

Polynomial interpretations play several roles for program analysis:

- Ranking function: [quot ${ }^{\sharp}$] and [minus ${ }^{\sharp}$]
- Summary: [quot] and [minus]
- Abstraction (aka norm) for data structures: [0] and [s]

Use interpretation [•] over \mathbb{N} with

$$
\begin{aligned}
{\left[\text { quot }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & \text { [quot] }\left(x_{1}, x_{2}\right) & =x_{1}+x_{2} \\
{\left[\text { minus }^{\sharp}\right]\left(x_{1}, x_{2}\right) } & =x_{1} & {[\text { minus }]\left(x_{1}, x_{2}\right) } & =x_{1} \\
{[0] } & =0 & {[\mathrm{~s}]\left(x_{1}\right) } & =x_{1}+1
\end{aligned}
$$

\curvearrowright order solves all constraints
$\curvearrowright \mathcal{D P}=\emptyset$
\curvearrowright termination of division algorithm proved

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$
(1) Fix template polynomials with parametric coefficients, get interpretation template:

$$
[\text { minus }](x, y)=a_{\mathrm{m}}+b_{\mathrm{m}} x+c_{\mathrm{m}} y, \quad[\mathrm{~s}](x)=a_{\mathrm{s}}+b_{\mathrm{s}} x
$$

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$
(1) Fix template polynomials with parametric coefficients, get interpretation template:

$$
[\text { minus }](x, y)=a_{\mathrm{m}}+b_{\mathrm{m}} x+c_{\mathrm{m}} y, \quad[\mathrm{~s}](x)=a_{\mathrm{s}}+b_{\mathrm{s}} x
$$

(2) From term constraint to polynomial constraint:

$$
s \succsim t \curvearrowright[s] \geq[t]
$$

Here: $\quad \forall x, y .\left(a_{\mathbf{s}} b_{\mathrm{m}}+a_{\mathbf{s}} c_{\mathrm{m}}\right)+\left(b_{\mathbf{s}} b_{\mathrm{m}}-b_{\mathrm{m}}\right) x+\left(b_{\mathbf{s}} c_{\mathrm{m}}-c_{\mathrm{m}}\right) y \geq 0$

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$
(1) Fix template polynomials with parametric coefficients, get interpretation template:

$$
[\text { minus }](x, y)=a_{\mathrm{m}}+b_{\mathrm{m}} x+c_{\mathrm{m}} y, \quad[\mathrm{~s}](x)=a_{\mathrm{s}}+b_{\mathrm{s}} x
$$

(2) From term constraint to polynomial constraint:

$$
s \succsim t \curvearrowright[s] \geq[t]
$$

Here: $\quad \forall x, y .\left(a_{\mathbf{s}} b_{\mathrm{m}}+a_{\mathbf{s}} c_{\mathrm{m}}\right)+\left(b_{\mathbf{s}} b_{\mathrm{m}}-b_{\mathrm{m}}\right) x+\left(b_{\mathbf{s}} c_{\mathrm{m}}-c_{\mathrm{m}}\right) y \geq 0$
(3) Eliminate $\forall x, y$ by absolute positiveness criterion [Hong, Jakuš, JAR '98]:
Here:

$$
a_{\mathrm{s}} b_{\mathrm{m}}+a_{\mathrm{s}} c_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} b_{\mathrm{m}}-b_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} c_{\mathrm{m}}-c_{\mathrm{m}} \geq 0
$$

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$
(1) Fix template polynomials with parametric coefficients, get interpretation template:

$$
[\text { minus }](x, y)=a_{\mathrm{m}}+b_{\mathrm{m}} x+c_{\mathrm{m}} y, \quad[\mathrm{~s}](x)=a_{\mathrm{s}}+b_{\mathrm{s}} x
$$

(2) From term constraint to polynomial constraint:

$$
s \succsim t \curvearrowright[s] \geq[t]
$$

Here: $\quad \forall x, y .\left(a_{\mathbf{s}} b_{\mathrm{m}}+a_{\mathbf{s}} c_{\mathrm{m}}\right)+\left(b_{\mathrm{s}} b_{\mathrm{m}}-b_{\mathrm{m}}\right) x+\left(b_{\mathrm{s}} c_{\mathrm{m}}-c_{\mathrm{m}}\right) y \geq 0$
(3) Eliminate $\forall x, y$ by absolute positiveness criterion [Hong, Jakuš, JAR '98]:
Here:

$$
a_{\mathrm{s}} b_{\mathrm{m}}+a_{\mathrm{s}} c_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} b_{\mathrm{m}}-b_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} c_{\mathrm{m}}-c_{\mathrm{m}} \geq 0
$$

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$
(1) Fix template polynomials with parametric coefficients, get interpretation template:

$$
[\text { minus }](x, y)=a_{\mathrm{m}}+b_{\mathrm{m}} x+c_{\mathrm{m}} y, \quad[\mathrm{~s}](x)=a_{\mathrm{s}}+b_{\mathrm{s}} x
$$

(2) From term constraint to polynomial constraint:

$$
s \succsim t \curvearrowright[s] \geq[t]
$$

Here: $\quad \forall x, y .\left(a_{\mathbf{s}} b_{\mathrm{m}}+a_{\mathbf{s}} c_{\mathrm{m}}\right)+\left(b_{\mathbf{s}} b_{\mathrm{m}}-b_{\mathrm{m}}\right) x+\left(b_{\mathbf{s}} c_{\mathrm{m}}-c_{\mathrm{m}}\right) y \geq 0$
(3) Eliminate $\forall x, y$ by absolute positiveness criterion [Hong, Jakuš, JAR '98]:
Here:

$$
a_{\mathrm{s}} b_{\mathrm{m}}+a_{\mathrm{s}} c_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} b_{\mathrm{m}}-b_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} c_{\mathrm{m}}-c_{\mathrm{m}} \geq 0
$$

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$
(1) Fix template polynomials with parametric coefficients, get interpretation template:

$$
[\text { minus }](x, y)=a_{\mathrm{m}}+b_{\mathrm{m}} x+c_{\mathrm{m}} y, \quad[\mathrm{~s}](x)=a_{\mathrm{s}}+b_{\mathrm{s}} x
$$

(2) From term constraint to polynomial constraint:

$$
s \succsim t \curvearrowright[s] \geq[t]
$$

Here: $\quad \forall x, y .\left(a_{\mathbf{s}} b_{\mathrm{m}}+a_{\mathbf{s}} c_{\mathrm{m}}\right)+\left(b_{\mathbf{s}} b_{\mathrm{m}}-b_{\mathrm{m}}\right) x+\left(b_{\mathbf{s}} c_{\mathrm{m}}-c_{\mathrm{m}}\right) y \geq 0$
(3) Eliminate $\forall x, y$ by absolute positiveness criterion [Hong, Jakuš, JAR '98]:
Here:

$$
a_{\mathrm{s}} b_{\mathrm{m}}+a_{\mathrm{s}} c_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} b_{\mathrm{m}}-b_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} c_{\mathrm{m}}-c_{\mathrm{m}} \geq 0
$$

Non-linear constraints, even for linear interpretations

Automation

Task: Solve $\quad \operatorname{minus}(\mathrm{s}(x), \mathrm{s}(y)) \succsim \operatorname{minus}(x, y)$
(1) Fix template polynomials with parametric coefficients, get interpretation template:

$$
[\text { minus }](x, y)=a_{\mathrm{m}}+b_{\mathrm{m}} x+c_{\mathrm{m}} y, \quad[\mathrm{~s}](x)=a_{\mathrm{s}}+b_{\mathrm{s}} x
$$

(2) From term constraint to polynomial constraint:

$$
s \succsim t \curvearrowright[s] \geq[t]
$$

Here: $\quad \forall x, y .\left(a_{\mathbf{s}} b_{\mathrm{m}}+a_{\mathbf{s}} c_{\mathrm{m}}\right)+\left(b_{\mathrm{s}} b_{\mathrm{m}}-b_{\mathrm{m}}\right) x+\left(b_{\mathbf{s}} c_{\mathrm{m}}-c_{\mathrm{m}}\right) y \geq 0$
(3) Eliminate $\forall x, y$ by absolute positiveness criterion [Hong, Jakuš, JAR '98]:
Here:

$$
a_{\mathrm{s}} b_{\mathrm{m}}+a_{\mathrm{s}} c_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} b_{\mathrm{m}}-b_{\mathrm{m}} \geq 0 \wedge b_{\mathrm{s}} c_{\mathrm{m}}-c_{\mathrm{m}} \geq 0
$$

Non-linear constraints, even for linear interpretations
Task: Show satisfiability of non-linear constraints over $\mathbb{N}(\rightarrow$ SMT solver!) \curvearrowright Prove termination of given term rewrite system

Extensions of Polynomial Interpretations

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
- can model behaviour of functions more closely: [pred] $\left(x_{1}\right)=\max \left(x_{1}-1,0\right)$
- automation via encoding to non-linear constraints, more complex Boolean structure

Extensions of Polynomial Interpretations

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
- can model behaviour of functions more closely: [pred] $\left(x_{1}\right)=\max \left(x_{1}-1,0\right)$
- automation via encoding to non-linear constraints, more complex Boolean structure
- Polynomials over \mathbb{Q}^{+}and \mathbb{R}^{+}[Lucas, RAIRO '05]
- non-integer coefficients increase proving power
- SMT-based automation [Fuhs et al, AISC '08; Zankl, Middeldorp, LPAR '10; Borralleras et al, JAR '12]

Extensions of Polynomial Interpretations

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
- can model behaviour of functions more closely:

$$
[\operatorname{pred}]\left(x_{1}\right)=\max \left(x_{1}-1,0\right)
$$

- automation via encoding to non-linear constraints, more complex Boolean structure
- Polynomials over \mathbb{Q}^{+}and \mathbb{R}^{+}[Lucas, RAIRO '05]
- non-integer coefficients increase proving power
- SMT-based automation [Fuhs et al, AISC '08; Zankl, Middeldorp, LPAR '10; Borralleras et al, JAR '12]
- Matrix interpretations [Endrullis, Waldmann, Zantema, JAR '08]
- linear interpretation to vectors over \mathbb{N}^{k}, coefficients are matrices
- useful for deeply nested terms
- automation: constraints with more complex atoms
- several flavours: plus-times-semiring, max-plus-semiring [Koprowski, Waldmann, Acta Cyb. '09], ...
- generalisation to tuple interpretations [Yamada, JAR '22]

Extensions of Polynomial Interpretations

- Polynomials with negative coefficients and max-operator [Hirokawa, Middeldorp, IC '07; Fuhs et al, SAT '07, RTA '08]
- can model behaviour of functions more closely:

$$
[\text { pred }]\left(x_{1}\right)=\max \left(x_{1}-1,0\right)
$$

- automation via encoding to non-linear constraints, more complex Boolean structure
- Polynomials over \mathbb{Q}^{+}and \mathbb{R}^{+}[Lucas, RAIRO '05]
- non-integer coefficients increase proving power
- SMT-based automation [Fuhs et al, AISC '08; Zankl, Middeldorp, LPAR '10; Borralleras et al, JAR '12]
- Matrix interpretations [Endrullis, Waldmann, Zantema, JAR '08]
- linear interpretation to vectors over \mathbb{N}^{k}, coefficients are matrices
- useful for deeply nested terms
- automation: constraints with more complex atoms
- several flavours: plus-times-semiring, max-plus-semiring [Koprowski, Waldmann, Acta Cyb. '09], ...
- generalisation to tuple interpretations [Yamada, JAR '22]

O ...

(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols

- Knuth-Bendix Order [Knuth, Bendix, CPAA '70] \rightarrow polynomial time algorithm [Korovin, Voronkov, IC '03] \rightarrow SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]

(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols

- Knuth-Bendix Order [Knuth, Bendix, CPAA '70] \rightarrow polynomial time algorithm [Korovin, Voronkov, IC '03] \rightarrow SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]
- Lexicographic Path Orders [Kamin, Lévy, Unpublished Manuscript '80] and Recursive Path Orders [Dershowitz, Manna, CACM '79; Dershowitz, TCS '82]
\rightarrow SAT encoding [Codish et al, JAR '11]

(SAT and) SMT Solving for Path Orders

Path orders: based on precedences on function symbols

- Knuth-Bendix Order [Knuth, Bendix, CPAA '70]
\rightarrow polynomial time algorithm [Korovin, Voronkov, IC '03]
\rightarrow SMT encoding [Zankl, Hirokawa, Middeldorp, JAR '09]
- Lexicographic Path Orders [Kamin, Lévy, Unpublished Manuscript '80] and Recursive Path Orders [Dershowitz, Manna, CACM '79; Dershowitz, TCS '82]
\rightarrow SAT encoding [Codish et al, JAR '11]
- Weighted Path Order [Yamada, Kusakari, Sakabe, SCP '15]
\rightarrow SMT encoding

Further Techniques and Settings for TRSs

- Proving non-termination (an infinite run is possible) [Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS '08; Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, IJCAR '12; ...]

Further Techniques and Settings for TRSs

- Proving non-termination (an infinite run is possible) [Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS '08; Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, IJCAR '12; ...]
- Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM Comput. Surv. '20], ...

Further Techniques and Settings for TRSs

- Proving non-termination (an infinite run is possible) [Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS '08; Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, IJCAR '12; . ..]
- Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM Comput. Surv. '20], ...
- Higher-order rewriting: functional variables, higher types, β-reduction

$$
\operatorname{map}(F, \operatorname{Cons}(x, x s)) \rightarrow \operatorname{Cons}(F(x), \operatorname{map}(F, x s))
$$

[Kop, PhD thesis '12]

Further Techniques and Settings for TRSs

- Proving non-termination (an infinite run is possible) [Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS '08; Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, IJCAR '12; . ..]
- Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM Comput. Surv. '20], ...
- Higher-order rewriting: functional variables, higher types, β-reduction

$$
\operatorname{map}(F, \operatorname{Cons}(x, x s)) \rightarrow \operatorname{Cons}(F(x), \operatorname{map}(F, x s))
$$

[Kop, PhD thesis '12]

- Probabilistic term rewriting: Positive/Strong Almost Sure Termination [Avanzini, Dal Lago, Yamada, SCP '20]

Further Techniques and Settings for TRSs

- Proving non-termination (an infinite run is possible) [Giesl, Thiemann, Schneider-Kamp, FroCoS '05; Payet, TCS '08; Zankl et al, SOFSEM '10; Emmes, Enger, Giesl, IJCAR '12; ...]
- Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM Comput. Surv. '20], ...
- Higher-order rewriting: functional variables, higher types, β-reduction

$$
\operatorname{map}(F, \operatorname{Cons}(x, x s)) \rightarrow \operatorname{Cons}(F(x), \operatorname{map}(F, x s))
$$

[Kop, PhD thesis '12]

- Probabilistic term rewriting: Positive/Strong Almost Sure Termination [Avanzini, Dal Lago, Yamada, SCP '20]
- Complexity analysis
[Hirokawa, Moser, IJCAR '08; Noschinski, Emmes, Giesl, JAR '13; . .]
Can re-use termination machinery to infer and prove statements like "runtime complexity of this TRS is in $\mathcal{O}\left(n^{3}\right)$ "
\rightarrow more in Session 2!

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer Arithmetic)

Year	Winner
2009	Barcelogic-QF_NIA
2010	MiniSmt
2011	AProVE
2012	no QF_NIA
2013	no SMT_COMP
2014	AProVE
2015	AProVE
2016	Yices
\ldots	W

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer Arithmetic)

Year	Winner
2009	Barcelogic-QF_NIA
2010	MiniSmt (spin-off of $T_{T} T_{2}$)
2011	AProVE
2012	no QF_NIA
2013	no SMT-COMP
2014	AProVE
2015	AProVE
2016	Yices
\ldots	..

\Rightarrow Termination provers can also be successful SMT solvers!

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer Arithmetic)

Year	Winner
2009	Barcelogic-QF_NIA
2010	MiniSmt (spin-off of $T_{T} T_{2}$)
2011	AProVE
2012	no QF_NIA
2013	no SMT-COMP
2014	AProVE
2015	AProVE
2016	Yices
\ldots	..

\Rightarrow Termination provers can also be successful SMT solvers!
(disclaimer: Z3 participated only hors concours)

The Termination Competition (termCOMP) (1/3)

Termination Com... \times *

```
@< & @ @ 葍 https://termcomp.herokuapp.com/Y2022/
```


Termination Competition 2022 [show conigse [Show scores] [One columu]

Competition-Wide Ranking

Advancing-the-State-of-the-Art Ranking

Matchbox(67) MultumnonMulta(48) AProVE+LOAT(31.25) SOL(15) NaTT(1) NTI+CTI(1) TTT2+TCT(0.375) IRankFinder(0) MU-TERM(0) Ultimate(0) Wanda(0)
Termination of Rewriting Proypress. 100\%, CPU Time: 858 8.05.33, Node Tme: 344 3.4.5.50

Termination of Programs Procress 100\%, CPU Time: 30 3:22:33, Node Time: 2d 420:44

Complexity Analysis Prooress: 100\%, CPU Time: 129a 22:70:39. Noce Time: 420 19:13:03
Derivational Complexity. TRS 5421554214

1. AProVE21
\square
$\mathbf{1 . t c t - t r s ~ v 3 . 2 . 0 ~}$
$\mathbf{2 0 2 0 - 0 6 - 2 8}$

Runtime Complexity: TRS 5421854210

1. AProVE21 $\square \quad$ 2. tct-trs v3.2.0 2020-06-28

The Termination Competition (termCOMP) (1/3)

Termination Com... x *

队o § § 葍 https://termcomp.herokuapp.com/Y2022/
\& (DuckDuckGo

Termination Competition 2022 [show conigss] Show scores] [One columm]

Competition-Wide Ranking

Advancing-the-State-of-the-Art Ranking

Matchbox(67) Multumnonmulta(48) APIOVE+LOAT(31.25) SOL(16) NaTT(1) NTI+CT/(1) TTT2+TCT(0.375) IRankF inder(0) MU-TERM(0) Ulimate(0) Wandai()
Termination of Rewriting Frogress: 100\%, CPU Time: 85d 8:05.33, Node Timee 34d 3.49.50

Termination of Programs Progress 100\%, CPU Time: 3d 3:22:33, Node Time: 2d 420:44

Complexity Analysis Prooress: 100\%, CPU Time: 129a 22:70:39. Noce Time: 420 19:13:03
Derivational Complexity. TRS 5421554214

| 1. AProVE21 |
| :--- |\quad 1.tct-trs v3.2.0 2020-06-28

The Termination Competition (termCOMP) (2/3)

termCOMP 2022 participants:

- AProVE (RWTH Aachen, Birkbeck U London, U Innsbruck, ...)
- iRankFinder (UC Madrid)
- LoAT (RWTH Aachen)
- Matchbox (HTWK Leipzig)
- Mu-Term (UP Valencia)
- MultumNonMulta (BA Saarland)
- NaTT (AIST Tokyo)
- $\mathrm{NTI}+\mathrm{cTI}$ (U Réunion)
- SOL (Gunma U)
- TcT (U Innsbruck, INRIA Sophia Antipolis)
- $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}$ (U Innsbruck)
- Ultimate Automizer (U Freiburg)
- Wanda (RU Nijmegen)

The Termination Competition (termCOMP) (3/3)

- Benchmark set: Termination Problem DataBase (TPDB) https://termination-portal.org/wiki/TPDB $\rightarrow 1000$ s of termination and complexity problems

The Termination Competition (termCOMP) (3/3)

- Benchmark set: Termination Problem DataBase (TPDB) https://termination-portal.org/wiki/TPDB \rightarrow 1000s of termination and complexity problems
- Timeout: 300 seconds

The Termination Competition (termCOMP) (3/3)

- Benchmark set: Termination Problem DataBase (TPDB) https://termination-portal.org/wiki/TPDB
\rightarrow 1000s of termination and complexity problems
- Timeout: 300 seconds
- Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR '14]

The Termination Competition (termCOMP) (3/3)

- Benchmark set: Termination Problem DataBase (TPDB) https://termination-portal.org/wiki/TPDB
\rightarrow 1000s of termination and complexity problems
- Timeout: 300 seconds
- Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR '14]
- Categories for proving (non-)termination and for inferring upper/lower complexity bounds for different programming languages

The Termination Competition (termCOMP) (3/3)

- Benchmark set: Termination Problem DataBase (TPDB) https://termination-portal.org/wiki/TPDB
\rightarrow 1000s of termination and complexity problems
- Timeout: 300 seconds
- Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR '14]
- Categories for proving (non-)termination and for inferring upper/lower complexity bounds for different programming languages
- Part of the Olympic Games at the Federated Logic Conference

Input for Automated Tools

Web interfaces available:

- AProVE: https://aprove.informatik.rwth-aachen.de/interface
- iRankFinder: http://irankfinder.loopkiller.com:8081/
- Mu-Term:
http://zenon.dsic.upv.es/muterm/index.php/web-interface/
- $\mathrm{T}^{\mathbf{T}} \mathrm{T}_{2}$: http://colo6-c703.uibk.ac.at/ttt2/web/

Input for Automated Tools

Web interfaces available:

- AProVE: https://aprove.informatik.rwth-aachen.de/interface
- iRankFinder: http://irankfinder.loopkiller.com:8081/
- Mu-Term:
http://zenon.dsic.upv.es/muterm/index.php/web-interface/
- $\mathrm{T} \mathrm{T}_{2}$: http://colo6-c703.uibk.ac.at/ttt2/web/

Input format for termination of TRSs:

```
(VAR x y)
(RULES
    plus(0, y) -> y
    plus(s(x), y) -> s(plus(x, y))
)
```

I. 2 Termination Analysis of Programs on Integers

Papers on termination of imperative programs often about integers as data

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

$$
\begin{aligned}
& \text { if }(x \geq 0) \\
& \quad \text { while }(x \neq 0) \\
& x=x-1 ;
\end{aligned}
$$

Does this program terminate?
(x ranges over \mathbb{Z})

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

$$
\begin{aligned}
\ell_{0}: & \text { if }(x \geq 0) \\
\ell_{1}: & \text { while }(x \neq 0) \\
\ell_{2}: & x=x-1 ;
\end{aligned}
$$

Does this program terminate? (x ranges over \mathbb{Z})

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM '60])

$$
\begin{array}{rlll}
\ell_{0}(x) & \rightarrow \ell_{1}(x) & {[x \geq 0]} \\
\ell_{0}(x) & \rightarrow \ell_{3}(x) & {[x<0]} \\
\ell_{1}(x) & \rightarrow \ell_{2}(x) & {[x \neq 0]} \\
\ell_{2}(x) & \rightarrow \ell_{1}(x-1) & \\
\ell_{1}(x) & \rightarrow \ell_{3}(x) & {[x=0]}
\end{array}
$$

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

$$
\begin{aligned}
\ell_{0}: & \text { if }(x \geq 0) \\
\ell_{1}: & \text { while }(x \neq 0) \\
\ell_{2}: & x=x-1 ;
\end{aligned}
$$

Does this program terminate? (x ranges over \mathbb{Z})

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM '60])

$$
\begin{array}{rlll}
\ell_{0}(x) & \rightarrow \ell_{1}(x) & {[x \geq 0]} \\
\ell_{0}(x) & \rightarrow \ell_{3}(x) & {[x<0]} \\
\ell_{1}(x) & \rightarrow \ell_{2}(x) & {[x \neq 0]} \\
\ell_{2}(x) & \rightarrow \ell_{1}(x-1) & \\
\ell_{1}(x) & \rightarrow \ell_{3}(x) & {[x=0]}
\end{array}
$$

Oh no!

$$
\ell_{1}(-1) \rightarrow \ell_{2}(-1) \rightarrow \ell_{1}(-2) \rightarrow \ell_{2}(-2) \rightarrow \ell_{1}(-3) \rightarrow \cdots
$$

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

$$
\begin{aligned}
\ell_{0}: & \text { if }(x \geq 0) \\
\ell_{1}: & \text { while }(x \neq 0) \\
\ell_{2}: & x=x-1 ;
\end{aligned}
$$

Does this program terminate? (x ranges over \mathbb{Z})

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM '60])

$$
\begin{array}{rlll}
\ell_{0}(x) & \rightarrow \ell_{1}(x) & {[x \geq 0]} \\
\ell_{0}(x) & \rightarrow \ell_{3}(x) & {[x<0]} \\
\ell_{1}(x) & \rightarrow \ell_{2}(x) & {[x \neq 0]} \\
\ell_{2}(x) & \rightarrow \ell_{1}(x-1) & \\
\ell_{1}(x) & \rightarrow \ell_{3}(x) & {[x=0]}
\end{array}
$$

Oh no! $\quad \ell_{1}(-1) \rightarrow \ell_{2}(-1) \rightarrow \ell_{1}(-2) \rightarrow \ell_{2}(-2) \rightarrow \ell_{1}(-3) \rightarrow \cdots$
\Rightarrow Restrict initial states to $\ell_{0}(z)$ for $z \in \mathbb{Z}$

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

$$
\begin{aligned}
\ell_{0}: & \text { if }(x \geq 0) \\
\ell_{1}: & \text { while }(x \neq 0) \\
\ell_{2}: & x=x-1 ;
\end{aligned}
$$

Does this program terminate? (x ranges over \mathbb{Z})

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM '60])

$$
\begin{array}{rlll}
\ell_{0}(x) & \rightarrow \ell_{1}(x) & {[x \geq 0]} \\
\ell_{0}(x) & \rightarrow \ell_{3}(x) & {[x<0]} \\
\ell_{1}(x) & \rightarrow \ell_{2}(x) & {[x \neq 0]} \\
\ell_{2}(x) & \rightarrow \ell_{1}(x-1) & \\
\ell_{1}(x) & \rightarrow \ell_{3}(x) & {[x=0]}
\end{array}
$$

Oh no! $\quad \ell_{1}(-1) \rightarrow \ell_{2}(-1) \rightarrow \ell_{1}(-2) \rightarrow \ell_{2}(-2) \rightarrow \ell_{1}(-3) \rightarrow \cdots$
\Rightarrow Restrict initial states to $\ell_{0}(z)$ for $z \in \mathbb{Z}$
\Rightarrow Find invariant $x \geq 0$ at ℓ_{1}, ℓ_{2} (exercise)

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

```
\(\ell_{0}: \quad\) if \((x \geq 0)\)
\(\ell_{1}: \quad\) while \((x \neq 0)\)
\(\ell_{2}: \quad x=x-1\);
```

Does this program terminate? (x ranges over \mathbb{Z})

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM '60])

$$
\begin{array}{rll}
\ell_{0}(x) & \rightarrow \ell_{1}(x) & {[x \geq 0]} \\
\ell_{0}(x) & \rightarrow \ell_{3}(x) & {[x<0]} \\
\ell_{1}(x) & \rightarrow \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
\ell_{2}(x) & \rightarrow \ell_{1}(x-1) & {[x \geq 0]} \\
\ell_{1}(x) & \rightarrow \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Oh no! $\quad \ell_{1}(-1) \rightarrow \ell_{2}(-1) \rightarrow \ell_{1}(-2) \rightarrow \ell_{2}(-2) \rightarrow \ell_{1}(-3) \rightarrow \cdots$
\Rightarrow Restrict initial states to $\ell_{0}(z)$ for $z \in \mathbb{Z}$
\Rightarrow Find invariant $x \geq 0$ at ℓ_{1}, ℓ_{2} (exercise)

Proving Termination with Invariants

Example (Transition system with invariants)

$$
\begin{array}{rll}
\ell_{0}(x) & \rightarrow \ell_{1}(x) & {[x \geq 0]} \\
\ell_{1}(x) & \rightarrow \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
\ell_{2}(x) & \rightarrow \ell_{1}(x-1) & {[x \geq 0]} \\
\ell_{1}(x) & \rightarrow \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Prove termination by ranking function [\cdot] with $\left[\ell_{0}\right](x)=\left[\ell_{1}\right](x)=\cdots=x$

Proving Termination with Invariants

Example (Transition system with invariants)

$$
\begin{array}{lcl}
\ell_{0}(x) & \succsim \ell_{1}(x) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
\ell_{2}(x) & \succsim \ell_{1}(x-1) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Prove termination by ranking function [\cdot] with $\left[\ell_{0}\right](x)=\left[\ell_{1}\right](x)=\cdots=x$

Proving Termination with Invariants

Example (Transition system with invariants)

$$
\begin{array}{lcl}
\ell_{0}(x) & \succsim \ell_{1}(x) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
\ell_{2}(x) & \succsim \ell_{1}(x-1) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Prove termination by ranking function [\cdot] with $\left[\ell_{0}\right](x)=\left[\ell_{1}\right](x)=\cdots=x$ Automate search using parametric ranking function:

$$
\left[\ell_{0}\right](x)=a_{0}+b_{0} \cdot x, \quad\left[\ell_{1}\right](x)=a_{1}+b_{1} \cdot x, \quad \ldots
$$

Proving Termination with Invariants

Example (Transition system with invariants)

$$
\begin{array}{rlll}
\ell_{0}(x) & \succsim & \ell_{1}(x) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim & \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
\ell_{2}(x) & \succsim & \ell_{1}(x-1) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim & \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Prove termination by ranking function [\cdot] with $\left[\ell_{0}\right](x)=\left[\ell_{1}\right](x)=\cdots=x$ Automate search using parametric ranking function:

$$
\left[\ell_{0}\right](x)=a_{0}+b_{0} \cdot x, \quad\left[\ell_{1}\right](x)=a_{1}+b_{1} \cdot x, \quad \ldots
$$

Constraints here:

$$
\begin{array}{lll}
x \geq 0 & \Rightarrow & a_{2}+b_{2} \cdot x>a_{1}+b_{1} \cdot(x-1)
\end{array} \quad \text { "decrease } \ldots \text { ". } " \text { "... against a bound" }
$$

Proving Termination with Invariants

Example (Transition system with invariants)

$$
\begin{array}{rlll}
\ell_{0}(x) & \succsim & \ell_{1}(x) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim & \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
\ell_{2}(x) & \succsim & \ell_{1}(x-1) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim & \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Prove termination by ranking function [\cdot] with $\left[\ell_{0}\right](x)=\left[\ell_{1}\right](x)=\cdots=x$ Automate search using parametric ranking function:

$$
\left[\ell_{0}\right](x)=a_{0}+b_{0} \cdot x, \quad\left[\ell_{1}\right](x)=a_{1}+b_{1} \cdot x, \quad \ldots
$$

Constraints here:

$$
\begin{array}{lll}
x \geq 0 & \Rightarrow & a_{2}+b_{2} \cdot x>a_{1}+b_{1} \cdot(x-1)
\end{array} \quad \text { "decrease } \ldots " .
$$

Use Farkas' Lemma to eliminate $\forall x$, solver for linear constraints gives model for a_{i}, b_{i}.

Proving Termination with Invariants

Example (Transition system with invariants)

$$
\begin{array}{rlll}
\ell_{0}(x) & \succsim & \ell_{1}(x) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim & \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
\ell_{2}(x) & \succsim & \ell_{1}(x-1) & {[x \geq 0]} \\
\ell_{1}(x) & \succsim & \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Prove termination by ranking function [\cdot] with $\left[\ell_{0}\right](x)=\left[\ell_{1}\right](x)=\cdots=x$ Automate search using parametric ranking function:

$$
\left[\ell_{0}\right](x)=a_{0}+b_{0} \cdot x, \quad\left[\ell_{1}\right](x)=a_{1}+b_{1} \cdot x, \quad \ldots
$$

Constraints here:

$$
\begin{array}{lll}
x \geq 0 & \Rightarrow & a_{2}+b_{2} \cdot x>a_{1}+b_{1} \cdot(x-1)
\end{array} \quad \text { "decrease } \ldots " .
$$

Use Farkas' Lemma to eliminate $\forall x$, solver for linear constraints gives model for a_{i}, b_{i}.
More: [Podelski, Rybalchenko, VMCAI '04, Alias et al, SAS '10]

Proving Termination with Invariants

Example (Transition system with invariants)

$$
\begin{array}{rll}
\ell_{0}(x) & \rightarrow \ell_{1}(x) & {[x \geq 0]} \\
\ell_{1}(x) & \rightarrow \ell_{2}(x) & {[x \neq 0 \wedge x \geq 0]} \\
& & \\
\ell_{1}(x) & \rightarrow \ell_{3}(x) & {[x=0 \wedge x \geq 0]}
\end{array}
$$

Prove termination by ranking function [\cdot] with $\left[\ell_{0}\right](x)=\left[\ell_{1}\right](x)=\cdots=x$ Automate search using parametric ranking function:

$$
\left[\ell_{0}\right](x)=a_{0}+b_{0} \cdot x, \quad\left[\ell_{1}\right](x)=a_{1}+b_{1} \cdot x, \quad \ldots
$$

Constraints here:

$$
\begin{array}{lll}
x \geq 0 & \Rightarrow & a_{2}+b_{2} \cdot x>a_{1}+b_{1} \cdot(x-1)
\end{array} \quad \text { "decrease } \ldots " .
$$

Use Farkas' Lemma to eliminate $\forall x$, solver for linear constraints gives model for a_{i}, b_{i}.
More: [Podelski, Rybalchenko, VMCAI '04, Alias et al, SAS '10]

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

- Statically before the translation
[Otto et al, RTA '10; Ströder et al, JAR '17, ...] \rightarrow abstract interpretation [Cousot, Cousot, POPL '77]
\rightarrow more about this in a few minutes!

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

- Statically before the translation
[Otto et al, RTA '10; Ströder et al, JAR '17, ...]
\rightarrow abstract interpretation [Cousot, Cousot, POPL '77]
\rightarrow more about this in a few minutes!
- By counterexample-based reasoning + safety prover: Terminator [Cook, Podelski, Rybalchenko, CAV '06, PLDI '06]
\rightarrow prove termination of single program runs
\rightarrow termination argument often generalises

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

- Statically before the translation
[Otto et al, RTA '10; Ströder et al, JAR '17, ...]
\rightarrow abstract interpretation [Cousot, Cousot, POPL '77]
\rightarrow more about this in a few minutes!
- By counterexample-based reasoning + safety prover: Terminator [Cook, Podelski, Rybalchenko, CAV '06, PLDI '06]
\rightarrow prove termination of single program runs
\rightarrow termination argument often generalises
- ... also cooperating with removal of terminating rules (as for TRSs):

T2 [Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al, TACAS '16]

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

- Statically before the translation
[Otto et al, RTA '10; Ströder et al, JAR '17, ...]
\rightarrow abstract interpretation [Cousot, Cousot, POPL '77]
\rightarrow more about this in a few minutes!
- By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV '06, PLDI '06]
\rightarrow prove termination of single program runs
\rightarrow termination argument often generalises
- ... also cooperating with removal of terminating rules (as for TRSs):

T2 [Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al, TACAS '16]

- Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD '13]

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

- Statically before the translation
[Otto et al, RTA '10; Ströder et al, JAR '17, ...]
\rightarrow abstract interpretation [Cousot, Cousot, POPL '77]
\rightarrow more about this in a few minutes!
- By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV '06, PLDI '06]
\rightarrow prove termination of single program runs
\rightarrow termination argument often generalises
- ... also cooperating with removal of terminating rules (as for TRSs):

T2 [Brockschmidt, Cook, Fuhs, CAV '13; Brockschmidt et al, TACAS '16]

- Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD '13]
Nowadays all SMT-based!

Extensions

- Proving non-termination (infinite run is possible from initial states) [Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD '14, ...]

Extensions

- Proving non-termination (infinite run is possible from initial states) [Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD '14, ...]
- Complexity bounds [Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al, TOPLAS '16,...]

Extensions

- Proving non-termination (infinite run is possible from initial states) [Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD '14, ...]
- Complexity bounds [Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al, TOPLAS '16, ...]
- CTL* model checking for infinite state systems based on termination and non-termination provers [Cook, Khlaaf, Piterman, JACM '17]

Extensions

- Proving non-termination (infinite run is possible from initial states) [Gupta et al, POPL '08, Brockschmidt et al, FoVeOOS '11, Chen et al, TACAS '14, Larraz et al, CAV '14, Cook et al, FMCAD '14, ...]
- Complexity bounds
[Alias et al, SAS '10, Hoffmann, Shao, JFP '15, Brockschmidt et al, TOPLAS '16, ...]
- CTL* model checking for infinite state systems based on termination and non-termination provers
[Cook, Khlaaf, Piterman, JACM '17]
- Beyond sequential programs on integers:
- structs/classes [Berdine et al, CAV '06; Otto et al, RTA '10; ...]
- arrays (pointer arithmetic) [Ströder et al, JAR '17, ...]
- multi-threaded programs [Cook et al, PLDI '07, ...]
- ...

Why Care about Termination of Term Rewriting?

- Termination needed by theorem provers
- Translate program P with inductive data structures (trees) to TRS, represent data structures as terms
\Rightarrow Termination of TRS implies termination of P
- Logic programming: Prolog [van Raamsdonk, ICLP '97; Schneider-Kamp et al, TOCL '09; Giesl et al, PPDP '12]
- (Lazy) functional programming: Haskell [Giesl et al, TOPLAS '11]
- Object-oriented programming: Java [Otto et al, RTA '10]

Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as $\mathrm{s}(\mathrm{s}(\mathrm{s}(\ldots)))$?!

Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as $\mathrm{s}(\mathrm{s}(\mathrm{s}(\ldots)))$?!
Drawbacks:

Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as $\mathrm{s}(\mathrm{s}(\mathrm{s}(\ldots)))$?!

Drawbacks:

- throws away domain knowledge about built-in data types like integers

Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as $\mathrm{s}(\mathrm{s}(\mathrm{s}(\ldots)))$?!

Drawbacks:

- throws away domain knowledge about built-in data types like integers
- need to analyse recursive rules for minus, quot, ... over and over

Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as $\mathrm{s}(\mathrm{s}(\mathrm{s}(\ldots)))$?!
Drawbacks:

- throws away domain knowledge about built-in data types like integers
- need to analyse recursive rules for minus, quot, ... over and over
- does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Beyond Classic TRSs for Program Analysis

So far, so good ...
but do we really want to represent 1000000 as $\mathrm{s}(\mathrm{s}(\mathrm{s}(\ldots)))$?!
Drawbacks:

- throws away domain knowledge about built-in data types like integers
- need to analyse recursive rules for minus, quot, ... over and over
- does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

Constrained Term Rewriting, What's That?

Term rewriting "with batteries included"

- first-order
- no fixed evaluation strategy
- no fixed order of rules to apply

Constrained Term Rewriting, What's That?

Term rewriting "with batteries included"

- first-order
- no fixed evaluation strategy
- no fixed order of rules to apply
- typed

Constrained Term Rewriting, What's That?

Term rewriting "with batteries included"

- first-order
- no fixed evaluation strategy
- no fixed order of rules to apply
- typed
- with pre-defined data structures (integers, arrays, bitvectors, ...), usually from SMT-LIB theories

Constrained Term Rewriting, What's That?

Term rewriting "with batteries included"

- first-order
- no fixed evaluation strategy
- no fixed order of rules to apply
- typed
- with pre-defined data structures (integers, arrays, bitvectors, ...), usually from SMT-LIB theories
- rewrite rules with SMT constraints

Constrained Term Rewriting, What's That?

Term rewriting "with batteries included"

- first-order
- no fixed evaluation strategy
- no fixed order of rules to apply
- typed
- with pre-defined data structures (integers, arrays, bitvectors, ...), usually from SMT-LIB theories
- rewrite rules with SMT constraints
\Rightarrow Term rewriting + SMT solving for automated reasoning

Constrained Term Rewriting, What's That?

Term rewriting "with batteries included"

- first-order
- no fixed evaluation strategy
- no fixed order of rules to apply
- typed
- with pre-defined data structures (integers, arrays, bitvectors, ...), usually from SMT-LIB theories
- rewrite rules with SMT constraints
\Rightarrow Term rewriting + SMT solving for automated reasoning
- General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS '13]

Constrained Term Rewriting, What's That?

Term rewriting "with batteries included"

- first-order
- no fixed evaluation strategy
- no fixed order of rules to apply
- typed
- with pre-defined data structures (integers, arrays, bitvectors, ...), usually from SMT-LIB theories
- rewrite rules with SMT constraints
\Rightarrow Term rewriting + SMT solving for automated reasoning
- General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS '13]
- For program termination: use term rewriting with integers [Falke, Kapur, CADE '09; Fuhs et al, RTA '09; Giesl et al, JAR '17]

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Possible rewrite sequence:

$$
\ell_{0}(2,7)
$$

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Possible rewrite sequence:

$$
\begin{aligned}
& \ell_{0}(2,7) \\
\rightarrow & \ell_{1}(2,7, \mathrm{Nil})
\end{aligned}
$$

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Possible rewrite sequence:

$$
\begin{aligned}
& \ell_{0}(2,7) \\
\rightarrow & \ell_{1}(2,7, \mathrm{Nil}) \\
\rightarrow & \ell_{1}(1,8, \operatorname{Cons}(7, \mathrm{Nil}))
\end{aligned}
$$

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Possible rewrite sequence:

$$
\begin{aligned}
& \ell_{0}(2,7) \\
\rightarrow & \ell_{1}(2,7, \mathrm{Nil}) \\
\rightarrow & \ell_{1}(1,8, \operatorname{Cons}(7, \mathrm{NiI})) \\
\rightarrow & \ell_{1}(0,9, \operatorname{Cons}(8, \operatorname{Cons}(7, \mathrm{Nil})))
\end{aligned}
$$

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Possible rewrite sequence:

$$
\begin{aligned}
& \ell_{0}(2,7) \\
\rightarrow & \ell_{1}(2,7, \mathrm{Nil}) \\
\rightarrow & \ell_{1}(1,8, \operatorname{Cons}(7, \mathrm{NiI})) \\
\rightarrow & \ell_{1}(0,9, \operatorname{Cons}(8, \operatorname{Cons}(7, \mathrm{Nil}))) \\
\rightarrow & \ell_{2}(\operatorname{Cons}(8, \operatorname{Cons}(7, \mathrm{NiI})))
\end{aligned}
$$

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Possible rewrite sequence:

$$
\begin{aligned}
& \ell_{0}(2,7) \\
\rightarrow & \ell_{1}(2,7, \mathrm{Nil}) \\
\rightarrow & \ell_{1}(1,8, \operatorname{Cons}(7, \mathrm{NiI})) \\
\rightarrow & \ell_{1}(0,9, \operatorname{Cons}(8, \operatorname{Cons}(7, \mathrm{Nil}))) \\
\rightarrow & \ell_{2}(\operatorname{Cons}(8, \operatorname{Cons}(7, \mathrm{NiI})))
\end{aligned}
$$

Here $7,8, \ldots$ are predefined constants.

Constrained Rewriting by Example

Example (Constrained Rewrite System)

$$
\begin{array}{rll}
\ell_{0}(n, r) & \rightarrow \ell_{1}(n, r, \mathrm{Nil}) & \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{1}(n-1, r+1, \operatorname{Cons}(r, x s)) & {[n>0]} \\
\ell_{1}(n, r, x s) & \rightarrow \ell_{2}(x s) & {[n=0]}
\end{array}
$$

Possible rewrite sequence:

$$
\begin{aligned}
& \ell_{0}(2,7) \\
\rightarrow & \ell_{1}(2,7, \text { Nil }) \\
\rightarrow & \ell_{1}(1,8, \operatorname{Cons}(7, \mathrm{NiI})) \\
\rightarrow & \ell_{1}(0,9, \operatorname{Cons}(8, \operatorname{Cons}(7, \mathrm{Nil}))) \\
\rightarrow & \ell_{2}(\operatorname{Cons}(8, \operatorname{Cons}(7, \mathrm{NiI})))
\end{aligned}
$$

Here $7,8, \ldots$ are predefined constants.
Termination proof: reuse techniques for TRSs and integer programs

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants
- Since a few years cross-fertilisation

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants
- Since a few years cross-fertilisation
- Constrained term rewriting: best of both worlds as back-end language

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants
- Since a few years cross-fertilisation
- Constrained term rewriting: best of both worlds as back-end language
- Proof search heavily relies on SMT solving for automation

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants
- Since a few years cross-fertilisation
- Constrained term rewriting: best of both worlds as back-end language
- Proof search heavily relies on SMT solving for automation
- Needs of termination analysis have also led to better SMT solvers

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants
- Since a few years cross-fertilisation
- Constrained term rewriting: best of both worlds as back-end language
- Proof search heavily relies on SMT solving for automation
- Needs of termination analysis have also led to better SMT solvers
- More information...

> http://termination-portal.org

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants
- Since a few years cross-fertilisation
- Constrained term rewriting: best of both worlds as back-end language
- Proof search heavily relies on SMT solving for automation
- Needs of termination analysis have also led to better SMT solvers
- More information...

> http://termination-portal.org

Behind (almost) every successful termination prover...

Conclusion: Termination Proving Back-Ends

- Automated termination analysis for term rewriting and for imperative programs developed in parallel over the last ~ 20 years
- Term rewriting: handles inductive data structures well
- Imperative programs on integers: need to consider reachability/safety and invariants
- Since a few years cross-fertilisation
- Constrained term rewriting: best of both worlds as back-end language
- Proof search heavily relies on SMT solving for automation
- Needs of termination analysis have also led to better SMT solvers
- More information...
http://termination-portal.org
Behind (almost) every successful termination prover... ... there is a powerful SAT / SMT solver!
I. 3 Termination Analysis of Java programs

From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)

```
f: if ...
    else
        g: while
```


From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)

```
f: if ...
    init(...)
    else
        g: while ...
```


From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)

```
f: if ...
    else
```


g: while

From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)

From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)

From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)
- use generalisation of program states, get over-approximation of all possible program runs (\approx control-flow graph with extra info)
- closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]

g: while

From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)
- use generalisation of program states, get over-approximation of all possible program runs (\approx control-flow graph with extra info)
- closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]
- extract TRS from cycles in the representation

g : while

From Program to Constrained Term Rewriting, high-level

- execute program symbolically from initial states of the program, handle language peculiarities here (\rightarrow Java: sharing, cyclicity analysis)
- use generalisation of program states, get over-approximation of all possible program runs (\approx control-flow graph with extra info)
- closely related: Abstract Interpretation [Cousot and Cousot, POPL '77]
- extract TRS from cycles in the representation
- if TRS terminates
\Rightarrow any concrete program execution can use cycles only finitely often
\Rightarrow the program must terminate
f: if ...
else
g : while ...

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

- Decide on suitable symbolic representation of abstract program states (abstract domain)
\rightarrow here: what data objects can we represent as terms?

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

- Decide on suitable symbolic representation of abstract program states (abstract domain)
\rightarrow here: what data objects can we represent as terms?
- Execute program symbolically from its initial states

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

- Decide on suitable symbolic representation of abstract program states (abstract domain)
\rightarrow here: what data objects can we represent as terms?
- Execute program symbolically from its initial states
- Use generalisation of program states to get closed finite representation (symbolic execution graph, abstract interpretation)

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

- Decide on suitable symbolic representation of abstract program states (abstract domain)
\rightarrow here: what data objects can we represent as terms?
- Execute program symbolically from its initial states
- Use generalisation of program states to get closed finite representation (symbolic execution graph, abstract interpretation)
- Extract rewrite rules that "over-approximate" program executions in strongly-connected components of graph

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

- Decide on suitable symbolic representation of abstract program states (abstract domain)
\rightarrow here: what data objects can we represent as terms?
- Execute program symbolically from its initial states
- Use generalisation of program states to get closed finite representation (symbolic execution graph, abstract interpretation)
- Extract rewrite rules that "over-approximate" program executions in strongly-connected components of graph
- Prove termination of these rewrite rules
\Rightarrow implies termination of program from initial states

Java Challenges

Java: object-oriented imperative language

- sharing and aliasing (several references to the same object)
- side effects
- cyclic data objects (e.g., list.next == list)
- object-orientation with inheritance
- ...

Java Example

```
public class MyInt {
    // only wrap a primitive int
    private int val;
    // count "num" up to the value in "limit"
    public static void count(MyInt num, MyInt limit) {
        if (num == null || limit == null) {
            return;
        }
        // introduce sharing
        MyInt copy = num;
        while (num.val < limit.val) {
            copy.val++;
        }
    }
}
```

Does count terminate for all inputs? Why (not)?
(Assume that num and limit are not references to the same object.)

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]
Back-end: From rewrite system to termination proof

- Constrained term rewriting with integers [Giesl et al, JAR '17]
- Termination techniques for rewriting and for integers can be integrated

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]
Back-end: From rewrite system to termination proof

- Constrained term rewriting with integers [Giesl et al, JAR '17]
- Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system

- Build symbolic execution graph that over-approximates all runs of Java program (abstract interpretation)
- Symbolic execution graph has invariants for integers and heap object shape (trees?)
- Extract rewrite system from symbolic execution graph

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA '10]
Back-end: From rewrite system to termination proof

- Constrained term rewriting with integers [Giesl et al, JAR '17]
- Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system

- Build symbolic execution graph that over-approximates all runs of Java program (abstract interpretation)
- Symbolic execution graph has invariants for integers and heap object shape (trees?)
- Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (\rightarrow web interface)
http://aprove.informatik.rwth-aachen.de/

Java: Source Code vs Bytecode

[Otto et al, RTA '10] describe their technique for compiled Java programs: Java Bytecode

Java: Source Code vs Bytecode

[Otto et al, RTA '10] describe their technique for compiled Java programs: Java Bytecode

- desugared machine code for a (virtual) stack machine, still has all the (relevant) information from source code
- input for Java interpreter and for many program analysis tools
- somewhat inconvenient for presentation, though ...

Java: Source Code vs Bytecode

Java: Source Code vs Bytecode

[Otto et al, RTA '10] describe their technique for compiled Java programs: Java Bytecode

- desugared machine code for a (virtual) stack machine, still has all the (relevant) information from source code
- input for Java interpreter and for many program analysis tools
- somewhat inconvenient for presentation, though ...

Here: Java source code

Ingredients for the Abstract Domain

(1) program counter value (line number)
(2) values of variables (treating int as \mathbb{Z})
(3) over-approximating info on possible variable values

- integers: use intervals, e.g. $x \in[4,7]$ or $\mathrm{y} \in[0, \infty)$
- heap memory with objects, no sharing unless stated otherwise
- MyInt(?): maybe null, maybe a MyInt object

Heap predicates:

- Two references may be equal: $o_{1}={ }^{?} o_{2}$

| $03 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}: \operatorname{MyInt}(?)$ |
| $o_{2}: \operatorname{MyInt}\left(v a l=i_{1}\right)$ |
| $i_{1}:[4,80]$ |

Ingredients for the Abstract Domain

(1) program counter value (line number)
(2) values of variables (treating int as \mathbb{Z})
(3) over-approximating info on possible variable values

- integers: use intervals, e.g. $x \in[4,7]$ or $\mathrm{y} \in[0, \infty)$
- heap memory with objects, no sharing unless stated otherwise
- MyInt(?): maybe null, maybe a MyInt object

Heap predicates:

- Two references may be equal: $o_{1}={ }^{?} o_{2}$
- Two references may share: $o_{1} \downarrow o_{2}$

| $03 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}: \operatorname{MyInt}(?)$ |
| $o_{2}: \operatorname{MyInt}\left(v a l=i_{1}\right)$ |
| $i_{1}:[4,80]$ |

Ingredients for the Abstract Domain

(1) program counter value (line number)
(2) values of variables (treating int as \mathbb{Z})
(3) over-approximating info on possible variable values

- integers: use intervals, e.g. $x \in[4,7]$ or $\mathrm{y} \in[0, \infty)$
- heap memory with objects, no sharing unless stated otherwise
- MyInt(?): maybe null, maybe a MyInt object

Heap predicates:

- Two references may be equal: $o_{1}={ }^{?} o_{2}$
- Two references may share: $o_{1} \downarrow o_{2}$
- Reference may have cycles: o_{1} !

| $03 \mid \operatorname{num}: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}: \operatorname{MyInt}(?)$ |
| $o_{2}: \operatorname{MyInt}\left(\mathrm{val}=i_{1}\right)$ |
| $i_{1}:[4,80]$ |

Building the Symbolic Execution Graph

```
public class MyInt {
    private int val;
    static void count(MyInt num,
        MyInt limit) {
    if (num == null
                || limit == null)
            return;
    MyInt copy = num;
    while (num.val < limit.val)
        copy.val++;
: } }
```


Building the Symbolic Execution Graph

```
public class MyInt {
    private int val;
    static void count(MyInt num,
            MyInt limit) {
        if (num == null
                || limit == null)
            return;
        MyInt copy = num;
        while (num.val < limit.val)
            copy.val++;
: } }
```

A
$o_{1}=$ null
$1 \mid$ num $: o_{1}$, limit $: o_{2}$
$o_{1}: \operatorname{MyInt}(?)$
$o_{2}:$ MyInt(?)
:---
$o_{1}:$ null
$o_{2}:$ MyInt(?)

$o_{1} \neq$ null $\downarrow \mathrm{C}$

| $2 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}:$ MyInt(val $\left.=i_{1}\right)$ |
| $o_{2}: \operatorname{MyInt}(?)$ |
| $i_{1}:(-\infty, \infty)$ |

means: refine X with cond, then evaluate to Y ; here combined for brevity (narrowing)

Building the Symbolic Execution Graph

```
public class MyInt {
    private int val;
    static void count(MyInt num,
            MyInt limit) {
        if (num == null
                || limit == null)
            return;
        MyInt copy = num;
        while (num.val < limit.val)
        copy.val++;
: } }
```

A
$1 \mid$ num : o_{1}, limit $: o_{2}$
$o_{1}:$ MyInt(?)
$o_{2}:$ MyInt(?)
:---
$o_{1}:$ null
$o_{2}:$ MyInt(?)

$$
\begin{aligned}
& o_{1} \neq \text { null } \int \mathrm{C} \\
& \begin{array}{|l|}
\hline 2 \mid \text { num }: o_{1}, \text { limit }: o_{2} \\
o_{1}: \operatorname{MyInt}\left(\text { val }=i_{1}\right) \\
o_{2}: \operatorname{MyInt}(?) \\
i_{1}:(-\infty, \infty)
\end{array} \rightarrow \begin{array}{l}
3 \mid \text { num }: o_{1}, \text { limit }: o_{2} \\
\hline o_{1}: \text { MyInt }\left(\text { val }=i_{1}\right) \\
o_{2}: \text { null } \\
i_{1}:(-\infty, \infty) \\
\hline
\end{array}
\end{aligned}
$$

$o_{2} \neq$ null
E

| $4 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}: M y \operatorname{Int}\left(\right.$ val $\left.=i_{1}\right)$ |
| $o_{2}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{2}\right)$ |
| $i_{1}:(-\infty, \infty)$ |
| $i_{2}:(-\infty, \infty)$ |

means: refine X with cond, then evaluate to Y ; here combined for brevity (narrowing)

Building the Symbolic Execution Graph

```
public class MyInt \{
    private int val;
    static void count(MyInt num,
            MyInt limit) \{
    if (num == null
                || limit == null)
            return;
        MyInt copy = num;
        while (num.val < limit.val)
        copy.val++;
: \} \}
```

$o_{1}=$ null
$1 \mid$ num $: o_{1}$, limit $: o_{2}$ $o_{1}: \operatorname{MyInt}(?)$ $o_{2}: \operatorname{MyInt}(?)$$\rightarrow$$3 \mid$ num $: o_{1}$, limit $: o_{2}$ $o_{1}:$ null $o_{2}:$ MyInt(?)

$$
\begin{aligned}
& o_{1} \neq \text { null } \int \mathrm{C} \\
& \begin{array}{|l|}
\hline 2 \mid \text { num }: o_{1}, \text { limit }: o_{2} \\
\hline o_{1}: \operatorname{MyInt}\left(\text { val }=i_{1}\right) \\
o_{2}: \operatorname{MyInt}(?) \\
i_{1}:(-\infty, \infty)
\end{array} \rightarrow \begin{array}{l}
3 \mid \text { num }: o_{1}, \text { limit }: o_{2} \\
\hline o_{1}: \text { MyInt }\left(\text { val }=i_{1}\right) \\
o_{2}: \text { null } \\
i_{1}:(-\infty, \infty) \\
\hline
\end{array}
\end{aligned}
$$

$o_{2} \neq$ null
E

Building the Symbolic Execution Graph

```
public class MyInt {
    private int val;
    static void count(MyInt num,
        MyInt limit) {
    if (num == null
                || limit == null)
        return;
        MyInt copy = num;
        while (num.val < limit.val)
        copy.val++;
: } }
```

A
o_{1} $1 \mid$ num $: o_{1}$, limit $: o_{2}$ $o_{1}: \operatorname{MyInt}(?)$ $o_{2}:$ MyInt(?)$\rightarrow$$3 \mid$ num $: o_{1}$, limit $: o_{2}$ $o_{1}:$ null $o_{2}:$ MyInt(?)

$o_{1} \neq$ null $\downarrow \mathrm{C}$

| $2 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}:$ MyInt $\left(\right.$ val $\left.=i_{1}\right)$ |
| $o_{2}:$ MyInt $(?)$ |
| $i_{1}:(-\infty, \infty)$ |\rightarrow| $3 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- |
| $o_{1}:$ MyInt $\left(\right.$ val $\left.=i_{1}\right)$ |
| $o_{2}:$ null |
| $i_{1}:(-\infty, \infty)$ |

$o_{2} \neq$ null
E

Building the Symbolic Execution Graph

```
public class MyInt {
    private int val;
    static void count(MyInt num,
            MyInt limit) {
    if (num == null
2: || limit == null)
        return;
        MyInt copy = num;
        while (num.val < limit.val)
        copy.val++;
```

 I
 \begin{tabular}{|l|l|}
 \hline $5 \mid$ num $: o_{1}$, limit $: o_{2}$, copy : o_{1}

\hline$o_{1}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{3}\right)$

$o_{2}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{2}\right)$

$i_{3}:(-\infty, \infty)$

$i_{2}:(-\infty, \infty)$

\hline
\end{tabular}

 \(\begin{aligned} & i_{3}= i_{1}+1 \text { H } \\
 \&\)\[\)| $6 \mid \text { num }: o_{1}, \text { limit }: o_{2}, \text { copy }: o_{1}$ |
| :--- |
| $o_{1}: \text { MyInt }\left(\mathrm{val}=i_{1}\right)$ |
| $o_{2}: \operatorname{MyInt}\left(\mathrm{val}=i_{2}\right)$ |
| $i_{1}:(-\infty, \infty)$ |
| $i_{2}:(-\infty, \infty)$ |

\]$\end{aligned}
 \({ }_{i_{1}<i_{2}}$

| $4 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}: \operatorname{MyInt}\left(\mathrm{val}=i_{1}\right)$ |
| $o_{2}: \operatorname{MyInt}\left(\mathrm{val}=i_{2}\right)$ |
| $i_{1}:(-\infty, \infty)$ |
| $i_{2}:(-\infty, \infty)$ |

G

1:

| A |
| :--- | :--- |
| $1 \mid$ num : o_{1}, limit $: o_{2}$ |
| $o_{1}:$ MyInt(?) |
| $o_{2}:$ MyInt(?) |\rightarrow| $3 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}:$ null |
| $o_{2}:$ MyInt(?) |

D

$2 \mid$ num $: o_{1}$, limit $: o_{2}$
$o_{1}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{1}\right)$
$o_{2}: \operatorname{MyInt}(?)$
$i_{1}:(-\infty, \infty)$
:---
$o_{1}:$ MyInt $\left(\right.$ val $\left.=i_{1}\right)$
$o_{2}:$ null
$i_{1}:(-\infty, \infty)$

$o_{2} \neq$ null
E

| $5 \mid$ num $: o_{1}$, limit $: o_{2}$, copy $: o_{1}$ |
| :--- | :--- |
| $o_{1}: \operatorname{MyInt}\left(v a l=i_{3}\right)$ |
| $o_{2}: \operatorname{MyInt}\left(\mathrm{val}=i_{2}\right)$ |
| $i_{3}:(-\infty, \infty)$ |
| $i_{2}:(-\infty, \infty)$ |

| $4 \mid$ num $: o_{1}$, limit $: o_{2}$ |
| :--- | :--- |
| $o_{1}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{1}\right)$ |
| $o_{2}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{2}\right)$ |
| $i_{1}:(-\infty, \infty)$ |
| $i_{2}:(-\infty, \infty)$ |

$i_{3}=i_{1}+1$ H
$\qquad$$6 \mid$ num $: o_{1}$, limit $: o_{2}$, copy $: o_{1}$ $o_{1}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{1}\right)$ $o_{2}: \operatorname{MyInt}\left(\mathrm{val}=i_{2}\right)$ $i_{1}:(-\infty, \infty)$ $i_{2}:(-\infty, \infty)$

Building the Symbolic Execution Graph

```
public class MyInt {
    private int val;
    static void count(MyInt num,
            MyInt limit) {
    if (num == null
                || limit == null)
            return;
        MyInt copy = num;
        while (num.val < limit.val)
        copy.val++;
: \} \}
```


$2 \mid$ num $: o_{1}$, limit $: o_{2}$
$o_{1}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{1}\right)$
$o_{2}: \operatorname{MyInt}(?)$
$i_{1}:(-\infty, \infty)$
:---
$o_{1}:$ MyInt $\left(\right.$ val $\left.=i_{1}\right)$
$o_{2}:$ null
$i_{1}:(-\infty, \infty)$

$o_{2} \neq$ null

| $5 \mid$ num $: o_{1}$, limit $: o_{2}$, copy $: o_{1}$ |
| :--- | :--- |
| $o_{1}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{3}\right)$ |
| $o_{2}: \operatorname{MyInt}\left(\right.$ val $\left.=i_{2}\right)$ |
| $i_{3}:(-\infty, \infty)$ |
| $i_{2}:(-\infty, \infty)$ |

$X--->Y$:
X is instance of Y

6	num $: o_{1}$, limit $: o_{2}$, copy $: o_{1}$
$o_{1}: \operatorname{MyInt}\left(\mathrm{val}=i_{1}\right)$	
$o_{2}: \operatorname{MyInt}\left(\mathrm{val}=i_{2}\right)$	
$i_{1}:(-\infty, \infty)$	
$i_{2}:(-\infty, \infty)$	

$<\underbrace{}_{i_{1}<i_{2}} |$| $5 \mid$ num $: o_{1}$, limit $: o_{2}$, copy $: o_{1}$ |
| :--- |
| $o_{1}: \operatorname{MyInt}\left(v a l=i_{1}\right)$ |
| $o_{2}: \operatorname{MyInt}\left(v a l=i_{2}\right)$ |
| $i_{1}:(-\infty, \infty)$ |
| $i_{2}:(-\infty, \infty)$ |

From Java to Symbolic Execution Graphs

Symbolic Execution Graphs

- symbolic over-approximation of all computations (abstract interpretation)
- expand nodes until all leaves correspond to program ends
- by suitable generalisation steps (widening), one can always get a finite symbolic execution graph
- state s_{1} is instance of state s_{2} if all concrete states described by s_{1} are also described by s_{2}

From Java to Symbolic Execution Graphs

Symbolic Execution Graphs

- symbolic over-approximation of all computations (abstract interpretation)
- expand nodes until all leaves correspond to program ends
- by suitable generalisation steps (widening), one can always get a finite symbolic execution graph
- state s_{1} is instance of state s_{2} if all concrete states described by s_{1} are also described by s_{2}

Using Symbolic Execution Graphs for Termination Proofs

- every concrete Java computation corresponds to a computation path in the symbolic execution graph
- symbolic execution graph is called terminating iff it has no infinite computation path

Transformation of Objects to Terms (1/2)

$$
\begin{array}{|l|l|}
\hline 16 \mid \text { num }: o_{1}, \text { limit }: o_{2}, \mathrm{x}: o_{3}, \mathrm{y}: o_{4}, \mathrm{z}: i_{1} \\
\hline o_{1}: \text { MyInt }(?) \\
o_{2}: \operatorname{MyInt}\left(\mathrm{val}=i_{2}\right) \\
o_{3}: \operatorname{null} \\
o_{4}: \text { MyList }(?) \\
o_{4}! \\
i_{1}:[7, \infty) \\
i_{2}:(-\infty, \infty) \\
\hline
\end{array}
$$

For every class C with n fields, introduce an n-ary function symbol C

- term for $o_{1}: o_{1}$
- term for $o_{2}: \operatorname{MyInt}\left(i_{2}\right)$
- term for o_{3} : null
- term for $o_{4}: x$ (new variable)
- term for $i_{1}: i_{1}$ with side constraint $i_{1} \geq 7$ (add invariant $i_{1} \geq 7$ to constrained rewrite rules from state Q)

Transformation of Objects to Terms (2/2)

```
public class A {
    int a;
}
public class B extends A {
    int b;
}
A x = new A();
x.a = 1;
B y = new B();
y.a = 2;
y.b = 3;
```


Transformation of Objects to Terms (2/2)

```
public class A {
    int a;
}
public class B extends A {
    int b;
}
A x = new A();
x.a = 1;
```

Dealing with subclasses:

- for every class C with n fields, introduce $(n+1)$-ary function symbol C
- first argument: part of the object corresponding to subclasses of C
- term for x : $\mathrm{A}(\mathrm{eoc}, 1)$
\rightarrow eoc for end of class
- term for $\mathrm{y}: \mathrm{A}(\mathrm{B}($ eoc, 3$), 2)$

Transformation of Objects to Terms (2/2)

```
public class A {
    int a;
}
public class B extends A {
    int b;
}
A x = new A();
x.a = 1;
B y = new B();
y.a = 2;
y.b = 3;
```

Dealing with subclasses:

- for every class C with n fields, introduce $(n+1)$-ary function symbol C
- first argument: part of the object corresponding to subclasses of C
- term for x : $\mathrm{jlO}(\mathrm{A}(\mathrm{eoc}, 1))$
\rightarrow eoc for end of class
- term for $\mathrm{y}: \mathrm{jlO}(\mathrm{A}(\mathrm{B}(\mathrm{eoc}, 3), 2))$
- every class extends Object! $(\rightarrow$ jlO \equiv java.lang. Object)

From the Symbolic Execution Graph to Terms and Rules

From the Symbolic Execution Graph to Terms and Rules

- State F: $\quad \ell_{\mathrm{F}}\left(\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{1}\right)\right), \quad \mathrm{jlO}\left(\operatorname{MyInt}\left(e o c, i_{2}\right)\right)\right)$

State $\mathrm{H}: \quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{1}\right)\right), \quad \mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{2}\right)\right)\right)$

From the Symbolic Execution Graph to Terms and Rules

- State F: $\quad \ell_{\mathrm{F}}\left(\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{1}\right)\right)\right.$, $\left.\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{2}\right)\right)\right)$

State H: $\quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\mathrm{MyInt}\left(\mathrm{eoc}, i_{1}\right)\right), \quad \mathrm{jlO}\left(\mathrm{Mylnt}\left(\mathrm{eoc}, i_{2}\right)\right)\right) \quad\left[i_{1}<i_{2}\right]$

From the Symbolic Execution Graph to Terms and Rules

- State F: $\quad \ell_{\mathrm{F}}\left(\mathrm{jlO}\left(\mathrm{My} \operatorname{lnt}\left(\right.\right.\right.$ eoc, $\left.\left.i_{1}\right)\right)$, $\mathrm{jlO}\left(\operatorname{Mylnt}\left(\right.\right.$ eoc, $\left.\left.\left.i_{2}\right)\right)\right)$

State H: $\quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\mathrm{MyInt}\left(\mathrm{eoc}, i_{1}\right)\right), \quad \mathrm{jlO}\left(\mathrm{Mylnt}\left(\mathrm{eoc}, i_{2}\right)\right)\right) \quad\left[i_{1}<i_{2}\right]$

- State H: $\quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{1}\right)\right)\right.$, jlO(Mylnt(eoc, $\left.\left.\left.i_{2}\right)\right)\right)$

State I: $\quad \ell_{\mathrm{F}}\left(\mathrm{jlO}\left(\mathrm{MyInt}\left(e o c, i_{1}+1\right)\right), \quad \mathrm{jlO}\left(\operatorname{MyInt}\left(e o c, i_{2}\right)\right)\right)$

From the Symbolic Execution Graph to Terms and Rules

- State F: $\quad \ell_{\mathrm{F}}\left(\mathrm{jlO}\left(\mathrm{My} \operatorname{lnt}\left(\right.\right.\right.$ eoc, $\left.\left.i_{1}\right)\right)$, $\mathrm{jlO}\left(\operatorname{Mylnt}\left(\right.\right.$ eoc, $\left.\left.\left.i_{2}\right)\right)\right)$

State H: $\quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\mathrm{MyInt}\left(\mathrm{eoc}, i_{1}\right)\right), \quad \mathrm{jlO}\left(\mathrm{Mylnt}\left(\mathrm{eoc}, i_{2}\right)\right)\right) \quad\left[i_{1}<i_{2}\right]$

- State H: $\quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{1}\right)\right)\right.$, jlO(Mylnt(eoc, $\left.\left.\left.i_{2}\right)\right)\right)$

State I: $\quad \ell_{\mathrm{F}}\left(\mathrm{jlO}\left(\mathrm{MyInt}\left(e o c, i_{1}+1\right)\right), \quad \mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{2}\right)\right)\right)$

From the Symbolic Execution Graph to Terms and Rules

- State F: $\quad \ell_{\mathrm{F}}\left(\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{1}\right)\right), \quad \mathrm{jlO}\left(\operatorname{MyInt}\left(e o c, i_{2}\right)\right)\right)$

State H: $\quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\mathrm{MyInt}\left(\mathrm{eoc}, i_{1}\right)\right), \quad \mathrm{jlO}\left(\mathrm{Mylnt}\left(\mathrm{eoc}, i_{2}\right)\right)\right) \quad\left[i_{1}<i_{2}\right]$

- State H: $\quad \ell_{\mathrm{H}}\left(\mathrm{jlO}\left(\operatorname{Mylnt}\left(e o c, i_{1}\right)\right)\right.$, jlO(Mylnt(eoc, $\left.\left.\left.i_{2}\right)\right)\right)$

State I: $\quad \ell_{F}\left(j \operatorname{lO}\left(M y \operatorname{lnt}\left(e o c, i_{1}+1\right)\right), j \mathrm{jlO}\left(\operatorname{MyInt}\left(e o c, i_{2}\right)\right)\right)$

- Termination easy to show (intuitively: $i_{2}-i_{1}$ decreases against bound 0)

Extensions

- modular termination proofs and recursion [Brockschmidt et al, RTA '11]

Extensions

- modular termination proofs and recursion [Brockschmidt et al, RTA '11]
- proving reachability and non-termination (uses only symbolic execution graph) [Brockschmidt et al, FoVeOOS '11]

Extensions

- modular termination proofs and recursion [Brockschmidt et al, RTA '11]
- proving reachability and non-termination (uses only symbolic execution graph) [Brockschmidt et al, FoVeOOS '11]
- proving termination with cyclic data objects (preprocessing in symbolic execution graph) [Brockschmidt et al, CAV '12]

Extensions

- modular termination proofs and recursion [Brockschmidt et al, RTA '11]
- proving reachability and non-termination (uses only symbolic execution graph) [Brockschmidt et al, FoVeOOS '11]
- proving termination with cyclic data objects (preprocessing in symbolic execution graph) [Brockschmidt et al, CAV '12]
- proving upper bounds for time complexity (abstracts terms to numbers) [Frohn and Giesl, iFM '17]

From Java to C

- So far: Java as a memory-safe object-oriented language
\rightarrow out-of-bounds memory accesses in Java: well-defined exceptions

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety \rightarrow out-of-bounds memory accesses in C: undefined behaviour

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety
\rightarrow out-of-bounds memory accesses in C: undefined behaviour
- replacing all files on the computer with cat GIFs

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety
\rightarrow out-of-bounds memory accesses in C: undefined behaviour
- replacing all files on the computer with cat GIFs
- information leaks (Heartbleed)

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety
\rightarrow out-of-bounds memory accesses in C: undefined behaviour
- replacing all files on the computer with cat GIFs
- information leaks (Heartbleed)
- non-termination

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety
\rightarrow out-of-bounds memory accesses in C: undefined behaviour
- replacing all files on the computer with cat GIFs
- information leaks (Heartbleed)
- non-termination
- ...

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety
\rightarrow out-of-bounds memory accesses in C: undefined behaviour
- replacing all files on the computer with cat GIFs
- information leaks (Heartbleed)
- non-termination
- ...
\Rightarrow C programs must be memory safe as a precondition for termination!

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety \rightarrow out-of-bounds memory accesses in C: undefined behaviour
- replacing all files on the computer with cat GIFs
- information leaks (Heartbleed)
- non-termination
- ...
\Rightarrow C programs must be memory safe as a precondition for termination!
- Use case: programs on strings represented as char arrays whose last element has 0 as entry ("0-terminated strings")

From Java to C

- So far: Java as a memory-safe object-oriented language \rightarrow out-of-bounds memory accesses in Java: well-defined exceptions
- Now: C as a systems programming language with pointer arithmetic and no guarantees of memory safety \rightarrow out-of-bounds memory accesses in C: undefined behaviour
- replacing all files on the computer with cat GIFs
- information leaks (Heartbleed)
- non-termination
- ...
\Rightarrow C programs must be memory safe as a precondition for termination!
- Use case: programs on strings represented as char arrays whose last element has 0 as entry (" 0 -terminated strings")
- Tailor two-stage approach to C [Ströder et al, JAR '17]

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(++s));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(++s));
    return s-str;
}
```

No memory access outside allocated memory!

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(++s));
    return s-str;
}
```

No memory access outside allocated memory!
(precondition for termination)

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?
int strlen(char* str) \{
char* s = str;
while(*(++s));
return s-str;
\}

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(++s));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(++s));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(++s));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string
Is this program memory-safe and terminating? No! (violation of memory safety)

```
int strlen(char* str) {
    char* s = str;
    while(*(++s));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?
int strlen(char* str) \{
char* s = str;
while((*s)++);
return s-str;
\}

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while((*s)++);
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while((*s)++);
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while((*s)++);
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while((*s)++);
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string
Is this program memory-safe and terminating? No! (non-terminating

```
int strlen(char* str) {
    char* s = str;
    while((*s)++);
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string
Is this program memory-safe and terminating? No! (non-terminating - for unbounded integers)

```
int strlen(char* str) {
    char* s = str;
    while((*s)++);
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?
int strlen(char* str) \{
char* s = str;
while(*(s++));
return s-str;
\}

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(s++));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(s++));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(s++));
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating?

```
int strlen(char* str) {
    char* s = str;
    while(*(s++));
    return s-str;
}
```


\uparrow
s

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating? Yes! But. . .

```
int strlen(char* str) {
    char* s = str;
    while(*(s++));
    return s-str;
}
```


\uparrow
s

Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating? Yes!

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


Motivation

Precondition: str points to allocated 0-terminated string Is this program memory-safe and terminating? Yes!

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


Bugs w.r.t. pointers are hard to recognise!

Motivation

Precondition: str points to allocated 0-terminated string
Is this program memory-safe and terminating? Yes!
How to prove this automatically?

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


Bugs w.r.t. pointers are hard to recognise!

Overview

Overview

Overview

Overview

Overview

Overview

Overview

Overview

From Program to Symbolic Execution Graph (1/2)

- over-approximate operations

From Program to Symbolic Execution Graph (1/2)

- over-approximate operations
- inference rules for each instruction

From Program to Symbolic Execution Graph (1/2)

- over-approximate operations
- inference rules for each instruction
- refinement

From Program to Symbolic Execution Graph (1/2)

- over-approximate operations
- inference rules for each instruction
- refinement
- generalisation

From Program to Symbolic Execution Graph (1/2)

- over-approximate operations
- inference rules for each instruction
- refinement
- generalisation
- reduce reasoning to SMT

From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
```


\}

From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
```


\}

From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


From Program to Symbolic Execution Graph (2/2)

From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
```


From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
char* s = str;
while(*s) s++;
    return s-str;
}
```


From Program to Symbolic Execution Graph (2/2)

```
int strlen(char* str) {
char* s = str;
    while(*s) s++;
    return s-str;
}
\}
```


Overview

From Symb. Exec. Graph to Integer Transition Systems (1/3)

- Non-termination \rightsquigarrow infinite run through graph

From Symb. Exec. Graph to Integer Transition Systems (1/3)

- Non-termination \rightsquigarrow infinite run through graph
- Express graph traversal (SCCs)

From Symb. Exec. Graph to Integer Transition Systems (1/3)

- Non-termination \rightsquigarrow infinite run through graph
- Express graph traversal (SCCs)
by Integer Transition System (ITS)

From Symb. Exec. Graph to Integer Transition Systems (1/3)

- Non-termination \rightsquigarrow infinite run through graph
- Express graph traversal (SCCs)
by Integer Transition System (ITS)
- ITS terminating \Longrightarrow C program terminating

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}(\quad)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}(\text { str })
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}\left(\mathrm{str}, u_{\text {end }}\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}\right) \rightarrow \ell_{\mathrm{B}}(
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}\right) \rightarrow \ell_{\mathrm{B}}(\mathrm{str}
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}\right) \rightarrow \ell_{\mathrm{B}}\left(\mathrm{str}, u_{\text {end }}\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}\right) \rightarrow \ell_{\mathrm{B}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}+1\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\ell_{\mathrm{A}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}\right) \xrightarrow[\mathrm{s}<u_{\text {end }}]{\rightarrow} \ell_{\mathrm{B}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{s}+1\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

$$
\ell(x, y) \xrightarrow{x<y} \quad \ell(x+1, y)
$$

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

$$
\ell(x, y) \quad \stackrel{x<y}{\rightarrow} \quad \ell(x+1, y)
$$

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

$$
\ell(x, y) \xrightarrow{x<y} \quad \ell(x+1, y)
$$

Automatic termination proof by any termination prover

Implementation: Analysis on LLVM Level

- So far: assume that LLVM bitcode is essentially "the same" as C code
- But: LLVM bitcode is much closer to assembly than C
- Let's look at the details of the actual analysis

Overview

The Low-Level Virtual Machine Framework

- LLVM used for compiler optimisation and verification

The Low-Level Virtual Machine Framework

- LLVM used for compiler optimisation and verification
- Close to assembly language

The Low-Level Virtual Machine Framework

- LLVM used for compiler optimisation and verification
- Close to assembly language
- Still structured: functions, data structures, type safety

The Low-Level Virtual Machine Framework

- LLVM used for compiler optimisation and verification
- Close to assembly language
- Still structured: functions, data structures, type safety
- Single Static Assignment (SSA)

The Low-Level Virtual Machine Framework

- LLVM used for compiler optimisation and verification
- Close to assembly language
- Still structured: functions, data structures, type safety
- Single Static Assignment (SSA)
- Caveat: user-defined data structures (structs) in LLVM are still work in progress for AProVE

From C to LLVM

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


From C to LLVM

LLVM Code (simplified)

```
define i32 strlen(i8* str) {
```

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```


From C to LLVM

```
```

LLVM Code (simplified)

```
```

LLVM Code (simplified)
define i32 strlen(i8* str) {
define i32 strlen(i8* str) {
entry:
entry:
0: c0 = load i8* str

```
```

 0: c0 = load i8* str
    ```
```


Example C Program

int strlen(char* str) \{
char* s = str;
while(*s) s++;
return s-str;
\}

From C to LLVM

```
```

LLVM Code (simplified)

```
```

LLVM Code (simplified)
define i32 strlen(i8* str) {
define i32 strlen(i8* str) {
entry:
entry:
0: c0 = load i8* str
0: c0 = load i8* str
1: c0zero = icmp eq i8 c0, 0

```
```

 1: c0zero = icmp eq i8 c0, 0
    ```
```


Example C Program

int strlen(char* str) \{
char* s = str;
while(*s) s++;
return s-str;
\}

From C to LLVM

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```

 LLVM Code (simplified)
 define i32 strlen(i8* str) \{
 entry:
 0 : c0 = load i8* str
 1: c0zero = icmp eq i8 c0, 0
 2: br i1 c0zero, label done, label loop
 loop:
 done:
\}

From C to LLVM

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```

```
LLVM Code (simplified)
define i32 strlen(i8* str) \{
    entry:
        0 : c0 = load i8* str
        1: c0zero = icmp eq i8 c0, 0
    2: br i1 c0zero, label done, label loop
    loop:
        0 : olds = phi i8* [str,entry],[s,loop]
    done:
```

 \}

From C to LLVM

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```

```
LLVM Code (simplified)
define i32 strlen(i8* str) \{
    entry:
        0 : c0 = load i8* str
        1: c0zero = icmp eq i8 c0, 0
    2: br i1 c0zero, label done, label loop
    loop:
        0 : olds = phi i8* [str,entry],[s,loop]
    1: s = getelementptr i8* olds, i32 1
    done:
```

 \}

From C to LLVM

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```

```
LLVM Code (simplified)
define i32 strlen(i8* str) \{
    entry:
        0 : c0 = load i8* str
        1: c0zero = icmp eq i8 c0, 0
    2: br i1 c0zero, label done, label loop
    loop:
        0 : olds = phi i8* [str,entry],[s,loop]
        1: s = getelementptr i8* olds, i32 1
    2: c = load i8* s
    done:
```

 \}

From C to LLVM

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```

```
LLVM Code (simplified)
define i32 strlen(i8* str) \{
    entry:
        0 : c0 = load i8* str
        1: c0zero = icmp eq i8 c0, 0
    2: br i1 c0zero, label done, label loop
    loop:
        0: olds = phi i8* [str,entry],[s,loop]
        1: s = getelementptr i8* olds, i32 1
        2: c = load i8* s
    3: czero = icmp eq i8 c, 0
    done:
```

 \}

From C to LLVM

```
Example C Program
int strlen(char* str) {
    char* s = str;
    while(*s) s++;
    return s-str;
}
```

```
LLVM Code (simplified)
define i32 strlen(i8* str) \{
    entry:
        0 : c0 = load i8* str
        1: c0zero = icmp eq i8 c0, 0
    2: br i1 c0zero, label done, label loop
    loop:
        0: olds = phi i8* [str,entry],[s,loop]
        1: s = getelementptr i8* olds, i32 1
    2: c = load i8* s
    3: czero = icmp eq i8 c, 0
    4: br i1 czero, label done, label loop
    done:
```

 \}

From C to LLVM

Example C Program

int strlen(char* str) \{ char* s = str; while(*s) s++; return s-str;

```
LLVM Code (simplified)
define i32 strlen(i8* str) {
    entry:
        0: c0 = load i8* str
        1: c0zero = icmp eq i8 c0, 0
    2: br i1 c0zero, label done, label loop
    loop:
        0: olds = phi i8* [str,entry],[s,loop]
        1: s = getelementptr i8* olds, i32 1
    2: c = load i8* s
    3: czero = icmp eq i8 c, 0
    4: br i1 czero, label done, label loop
    done:
        0: sfin = phi i8* [str,entry],[s,loop]
    1: sfinint = ptrtoint i8* sfin to i32
    2: strint = ptrtoint i8* str to i32
    3: size = sub i32 sfinint, strint
    4: ret i32 size
    }
```


Overview

From LLVM to Symbolic Execution Graph

Abstract domain:

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations

Initial State:

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number Initial State:

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number

Initial State:

$$
p o s=(\varepsilon, \text { entry }, 0)
$$

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number
- allocation list $A L$

Initial State:

$$
p o s=(\varepsilon, \text { entry }, 0)
$$

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number
- allocation list $A L$

Initial State:

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number
- allocation list $A L$
- points to map PT

Initial State:

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number
- allocation list $A L$

Initial State:

- points to map $P T$

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number
- allocation list $A L$
- points to map PT
- knowledge base $K B$

Initial State:

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{\text {i }} 0\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number
- allocation list $A L$
- points to map PT
- knowledge base $K B$

Initial State:

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right\} \\
& K B=\varnothing
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

Abstract domain:

- represent system configurations as states
- represent operations as edges
- abstract states stand for sets of configurations
- program position pos: previous block, current block, line number
- allocation list $A L$
- points to map PT
- knowledge base $K B$

Initial State:

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right\} \\
& K B=\varnothing
\end{aligned}
$$

- formal semantics for states:

Separation Logic [O'Hearn, Reynolds, Yang, CSL '01]

From LLVM to Symbolic Execution Graph

- over-approximate program states and operations

From LLVM to Symbolic Execution Graph

- over-approximate program states and operations
- inference rules for each instruction

From LLVM to Symbolic Execution Graph

- over-approximate program states and operations
- inference rules for each instruction
- refinement

From LLVM to Symbolic Execution Graph

- over-approximate program states and operations
- inference rules for each instruction
- refinement
- generalisation

From LLVM to Symbolic Execution Graph

- over-approximate program states and operations
- inference rules for each instruction
- refinement
- generalisation
- automation via SMT solving (SAT Modulo Theories)

From LLVM to Symbolic Execution Graph

```
define i32 strlen(i8* str) {
entry:
    0: c0 = load i8* str
```


From LLVM to Symbolic Execution Graph

From LLVM to Symbolic Execution Graph

```
define i32 strlen(i8* str) {
entry:
    0: c0 = load i8* str
```

Initial state:

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 0) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right\} \\
& K B=\varnothing
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

```
define i32 strlen(i8* str) {
entry:
    0: c0 = load i8* str
```

Initial state:

Evaluation

From LLVM to Symbolic Execution Graph

```
define i32 strlen(i8* str) {
entry:
    0: c0 = load i8* str
```

Initial state:

Evaluation
Memory access: check allocation!

From LLVM to Symbolic Execution Graph

```
entry:
    0: c0 = load i8* str
    1: c0zero = icmp eq i8 c0, 0
```


$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
&\text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0\right\} \\
& K B= \varnothing
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

```
entry:
```

 0: c0 = load i8* str
 1: c0zero = icmp eq i8 c0, 0

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& A L=\left\{\text { alloc }\left(\operatorname{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \\
& \left.\quad \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0\right\} \\
& K B=\varnothing
\end{aligned}
$$

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& A L=\left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
&\text { str } \left.\hookrightarrow_{i 8} 0\right\} \\
& K B=\{\quad\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
&\text { str } \left.\hookrightarrow_{i 8} 0\right\} \\
& K B=\{\quad\}
\end{aligned}
$$

Refinement

From LLVM to Symbolic Execution Graph

entry:
0: c0 = load i8* str
1: c0zero $=$ icmp eq i8 c0, 0

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \\
& \left.\quad \operatorname{str} \hookrightarrow_{\text {i8 }} \mathrm{c} 0\right\} \\
& K B=\varnothing
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\varepsilon, \text { entry }, 1) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \left.\operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0\right\} \\
K B= & \{\mathrm{c} 0=0\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
&\text { str } \left.\hookrightarrow_{i 8} 0\right\} \\
& K B=\{\mathrm{c} 0 \neq 0\}
\end{aligned}
$$

Refinement

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry],[s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0: olds = phi i8* [str,entry],[s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \left.\operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : old = phi is* [str ,entry], [s,loop]
1: s = getelementptr is* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1, \\
& \mathrm{c} 0 \neq 0, \text { old }=\mathrm{str}\}
\end{aligned}
$$

K

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { old }=\mathrm{str}+1\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\text {i8 }} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\text {i8 }} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

K
Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\text {i8 }} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\text {i8 }} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i}} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1, \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

Generalisation (to obtain finite graph)

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\text { olds }+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\text {i8 }} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\text {i8 }} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i}} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\text {i8 }} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\text {i8 }} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i}} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pos }=(\text { loop }, \text { loop }, 0) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \\
&\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{i 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L & =\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T & =\left\{u_{\text {end }} \hookrightarrow_{\text {i8 }} 0\right. \\
& \text { str } \hookrightarrow_{i 8} c 0,
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \left.\operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{i 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i}} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { pos }=(\text { loop }, \text { loop }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \\
& \text { str } \hookrightarrow_{i 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{i 8} \mathrm{c} \\
&\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \text {, } \\
& \text { olds } \left.\hookrightarrow_{\text {i8 }} v\right\} \\
& K B=\{c \neq 0, v \neq 0 \text {, } \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds }=s t r+1\} \\
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}, \\
& \text { olds } \left.\hookrightarrow_{\text {i8 }} v\right\} \\
& K B=\{c \neq 0,
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0, \\
& \mathrm{s}=\mathrm{olds}+1,
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}, \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0, \\
& \mathrm{s}=\text { olds }+1, \mathrm{c} 0 \neq 0,
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop }, 0) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\text {i8 }} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
&\text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
& K B=\{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
&\text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}, \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0, \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0,
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\text {i8 }} 0,\right. \\
& \text { str } \hookrightarrow_{\text {i8 }}^{\left.\mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\}} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1,
\end{aligned}
$$

$$
x=y \Longleftrightarrow x \geq y \wedge x \leq y
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1 \\
& \mathrm{c} 0 \neq 0, \mathrm{olds}=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\text { str, } u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \text {, } \\
& \text { olds } \left.\hookrightarrow_{\text {i8 }} v\right\} \\
& K B=\{c \neq 0, v \neq 0, \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds }=s t r+1\} \\
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \text {, } \\
& \text { olds } \left.\hookrightarrow_{\text {i8 }} v\right\} \\
& K B=\{c \neq 0, v \neq 0, \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds } \geq \text { str, }\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop }, 0) \\
& \left.A L=\left\{\text { alloc str } u_{\text {and }}\right)\right\} \\
& \begin{array}{l}
x_{1} \hookrightarrow_{\text {ty }} y_{1} \wedge \\
x_{2} \hookrightarrow \text { ty } y_{2} \wedge \\
y_{1} \neq y_{2}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { pos }=(\text { loop }, \text { loop } \\
A L=\{\text { alloc } 1 \text { str }
\end{gathered}
$$

$$
A L=\{\text { alloc }(\mathrm{str},\}
$$

$$
P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} \sigma,\right.
$$

$$
\operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}
$$

$$
\text { olds } \left.\hookrightarrow_{i 8} v\right\}
$$

$$
K B=\{c \neq 0, v \neq 0
$$

$$
\mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0
$$

$$
\mathrm{olds}=\mathrm{str}+1\}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\text { pos }=(\text { loop }, \text { loop }, 0)
$$

ation

$$
\text { pos }=(\text { loop }, \text { loop }
$$

$$
A L=\{\operatorname{alloc}(\mathrm{str},\}
$$

$$
P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} \sigma,\right.
$$

$$
\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}
$$

$$
\text { olds } \left.\hookrightarrow_{i 8} v\right\}
$$

$$
K B=\{c \neq 0, v \neq 0
$$

$$
s=o l d s+1, c 0 \neq 0
$$

$$
\mathrm{olds}=\mathrm{str}+1\}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry],[s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop }, 0) \\
& A L=\{\operatorname{alloc}(\text { str } \text { mand })\} \\
& x_{1} \hookrightarrow_{\text {ty }} y_{1} \wedge \\
& x_{2} \hookrightarrow_{\text {ty }} y_{2} \wedge \\
& y_{1} \neq y_{2}
\end{aligned}
$$

$$
\text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\}
$$

$K B=\{c \neq 0, v \neq 0$,
$\mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0$, olds \geq str,

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{i 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1, \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \mathrm{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8 \mathrm{C}} \mathrm{C}, \\
& \text { olds } \left.\hookrightarrow_{\text {i8 }} v\right\} \\
& K B=\{c \neq 0, v \neq 0 \text {, } \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds }=s t r+1\} \\
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\text { str }, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \text {, } \\
& \text { olds } \left.\hookrightarrow_{\text {i }} v\right\} \\
& K B=\{c \neq 0, v \neq 0, \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds } \left.\geq \text { str, } \mathrm{s} \neq u_{\text {end }}\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

loop:
0 : olds = phi i8* [str,entry], [s,loop]
1: s = getelementptr i8* olds, i32 1

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \text { str } \left.\hookrightarrow_{i 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{i 8} \mathrm{c}\right\} \\
K B= & \{\mathrm{c} \neq 0, \mathrm{~s}=\mathrm{olds}+1, \\
& \mathrm{c} 0 \neq 0, \text { olds }=\mathrm{str}\}
\end{aligned}
$$

Generalisation

$$
\begin{aligned}
\text { pos }= & (\text { loop, loop }, 0) \\
A L= & \left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \\
& \text { str } \hookrightarrow_{\text {i8 }} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\text {i8 }} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{i 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds }=\mathrm{str}+1\}
\end{aligned}
$$

$$
\begin{aligned}
\text { pos }= & (\text { loop }, \text { loop }, 0) \\
A L= & \left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
P T= & \left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \\
& \text { str } \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} \\
& \text { olds } \left.\hookrightarrow_{\mathrm{i} 8} v\right\} \\
K B= & \{\mathrm{c} \neq 0, v \neq 0 \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \\
& \text { olds } \left.\geq \mathrm{str}, \mathrm{~s}<u_{\text {end }}\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \text { str } \hookrightarrow_{i 8} \mathrm{C} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{C}, \\
& \text { olds } \left.\hookrightarrow_{i 8} v\right\} \\
& K B=\{c \neq 0, v \neq 0 \text {, } \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds } \left.\geq \operatorname{str}, \mathrm{s}<u_{\text {end }}\right\} \\
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}, \\
& \text { olds } \left.\hookrightarrow_{i 8} v\right\} \\
& K B=\{c \neq 0, v \neq 0 \text {, } \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds } \left.\geq \text { str, } \mathrm{s}<u_{\text {end }}\right\}
\end{aligned}
$$

From LLVM to Symbolic Execution Graph

$$
\begin{aligned}
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \mathrm{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{C} \text {, } \\
& \text { olds } \left.\hookrightarrow_{i 8} v\right\} \\
& K B=\{c \neq 0, v \neq 0 \text {, } \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds } \left.\geq \operatorname{str}, \mathrm{s}<u_{\text {end }}\right\} \\
& \text { pos }=(\text { loop, loop, } 0) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \operatorname{str} \hookrightarrow_{\mathrm{i} 8} \mathrm{c} 0, \mathrm{~s} \hookrightarrow_{\mathrm{i} 8} \mathrm{c}, \\
& \text { olds } \left.\hookrightarrow_{i 8} v\right\} \\
& K B=\{c \neq 0, v \neq 0 \text {, } \\
& \mathrm{s}=\mathrm{olds}+1, \mathrm{c} 0 \neq 0 \text {, } \\
& \text { olds } \left.\geq \text { str, } \mathrm{s}<u_{\text {end }}\right\}
\end{aligned}
$$

Generalisation

Overview

From Symb. Exec. Graph to Integer Transition Systems (1/3)

- Non-termination \rightsquigarrow infinite run through graph
- Express graph traversal (strongly connected components) by Integer Transition System (ITS)
- ITS terminating \Longrightarrow C program terminating

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& \text { AL }=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& \text { B } \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{\mathrm{i} 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{\text {i8 }} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& \text { AL }=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& \text { B } \\
& P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0,\right. \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}(\quad)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& \text { AL }=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{e n d} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}(\mathrm{str})
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& \text { AL }=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}\left(\mathrm{str}, u_{\text {end }} \quad\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& \text { AL }=\left\{\text { alloc }\left(\text { str }, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{e n d} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \text { str } \left.\hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}\left(\mathrm{str}, u_{e n d}, \mathrm{c} 0\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& \text { AL }=\left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \text { str } \left.\hookrightarrow_{18} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon \text {, entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{c} 0\right) \longrightarrow \ell_{\mathrm{D}}(
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& \text { AL }=\left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \text { str } \left.\hookrightarrow_{18} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}\left(\mathrm{str}, u_{e n d}, \mathrm{c} 0\right) \longrightarrow \ell_{\mathrm{D}}(\mathrm{str}
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& \text { AL }=\left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \text { str } \left.\hookrightarrow_{18} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\operatorname{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\{\mathrm{c} 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}\left(\mathrm{str}, u_{\text {end }}, \mathrm{c} 0\right) \longrightarrow \ell_{\mathrm{D}}\left(\mathrm{str}, u_{\text {end }}\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& \text { AL }=\left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \text { str } \left.\hookrightarrow_{18} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon, \text { entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}\left(\mathrm{str}, u_{e n d}, \mathrm{c} 0\right) \longrightarrow \ell_{\mathrm{D}}\left(\mathrm{str}, u_{e n d}, \mathrm{c} 0\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (2/3)

- Function symbols: abstract states
- Arguments: variables occurring in states

$$
\begin{aligned}
& \text { pos }=(\varepsilon, \text { entry }, 1) \\
& \text { AL }=\left\{\text { alloc }\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { B } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{C} 0\right\} \\
& K B=\varnothing \\
& \text { pos }=(\varepsilon \text {, entry, } 1) \\
& A L=\left\{\operatorname{alloc}\left(\mathrm{str}, u_{\text {end }}\right)\right\} \\
& \text { D } \quad P T=\left\{u_{\text {end }} \hookrightarrow_{i 8} 0\right. \text {, } \\
& \left.\operatorname{str} \hookrightarrow_{i 8} \mathrm{c} 0\right\} \\
& K B=\{c 0 \neq 0\}
\end{aligned}
$$

$$
\ell_{\mathrm{B}}\left(\mathrm{str}, u_{e n d}, \mathrm{c} 0\right) \xrightarrow{\mathrm{c} 0 \neq 0} \ell_{\mathrm{D}}\left(\mathrm{str}, u_{e n d}, \mathrm{c} 0\right)
$$

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

$$
\ell(x, y) \quad \xrightarrow{x<y} \quad \ell(x+1, y)
$$

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

$$
\ell(x, y) \quad \xrightarrow{x<y} \quad \ell(x+1, y)
$$

From Symb. Exec. Graph to Integer Transition Systems (3/3)

Resulting ITS (after automated simplification):

$$
\ell(x, y) \quad \xrightarrow{x<y} \quad \ell(x+1, y)
$$

Automatic termination proof by any termination prover

Overview

Experimental Results

- implemented in AProVE
http://aprove.informatik.rwth-aachen.de/

Experimental Results

- implemented in AProVE
http://aprove.informatik.rwth-aachen.de/
- demo category of SV-COMP 2014 (TACAS): https://sv-comp.sosy-lab.org/

Experimental Results

- implemented in AProVE
http://aprove.informatik.rwth-aachen.de/
- demo category of SV-COMP 2014 (TACAS):
https://sv-comp.sosy-lab.org/
5 participants, most points for AProVE

Experimental Results

- implemented in AProVE
http://aprove.informatik.rwth-aachen.de/
- demo category of SV-COMP 2014 (TACAS): https://sv-comp.sosy-lab.org/ 5 participants, most points for AProVE
- C category of termCOMP 2014 (IJCAR):

Experimental Results

- implemented in AProVE
http://aprove.informatik.rwth-aachen.de/
- demo category of SV-COMP 2014 (TACAS): https://sv-comp.sosy-lab.org/ 5 participants, most points for AProVE
- C category of termCOMP 2014 (IJCAR):

3 participants, AProVE winner

Experimental Results

- implemented in AProVE
http://aprove.informatik.rwth-aachen.de/
- demo category of SV-COMP 2014 (TACAS): https://sv-comp.sosy-lab.org/ 5 participants, most points for AProVE
- C category of termCOMP 2014 (IJCAR):

3 participants, AProVE winner

Experimental Results

- implemented in AProVE
http://aprove.informatik.rwth-aachen.de/
- demo category of SV-COMP 2014 (TACAS):
https://sv-comp.sosy-lab.org/
5 participants, most points for AProVE
- C category of termCOMP 2014 (IJCAR):

3 participants, AProVE winner

- termination category of SV-COMP 2015 (TACAS): 6 participants, AProVE winner
- termination category of SV-COMP 2016 (TACAS): 3 participants, AProVE winner

Experimental Results

- implemented in AProVE http://aprove.informatik.rwth-aachen.de/
- demo category of SV-COMP 2014 (TACAS): https://sv-comp.sosy-lab.org/ 5 participants, most points for AProVE
- C category of termCOMP 2014 (IJCAR): 3 participants, AProVE winner

- termination category of SV-COMP 2015 (TACAS): 6 participants, AProVE winner
- termination category of SV-COMP 2016 (TACAS): 3 participants, AProVE winner
- SV-COMP 2022 (TACAS): 3 participants, AProVE second (after UltimateAutomizer)
- termCOMP 2022 (IJCAR): 2 participants, AProVE winner

Extensions

Beyond strlen:

- support malloc + free

Extensions

Beyond strlen:

- support malloc + free
- improved generalisation heuristic, can handle strcpy

Extensions

Beyond strlen:

- support malloc + free
- improved generalisation heuristic, can handle strcpy
- function calls (also recursive)

Extensions

Beyond strlen:

- support malloc + free
- improved generalisation heuristic, can handle strcpy
- function calls (also recursive)
- soundness proved wrt formal Vellvm semantics from [Zhao et al, POPL '12]

Extensions

Beyond strlen:

- support malloc + free
- improved generalisation heuristic, can handle strcpy
- function calls (also recursive)
- soundness proved wrt formal Vellvm semantics from [Zhao et al, POPL '12]
- non-termination analysis [Hensel, Mensendiek, Giesl, TACAS '22]

Extensions

Beyond strlen:

- support malloc + free
- improved generalisation heuristic, can handle strcpy
- function calls (also recursive)
- soundness proved wrt formal Vellvm semantics from [Zhao et al, POPL '12]
- non-termination analysis [Hensel, Mensendiek, Giesl, TACAS '22]
- termination and complexity wrt bitvector semantics (so far: int $=\mathbb{Z}$) [Hensel et al, JLAMP '22]

Conclusion: Termination of C / LLVM programs

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS '11]

- lazy evaluation
- polymorphic types
- higher-order

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS '11]

- lazy evaluation
- polymorphic types
- higher-order
\Rightarrow abstract domain: a single term; extract (non-constrained) TRS

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS '11]

- lazy evaluation
- polymorphic types
- higher-order
\Rightarrow abstract domain: a single term; extract (non-constrained) TRS
Prolog [Schneider-Kamp et al, TOCL '09; Giesl et al, PPDP '12]
- backtracking
- uses unification instead of matching
- extra-logical language features (e.g., cut)

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS '11]

- lazy evaluation
- polymorphic types
- higher-order
\Rightarrow abstract domain: a single term; extract (non-constrained) TRS
Prolog [Schneider-Kamp et al, TOCL '09; Giesl et al, PPDP '12]
- backtracking
- uses unification instead of matching
- extra-logical language features (e.g., cut)
\Rightarrow abstract domain based on equivalent linear Prolog semantics [Ströder et al, LOPSTR '11], tracks which variables are for ground terms vs arbitrary terms

Conclusion: Termination Analysis for Programs

- Termination proving for TRSs and ITSs driven by SMT solvers

Conclusion: Termination Analysis for Programs

- Termination proving for TRSs and ITSs driven by SMT solvers
- Constrained rewriting: Term rewriting + pre-defined primitive data structures

Conclusion: Termination Analysis for Programs

- Termination proving for TRSs and ITSs driven by SMT solvers
- Constrained rewriting: Term rewriting + pre-defined primitive data structures
- Common theme for analysis of program termination by (constrained) rewriting:
- handle language specifics in front-end
- transitions between program states become (constrained) rewrite rules for termination back-end

Conclusion: Termination Analysis for Programs

- Termination proving for TRSs and ITSs driven by SMT solvers
- Constrained rewriting: Term rewriting + pre-defined primitive data structures
- Common theme for analysis of program termination by (constrained) rewriting:
- handle language specifics in front-end
- transitions between program states become (constrained) rewrite rules for termination back-end
- Works across paradigms: Java, C, Haskell, Prolog

Outlook: Complexity Analysis

Given: Program P.
Session 1: Does P terminate at all?

Session 2: How many steps may P take until it terminates?
II. 1 Complexity Analysis for

Programs on Integers

What Do You Mean by Complexity?

Literature uses many alternative names:

- (Computational/Algorithmic) complexity analysis
- (Computational) cost analysis
- Resource analysis
- Static profiling
- ...

Resource:

- Number of evaluation steps
- Number of network requests
- Peak memory use
- Battery power
- ...

Given: Program P.
Task: Provide upper/lower bounds on the resource use of running P as a function of the input (size) in the worst case

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks
\rightarrow related DARPA project: Space/Time Analysis for Cybersecurity https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks
\rightarrow related DARPA project: Space/Time Analysis for Cybersecurity https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
- Embedded devices: Bound memory usage

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks
\rightarrow related DARPA project: Space/Time Analysis for Cybersecurity https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
- Embedded devices: Bound memory usage
- Specifications: What guarantees can we make to the API's user?

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks
\rightarrow related DARPA project: Space/Time Analysis for Cybersecurity https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
- Embedded devices: Bound memory usage
- Specifications: What guarantees can we make to the API's user? "The size, isEmpty, get, set, iterator, and list/terator operations run in constant time. The add operation runs in amortized constant time, that is, adding n elements requires $O(n)$ time. All of the other operations run in linear time (roughly speaking)." https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
\rightarrow computational cost as a non-functional requirement!

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks
\rightarrow related DARPA project: Space/Time Analysis for Cybersecurity https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
- Embedded devices: Bound memory usage
- Specifications: What guarantees can we make to the API's user? "The size, isEmpty, get, set, iterator, and list/terator operations run in constant time. The add operation runs in amortized constant time, that is, adding n elements requires $O(n)$ time. All of the other operations run in linear time (roughly speaking)." https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html \rightarrow computational cost as a non-functional requirement!
- Profiling:

Which parts of the code need most runtime as inputs grow larger?

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks
\rightarrow related DARPA project: Space/Time Analysis for Cybersecurity https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
- Embedded devices: Bound memory usage
- Specifications: What guarantees can we make to the API's user? "The size, isEmpty, get, set, iterator, and list/terator operations run in constant time. The add operation runs in amortized constant time, that is, adding n elements requires $O(n)$ time. All of the other operations run in linear time (roughly speaking)."
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
\rightarrow computational cost as a non-functional requirement!
- Profiling:

Which parts of the code need most runtime as inputs grow larger?

- Smart contracts: Bound execution cost (as "gas", i.e., money)

Why Care About Computational Cost, Anyway?

- Mobile devices: Bound energy usage
- Security: Denial of Service attacks
\rightarrow related DARPA project: Space/Time Analysis for Cybersecurity https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
- Embedded devices: Bound memory usage
- Specifications: What guarantees can we make to the API's user? "The size, isEmpty, get, set, iterator, and list/terator operations run in constant time. The add operation runs in amortized constant time, that is, adding n elements requires $O(n)$ time. All of the other operations run in linear time (roughly speaking)." https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html \rightarrow computational cost as a non-functional requirement!
- Profiling:

Which parts of the code need most runtime as inputs grow larger?

- Smart contracts: Bound execution cost (as "gas", i.e., money)
- More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba ${ }^{1}$
${ }^{1}$ A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.
\mid

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.
def $\operatorname{sum} 1(n):$
$r=0$
$i=1$
while $i<=n:$
$r=r+i$
$i=i+1$
return r

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.
def $\operatorname{sum} 1(n):$
$r=0$
i $=1 \quad \mathcal{O}(n)$
while $i<=n:$
$r=r+i$
$i=i+1$
return r

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.
def sum1 $(n):$
$r=0$
i $=1 \quad \mathcal{O}(n)$
while $i<=n:$
$r=r+i$
$i=i+1$
return r
runtime in $\mathcal{O}(f(n))$ means:

- the program needs at most about $f(n)$ steps for an input of "size" n
- the runtime is "of order $f(n)$ "

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.

def sum1 $(n):$	def sum2 $(n):$
$r=0$	$r=0$
$i=1$	$\mathcal{O}(n)$
i $=1$	
while i $<=n:$	while $i<=n:$
$r=r+i$	$r=r+i$
$i=i+1$	return r
return r	

runtime in $\mathcal{O}(f(n))$ means:

- the program needs at most about $f(n)$ steps for an input of "size" n
- the runtime is "of order $f(n)$ "

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.

runtime in $\mathcal{O}(f(n))$ means:

- the program needs at most about $f(n)$ steps for an input of "size" n
- the runtime is "of order $f(n)$ "

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.

runtime in $\mathcal{O}(f(n))$ means:

- the program needs at most about $f(n)$ steps for an input of "size" n
- the runtime is "of order $f(n)$ "

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.

runtime in $\mathcal{O}(f(n))$ means:

- the program needs at most about $f(n)$ steps for an input of "size" n
- the runtime is "of order $f(n)$ "

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.

runtime in $\mathcal{O}(f(n))$ means:

- the program needs at most about $f(n)$ steps for an input of "size" n
- the runtime is "of order $f(n)$ "
def $\operatorname{sum} 4(n)$:
return $n *(n+1) / / 2$

Show Me Some Examples!

Question: Write a Python function that returns the sum $1+2+\cdots+n$.

def sum1 (n) :	def $\operatorname{sum} 2(\mathrm{n})$:	def $\operatorname{sum} 3(\mathrm{n})$:
$\begin{array}{lr} r=0 & \\ i=1 & \mathcal{O}(n) \end{array}$	$\begin{array}{ll} r=0 \\ i=1 & \mathcal{O}(\infty) \end{array}$	$\begin{array}{ll}r=0 & \mathcal{O}\left(n^{2}\right) \\ i=1\end{array}$
$\begin{gathered} \text { while } i<=n \text { : } \\ r=r+i \end{gathered}$	$\begin{gathered} \text { while } i<=n \text { : } \\ r=r+i \end{gathered}$	$\begin{gathered} \text { while } i<=n \text { : } \\ \quad j=0 \end{gathered}$
$\mathrm{i}=\mathrm{i}+1$		while j < i:
return r	return r	$r=r+1$
		$j=j+1$
		$\mathrm{i}=\mathrm{i}+1$
		return r

runtime in $\mathcal{O}(f(n))$ means:

- the program needs at most about $f(n)$ steps for an input of "size" n
- the runtime is "of order $f(n)$ "

$$
\begin{aligned}
& \text { def } \operatorname{sum} 4(n): \mathcal{O}(1) \\
& \text { return } n *(n+1) / / 2
\end{aligned}
$$

Is There a Tool that Finds such Bounds Automatically?

- Fully automatic open-source tool KoAT: https://github.com/s-falke/kittel-koat

Is There a Tool that Finds such Bounds Automatically?

- Fully automatic open-source tool KoAT:
https://github.com/s-falke/kittel-koat
- Journal paper about the automated analysis implemented in KoAT:
M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl, Analyzing runtime and size complexity of integer programs ACM Transactions on Programming Languages and Systems 38 (4), pp. 1 - 50, 2016.

Is There a Tool that Finds such Bounds Automatically?

- Fully automatic open-source tool KoAT:
https://github.com/s-falke/kittel-koat
- Journal paper about the automated analysis implemented in KoAT:
M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl, Analyzing runtime and size complexity of integer programs ACM Transactions on Programming Languages and Systems 38 (4), pp. 1 - 50, 2016.
- Experiments:
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never reaches 0 .

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.

For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.

For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{aligned}
& \text { def twoLoops1 }(x, z) \text { : } \\
& \text { while } x>0: \\
& x=x-1
\end{aligned}
$$

while z > 0:

$$
z=z-1
$$

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{aligned}
& \text { def twoLoops1(x, z): } \\
& \text { while } x>0 \text { : } \\
& x=x-1
\end{aligned}
$$

while z > 0:

$$
z=z-1
$$

Loop 1: ranking function x

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{aligned}
& \text { def twoLoops1(x, z): } \\
& \text { while } x>0 \text { : } \\
& x=x-1
\end{aligned}
$$

while z > 0:

$$
z=z-1
$$

Loop 1: ranking function x
Loop 2: ranking function z

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{aligned}
& \text { def twoLoops1(x, z): } \\
& \text { while } x>0 \text { : } \\
& x=x-1
\end{aligned}
$$

while z > 0:

$$
z=z-1
$$

Loop 1: ranking function x
Loop 2: ranking function z
\Rightarrow runtime in $\mathcal{O}(x+z)$

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{array}{c|c}
\text { def twoLoops1 }(x, z): & \text { def twoLoops2 }(x, z): \\
\text { while } x>0: & \text { while } x>0: \\
x=x-1 & x=x-1 \\
z=z+x \\
\text { while } z>0: & \text { while } z>0: \\
z=z-1 & z=z-1
\end{array}
$$

Loop 1: ranking function x
Loop 2: ranking function z
\Rightarrow runtime in $\mathcal{O}(x+z)$

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{array}{c|c}
\text { def twoLoops1(x, z): } & \text { def twoLoops2(x, } z): \\
\text { while } x>0: & \text { while } x>0: \\
x=x-1 & x=x-1 \\
& z=z+x \\
\text { while } z>0: & \text { while } z>0: \\
z=z-1 & z=z-1
\end{array}
$$

Loop 1: ranking function x

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{array}{c|c}
\text { def twoLoops1(x, z): } & \text { def twoLoops2(x, } z): \\
\text { while } x>0: & \text { while } x>0: \\
x=x-1 & x=x-1 \\
& z=z+x \\
\text { while } z>0: & \text { while } z>0: \\
z=z-1 & z=z-1
\end{array}
$$

Loop 1: ranking function x
Loop 2: ranking function z

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{array}{c|c}
\text { def twoLoops1(x, z): } & \text { def twoLoops2(x, } z): \\
\text { while } x>0: & \text { while } x>0: \\
x=x-1 & x=x-1 \\
& z=z+x \\
\text { while } z>0: & \text { while } z>0: \\
z=z-1 & z=z-1
\end{array}
$$

Loop 1: ranking function x
Loop 2: ranking function z
\Rightarrow runtime in $\mathcal{O}(x+z)$

Loop 1: ranking function x Loop 2: ranking function z
\Rightarrow runtime in

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{array}{c|c}
\text { def twoLoops1(x, z): } & \text { def twoLoops2(x, } z): \\
\text { while } x>0: & \text { while } x>0: \\
x=x-1 & x=x-1 \\
& z=z+x \\
\text { while } z>0: & \text { while } z>0: \\
z=z-1 & z=z-1
\end{array}
$$

Loop 1: ranking function x
Loop 2: ranking function z
\Rightarrow runtime in ... oops.

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables: expression that gets smaller each time round the loop, but never reaches 0 .
\Rightarrow Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

$$
\begin{aligned}
& \text { def twoLoops1(x, z): } \\
& \text { while } x>0 \text { : } \\
& x=x-1
\end{aligned}
$$

while z > 0:

$$
z=z-1
$$

Loop 1: ranking function x
Loop 2: ranking function z
\Rightarrow runtime in $\mathcal{O}(x+z)$

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function x
Loop 2: ranking function z
\Rightarrow runtime in ... oops.
Best runtime bound: $\mathcal{O}\left(x^{2}+z\right)$

How Can we Fix our Approach?

def twoLoops2(x, z): while $x>0$:
$x=x-1$
z = z + x
while z > 0:
z = z - 1
Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

How Can we Fix our Approach?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Problem:

Loop 1 writes to z. In Loop 2, z is much larger than its initial value z_{0} !

How Can we Fix our Approach?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Problem:

Loop 1 writes to z. In Loop 2, z is much larger than its initial value z_{0} ! Now an oracle tells us:

How Can we Fix our Approach?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Problem:

Loop 1 writes to z. In Loop 2, z is much larger than its initial value z_{0} ! Now an oracle tells us:

Oh, when you reach Loop 2, z is at most $z_{0}+x_{0}^{2}$, and x is 0 .

How Can we Fix our Approach?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Problem:

Loop 1 writes to z. In Loop 2, z is much larger than its initial value z_{0} ! Now an oracle tells us:

Oh, when you reach Loop 2, z is at most $z_{0}+x_{0}^{2}$, and x is 0 . So:
(1) we can make at most $f_{2}(x, z)=z$ steps in Loop 2

How Can we Fix our Approach?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Problem:

Loop 1 writes to z. In Loop 2, z is much larger than its initial value z_{0} ! Now an oracle tells us:

Oh, when you reach Loop 2, z is at most $z_{0}+x_{0}^{2}$, and x is 0 . So:
(1) we can make at most $f_{2}(x, z)=z$ steps in Loop 2
(2) when we enter Loop 2, we know $z \leq z_{0}+x_{0}^{2}$ and $x=0$

How Can we Fix our Approach?

def twoLoops2(x, z): while $x>0$:
$x=x-1$
z = z + x
while z > 0:

$$
z=z-1
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Problem:

Loop 1 writes to z. In Loop 2, z is much larger than its initial value z_{0} ! Now an oracle tells us:

Oh, when you reach Loop 2, z is at most $z_{0}+x_{0}^{2}$, and x is 0 . So:
(1) we can make at most $f_{2}(x, z)=z$ steps in Loop 2
(2) when we enter Loop 2, we know $z \leq z_{0}+x_{0}^{2}$ and $x=0$
$\Rightarrow f_{2}\left(0, z_{0}+x_{0}^{2}\right)=z_{0}+x_{0}^{2}$

How Can we Fix our Approach?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Problem:

Loop 1 writes to z. In Loop 2, z is much larger than its initial value z_{0} ! Now an oracle tells us:

Oh, when you reach Loop 2, z is at most $z_{0}+x_{0}^{2}$, and x is 0 .
So:
(1) we can make at most $f_{2}(x, z)=z$ steps in Loop 2
(2) when we enter Loop 2, we know $z \leq z_{0}+x_{0}^{2}$ and $x=0$
$\Rightarrow f_{2}\left(0, z_{0}+x_{0}^{2}\right)=z_{0}+x_{0}^{2}$ gives runtime bound for Loop 2: $\mathcal{O}\left(z_{0}+x_{0}^{2}\right)$

How Can we Fix our Approach?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 2: ranking function $f_{2}(x, z)=z$

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Wanted: automatic oracle to tell how big z can be at (*).

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Wanted: automatic oracle to tell how big z can be at (*).
We know:
(1) each time round Loop 1, x goes down by 1 , from x_{0} until 0

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Loop 1: ranking function $f_{1}(x, z)=x$

Loop 2: ranking function $f_{2}(x, z)=z$

Wanted: automatic oracle to tell how big z can be at (*).
We know:
(1) each time round Loop 1, x goes down by 1 , from x_{0} until 0 \Rightarrow in Loop 1: $x \leq x_{0}$

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Wanted: automatic oracle to tell how big z can be at (*).
We know:
(1) each time round Loop 1, x goes down by 1, from x_{0} until 0 \Rightarrow in Loop 1: $x \leq x_{0}$
(2) each time round Loop $1, z$ goes up by $x\left(\leq x_{0}\right)$

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Wanted: automatic oracle to tell how big z can be at (*).
We know:
(1) each time round Loop 1, x goes down by 1 , from x_{0} until 0 \Rightarrow in Loop 1: $x \leq x_{0}$
(2) each time round Loop $1, z$ goes up by $x\left(\leq x_{0}\right)$
(3) we run through Loop 1 at most $f_{1}\left(x_{0}, z_{0}\right)=x_{0}$ times

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Wanted: automatic oracle to tell how big z can be at (*).
We know:
(1) each time round Loop 1, x goes down by 1, from x_{0} until 0 \Rightarrow in Loop 1: $x \leq x_{0}$
(2) each time round Loop $1, z$ goes up by $x\left(\leq x_{0}\right)$
(3) we run through Loop 1 at most $f_{1}\left(x_{0}, z_{0}\right)=x_{0}$ times
\Rightarrow at (*), z will be at most $z_{0}+x_{0} \cdot x_{0}=z_{0}+x_{0}^{2}$!

How Can We Build such an Oracle for Size Bounds?

$$
\begin{aligned}
& \text { def twoLoops2(x, z): } \\
& \text { while } x>0: \\
& x=x-1 \\
& z=z+x \\
& \#(*) \\
& \text { while } z>0: \\
& z=z-1
\end{aligned}
$$

Wanted: automatic oracle to tell how big z can be at (*).
We know:
(1) each time round Loop 1, x goes down by 1 , from x_{0} until 0 \Rightarrow in Loop 1: $x \leq x_{0}$
(2) each time round Loop $1, z$ goes up by $x\left(\leq x_{0}\right)$
(3) we run through Loop 1 at most $f_{1}\left(x_{0}, z_{0}\right)=x_{0}$ times
\Rightarrow at (*), z will be at most $z_{0}+x_{0} \cdot x_{0}=z_{0}+x_{0}^{2}$!
Runtime influences data size.

Show Me More!

Example (List program)

Input: List x
ℓ_{0} : List $\mathrm{y}=$ null
ℓ_{1} : while $x \neq$ null do

$$
\begin{aligned}
& y=\text { new List }(x . v a l, y) \\
& x=x \cdot n e x t
\end{aligned}
$$

done
List $z=y$
ℓ_{2} : while $z \neq$ null do
List $u=z . n e x t$
ℓ_{3} : while $u \neq$ null do

$$
\begin{aligned}
& \text { z.val }+=\text { u.val } \\
& u=\text { u.next }
\end{aligned}
$$

done
z = z.next
done

Show Me More!

Example (List program)

Input: List x
ℓ_{0} : List $\mathrm{y}=$ null
ℓ_{1} : while $x \neq$ null do

$$
\begin{aligned}
& y=\text { new List }(x . v a l, y) \\
& x=x \cdot n e x t
\end{aligned}
$$

done
List $z=y$
ℓ_{2} : while $z \neq$ null do
List $u=z . n e x t$
ℓ_{3} : while $u \neq$ null do

$$
\begin{aligned}
& \text { z.val }+=\text { u.val } \\
& u=u . n e x t
\end{aligned}
$$

done
z = z.next
done

$$
\begin{aligned}
& \mathrm{x}=[3,1,5] \quad \curvearrowright \\
& \mathrm{y}=[5,1,3] \curvearrowright \\
& \mathrm{z}=[5+1+3,1+3,3]
\end{aligned}
$$

Show Me More!

Example (List program)

Input: List x
ℓ_{0} : List $\mathrm{y}=$ null
ℓ_{1} : while $x \neq$ null do

$$
\begin{aligned}
& y=\text { new List }(x . v a l, y) \\
& x=x . n e x t
\end{aligned}
$$

done
List $z=y$
ℓ_{2} : while $z \neq$ null do
List $u=z . n e x t$
ℓ_{3} : while $u \neq$ null do

$$
\begin{aligned}
& \text { z.val }+=\text { u.val } \\
& u=u . n e x t
\end{aligned}
$$

done
z = z.next
done

Example (Integer abstraction)

Input: int x
ℓ_{0} : int $y=0$
ℓ_{1} : while $x>0$ do

$$
\begin{aligned}
& y=y+1 \\
& x=x-1
\end{aligned}
$$

done
int $z=y$
ℓ_{2} : while $z>0$ do
int $u=z-1$
ℓ_{3} : while $u>0$ do skip

$$
\mathrm{u}=\mathrm{u}-1
$$

done

$$
z=z-1
$$

done

Show Me More!

Control flow graph:

Example (Integer abstraction)

Input: int x
ℓ_{0} : int $\mathrm{y}=0$
ℓ_{1} : while $x>0$ do

$$
\begin{aligned}
& y=y+1 \\
& x=x-1
\end{aligned}
$$

done
int $z=y$
ℓ_{2} : while $z>0$ do
int $u=z-1$
ℓ_{3} : while $u>0$ do skip

$$
u=u-1
$$

done
$z=z-1$
done

What Does the Problem

Look Like?

- Programs as Integer Transition Systems:
- Locations $\mathcal{L}: \ell_{0}$ start
- Variables \mathcal{V}
- Transitions \mathcal{T} : Formula over pre- (x, y, \ldots), post-variables $\left(x^{\prime}, y^{\prime}, \ldots\right)$
e.g., $\quad t_{5}=\left(\ell_{3}, u \leq 0 \wedge z>0 \wedge z^{\prime}=z-1, \ell_{2}\right)$ for $\ell_{3}(u, x, y, z) \rightarrow \ell_{2}\left(u^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)\left[u \leq 0 \wedge z>0 \wedge z^{\prime}=z-1 \wedge u^{\prime}=\right.$ $\left.u \wedge x^{\prime}=x \wedge y^{\prime}=y\right]$

What Do the Problem and the Solution Look Like?

- Programs as Integer Transition Systems:
- Locations $\mathcal{L}: \ell_{0}$ start
- Variables \mathcal{V}
- Transitions \mathcal{T} : Formula over pre- (x, y, \ldots), post-variables ($x^{\prime}, y^{\prime}, \ldots$)
e.g., $\quad t_{5}=\left(\ell_{3}, u \leq 0 \wedge z>0 \wedge z^{\prime}=z-1, \ell_{2}\right)$ for $\ell_{3}(u, x, y, z) \rightarrow \ell_{2}\left(u^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)\left[u \leq 0 \wedge z>0 \wedge z^{\prime}=z-1 \wedge u^{\prime}=\right.$ $\left.u \wedge x^{\prime}=x \wedge y^{\prime}=y\right]$
- Runtime complexity:
- $\mathcal{R}(t)$ upper bound on number of uses of $t \in \mathcal{T}$ in execution
- $\mathcal{R}(t)$ monotonic function in \mathcal{V}, e.g. $|x|^{2}+|y|+1$
- $\mathcal{R}(t)$ expresses bound in input values

What Do the Problem and the Solution Look Like?

- Programs as Integer Transition Systems:
- Locations $\mathcal{L}: \ell_{0}$ start
- Variables \mathcal{V}
- Transitions \mathcal{T} : Formula over pre- (x, y, \ldots), post-variables ($x^{\prime}, y^{\prime}, \ldots$)
e.g., $\quad t_{5}=\left(\ell_{3}, u \leq 0 \wedge z>0 \wedge z^{\prime}=z-1, \ell_{2}\right)$ for $\ell_{3}(u, x, y, z) \rightarrow \ell_{2}\left(u^{\prime}, x^{\prime}, y^{\prime}, z^{\prime}\right)\left[u \leq 0 \wedge z>0 \wedge z^{\prime}=z-1 \wedge u^{\prime}=\right.$ $\left.u \wedge x^{\prime}=x \wedge y^{\prime}=y\right]$
- Runtime complexity:
- $\mathcal{R}(t)$ upper bound on number of uses of $t \in \mathcal{T}$ in execution
- $\mathcal{R}(t)$ monotonic function in \mathcal{V}, e.g. $|x|^{2}+|y|+1$
- $\mathcal{R}(t)$ expresses bound in input values
- Size complexity:
- $\mathcal{S}\left(t, v^{\prime}\right)$ upper bound on size of $v \in \mathcal{V}$ after using $t \in \mathcal{T}$
- $\mathcal{S}\left(t, v^{\prime}\right)$ monotonic function in \mathcal{V}
- $\mathcal{S}\left(t, v^{\prime}\right)$ expresses bound in input values

And in the Example?

And in the Example?

Goal: find complexity bounds w.r.t. the sizes of the input variables

And in the Example?

Goal: find complexity bounds w.r.t. the sizes of the input variables

- Runtime bound function $\mathcal{R}(t)$: bound on number of times that transition t occurs in executions

$$
\begin{aligned}
\text { e.g., } \mathcal{R}\left(t_{1}\right) & =|\mathrm{x}|, \\
\mathcal{R}\left(t_{4}\right) & =|\mathrm{x}|+|\mathrm{x}|^{2}
\end{aligned}
$$

And in the Example?

Goal: find complexity bounds w.r.t. the sizes of the input variables

- Runtime bound function $\mathcal{R}(t)$: bound on number of times that transition t occurs in executions

$$
\begin{aligned}
\text { e.g., } \mathcal{R}\left(t_{1}\right) & =|\mathrm{x}|, \\
\mathcal{R}\left(t_{4}\right) & =|\mathrm{x}|+|\mathrm{x}|^{2}
\end{aligned}
$$

- Size bound function $\mathcal{S}\left(t, v^{\prime}\right)$: bound on $|v|$ after using transition t in program executions e.g. $\mathcal{S}\left(t_{1}, \mathrm{y}^{\prime}\right)=|\mathrm{x}|$

And in the Example?

Goal: find complexity bounds w.r.t. the sizes of the input variables

- Runtime bound function $\mathcal{R}(t)$: bound on number of times that transition t occurs in executions

$$
\begin{aligned}
\text { e.g., } \mathcal{R}\left(t_{1}\right) & =|\mathrm{x}|, \\
\mathcal{R}\left(t_{4}\right) & =|\mathrm{x}|+|\mathrm{x}|^{2}
\end{aligned}
$$

- Size bound function $\mathcal{S}\left(t, v^{\prime}\right)$: bound on $|v|$ after using transition t in program executions e.g. $\mathcal{S}\left(t_{1}, \mathrm{y}^{\prime}\right)=|\mathrm{x}|$

Overall runtime is bounded by $\mathcal{R}\left(t_{1}\right)+\ldots+\mathcal{R}\left(t_{5}\right)=3+4 \cdot|\mathrm{x}|+|\mathrm{x}|^{2}$.

How Do You Know?

Runtime Bounds I

Runtime Bounds I (PRFs)

Polynomial ranking function (PRF): $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1
if($z>0)$ $u=z-1$

Runtime Bounds I (PRFs)

Polynomial ranking function (PRF): $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1
Example (PRF I)
$\mathcal{P}_{1}(\ell)=x \quad$ for all $\ell \in \mathcal{L}$

Runtime Bounds I (PRFs)

Polynomial ranking function (PRF): $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1

Example (PRF I)

$$
\mathcal{P}_{1}(\ell)=x \quad \text { for all } \ell \in \mathcal{L}
$$

no increase on any transition
t_{1} decreases, bounded

Runtime Bounds I (PRFs for Complexity)

Polynomial ranking function (PRF):
 $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1

Key idea: decreasing t used at most $\mathcal{P}\left(\ell_{0}\right)$ times

Runtime Bounds I (PRFs for Complexity)

Polynomial ranking function (PRF):
 $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1

Key idea: decreasing t used at most $\mathcal{P}\left(\ell_{0}\right)$ times

$$
\hookrightarrow \mathcal{R}(t) \leq\left[\mathcal{P}\left(\ell_{0}\right)\right]
$$

$[-] \equiv$ "make monotonic (on \mathbb{N})"

Runtime Bounds I (PRFs for Complexity)

Polynomial ranking function (PRF):
 $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1

Key idea: decreasing t used at most $\mathcal{P}\left(\ell_{0}\right)$ times

$$
\hookrightarrow \mathcal{R}(t) \leq\left[\mathcal{P}\left(\ell_{0}\right)\right]
$$

$[-] \equiv$ "make monotonic (on \mathbb{N})"

Runtime Bounds I (PRFs for Complexity)

Polynomial ranking function (PRF): $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1

Example (PRF II)

$$
\begin{aligned}
\mathcal{P}_{2}\left(\ell_{0}\right) & =1 \\
\mathcal{P}_{2}(\ell) & =0 \quad \text { for all } \ell \in \mathcal{L} \backslash\left\{\ell_{0}\right\}
\end{aligned}
$$

no increase on any transition
t_{0} decreases, bounded

Runtime Bounds I (PRFs for Complexity)

Polynomial ranking function (PRF): $\mathcal{P}: \mathcal{L} \rightarrow \mathbb{Z}[\mathcal{V}]$ with
(1) no increase

No transition increases
(2) decrease

At least one decreases
(3) bounded

Bounded from below by 1

Example (PRF III)

$$
\begin{array}{ll}
\mathcal{P}_{3}(\ell)=1 & \text { for all } \ell \in\left\{\ell_{0}, \ell_{1}\right\} \\
\mathcal{P}_{3}(\ell)=0 & \text { for all } \ell \in\left\{\ell_{2}, \ell_{3}\right\}
\end{array}
$$

no increase on any transition
t_{2} decreases, bounded

Size Bounds

Size Bounds

Size Bounds

Size Bounds: Local

Size Bounds: Local

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \\
& \mathcal{R}\left(t_{1}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1
\end{aligned}
$$

Size Bounds: Local

$0 \geq\left|t_{0}, \mathrm{y}^{\prime}\right|$

$$
|y| \geq\left|t_{2}, z^{\prime}\right|
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$ Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

Size Bounds: Local

$$
\begin{aligned}
& 0 \geq\left|t_{0}, y^{\prime}\right| \\
& |y|+1 \geq\left|t_{1}, y^{\prime}\right| \\
& \quad|y| \geq\left|t_{2}, z^{\prime}\right|
\end{aligned}
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$ Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

Size Bounds: Local

$$
\begin{aligned}
& 0 \geq\left|t_{0}, \mathrm{y}^{\prime}\right| \\
& |\mathrm{y}|+1 \geq\left|t_{1}, \mathrm{y}^{\prime}\right| \\
& \\
& \quad|\mathrm{y}| \geq\left|t_{2}, \mathrm{z}^{\prime}\right|
\end{aligned}
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$

Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Local

$$
\begin{gathered}
0 \geq\left|t_{0}, \mathrm{y}^{\prime}\right| \\
\downarrow \\
|\mathrm{y}|+1 \geq\left|t_{1}, \mathrm{y}^{\prime}\right|
\end{gathered}
$$

$$
|y| \geq\left|t_{2}, z^{\prime}\right|
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$

Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Local

$$
\begin{gathered}
0 \geq\left|t_{0}, \mathrm{y}^{\prime}\right| \\
\quad R^{2} \\
|\mathrm{y}|+1 \geq\left|t_{1}, \mathrm{y}^{\prime}\right|
\end{gathered}
$$

$$
|y| \geq\left|t_{2}, z^{\prime}\right|
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$

Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Local

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$ Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Local

$$
\begin{gathered}
0 \geq\left|t_{0}, \mathrm{y}^{\prime}\right| \\
\downarrow \text { R } \\
|\mathrm{R}|+1 \geq\left|t_{1}, \mathrm{y}^{\prime}\right| \\
\downarrow \\
|\mathrm{y}| \geq\left|t_{2}, \mathrm{y}^{\prime}\right| \\
\searrow^{\prime}, z^{\prime} \mid \\
|\mathrm{y}| \geq\left|t_{1}, z^{\prime}\right|
\end{gathered}
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$

Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Global

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \\
& \mathcal{R}\left(t_{1}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& 0 \geq\left|t_{0}, \mathrm{y}^{\prime}\right| \\
& \downarrow \\
& |\mathrm{y}|+1 \geq\left|t_{1}, \mathrm{y}^{\prime}\right| \underbrace{\prime}|z| \geq\left|t_{1}, z^{\prime}\right|
\end{aligned}
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$

Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Global

$$
\begin{array}{ll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \\
\mathcal{R}\left(t_{1}\right)=|x| \\
\mathcal{R}\left(t_{2}\right)=1
\end{array}
$$

Computing $\mathcal{S}\left(t, v^{\prime}\right)$:

- No cycles: \mathcal{S}_{l}

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$ Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Global

$$
\begin{array}{ll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
\mathcal{R}\left(t_{2}\right)=1 &
\end{array}
$$

Computing $\mathcal{S}\left(t, v^{\prime}\right)$:

- No cycles: \mathcal{S}_{l}
- Cycles: Combine $\mathcal{R}, \mathcal{S}_{l}$
- if $\mathcal{S}_{l} \approx v+c, c \in \mathbb{Z}$:

$$
\begin{aligned}
& \mathcal{S}\left(t, v^{\prime}\right)=\mathcal{S}\left(\tilde{t}, v^{\prime}\right)+\mathcal{R}(t) \cdot c \\
& \tilde{t} \text { predecessor of } t
\end{aligned}
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$

Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Global

$$
\begin{array}{ll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x|
\end{array}
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$ Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Size Bounds: Global

$$
\begin{array}{ll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x|
\end{array}
$$

Result Variable Graph:

- Nodes $\left|t, v^{\prime}\right|$, labels $S_{l}\left(t, v^{\prime}\right)$ Change of v in one use of t :

$$
t \Longrightarrow S_{l}\left(t, v^{\prime}\right)(\mathcal{V}) \geq v^{\prime}
$$

- Edges:

Flow of information

Runtime Bounds II: Modularity

$$
\begin{array}{ll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x|
\end{array}
$$

Runtime Bounds II: Modularity

$$
\begin{array}{ll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x|
\end{array} \text { Example (PRF IV) }
$$

Runtime Bounds II: Modularity

$$
\begin{array}{lll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 & \text { Example (PRF IV) } \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| & \text { Consider only } \mathcal{T}_{1}=\left\{t_{3}, t_{4}, t_{5}\right\} \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| & \begin{array}{c}
\mathcal{P}_{4}\left(\ell_{2}\right)=\mathcal{P}_{4}\left(\ell_{3}\right)=z
\end{array} \\
& & \begin{array}{l}
\text { no increase on transitions } \mathcal{T}_{1} \\
\end{array} \\
t_{2} & t_{5} \text { decreases, bounded }
\end{array}
$$

Runtime Bounds II: Modularity

\[

\]

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF IV) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \quad \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \text { Consider only } \mathcal{T}_{1}=\left\{t_{3}, t_{4}, t_{5}\right\} \\
& \mathcal{P}_{4}\left(\ell_{2}\right)=\mathcal{P}_{4}\left(\ell_{3}\right)=z \\
& \text { no increase on transitions } \mathcal{T}_{1} \\
& t_{5} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{1} \text { reached, then } z \text { steps: } \\
& \mathcal{T}_{1} \text { reached } \mathcal{R}\left(t_{2}\right)=1 \text { time }
\end{aligned}
$$

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF IV) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \\
& \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \text { Consider only } \mathcal{T}_{1}=\left\{t_{3}, t_{4}, t_{5}\right\} \\
& \mathcal{P}_{4}\left(\ell_{2}\right)=\mathcal{P}_{4}\left(\ell_{3}\right)=z \\
& \text { no increase on transitions } \mathcal{T}_{1} \\
& t_{5} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{1} \text { reached, then } z \text { steps: } \\
& \mathcal{T}_{1} \text { reached } \mathcal{R}\left(t_{2}\right)=1 \text { time } \\
& z \text { has size } \mathcal{S}\left(t_{2}, y^{\prime}\right)=|x|
\end{aligned}
$$

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF IV) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \\
& \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \text { Consider only } \mathcal{T}_{1}=\left\{t_{3}, t_{4}, t_{5}\right\} \\
& \mathcal{P}_{4}\left(\ell_{2}\right)=\mathcal{P}_{4}\left(\ell_{3}\right)=z \\
& \mathcal{R}\left(t_{5}\right)=|x| \quad \mid t_{2} \\
& \text { no increase on transitions } \mathcal{T}_{1} \\
& t_{5} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{1} \text { reached, then } z \text { steps: } \\
& \mathcal{T}_{1} \text { reached } \mathcal{R}\left(t_{2}\right)=1 \text { time } \\
& z \text { has size } \mathcal{S}\left(t_{2}, y^{\prime}\right)=|x| \\
& \hookrightarrow \mathcal{R}\left(t_{5}\right)=\mathcal{R}\left(t_{2}\right) \cdot \mathcal{S}\left(t_{2}, y^{\prime}\right) \\
& =1 \cdot|x|
\end{aligned}
$$

Runtime Bounds II: Modularity

$$
\begin{array}{ll|l}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 & \text { Example (PRF V) } \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| & \text { Consider only } \mathcal{T}_{2}=\left\{t_{3}, t_{4}\right\} \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| & \begin{array}{c}
\mathcal{P}_{4}\left(\ell_{2}\right)=1 \quad \mathcal{P}_{4}\left(\ell_{3}\right)=0 \\
\mathcal{R}\left(t_{5}\right)=|x|
\end{array} \begin{array}{lll}
t_{2} & \begin{array}{l}
\text { no increase on transitions } \mathcal{T}_{2} \\
t_{3} \text { decreases, bounded }
\end{array}
\end{array}
\end{array}
$$

Runtime Bounds II: Modularity

$$
\begin{array}{ll}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x|
\end{array} \begin{aligned}
& \text { Example (PRF V) } \\
& \\
& \mathcal{R}\left(t_{5}\right)=|x|
\end{aligned} \begin{array}{ll}
t_{2} & \begin{array}{l}
\text { Consider only } \mathcal{T}_{2}=\left\{t_{3}, t_{4}\right\} \\
\mathcal{P}_{4}\left(\ell_{2}\right)=1 \quad \mathcal{P}_{4}\left(\ell_{3}\right)=0 \\
\end{array} \\
& \\
& \begin{array}{l}
\text { no increase on transitions } \mathcal{T}_{2} \\
\hookrightarrow \text { When } \mathcal{T}_{2} \text { reached, then 1 step: }
\end{array}
\end{array}
$$

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF V) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \\
& \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \text { Consider only } \mathcal{T}_{2}=\left\{t_{3}, t_{4}\right\} \\
& \mathcal{P}_{4}\left(\ell_{2}\right)=1 \quad \mathcal{P}_{4}\left(\ell_{3}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { no increase on transitions } \mathcal{T}_{2} \\
& t_{3} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{2} \text { reached, then } 1 \text { step: } \\
& \mathcal{T}_{2} \text { reached } \\
& \mathcal{R}\left(t_{2}\right)=1 \text { time and } \\
& \mathcal{R}\left(t_{5}\right)=|x| \text { times }
\end{aligned}
$$

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF V) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \quad \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{3}\right)=|x|+1 \\
& \mathcal{R}\left(t_{5}\right)=|x| \quad \mid t_{2} \\
& \text { if }(z>0) \\
& \mathrm{u}=\mathrm{z}-1 \\
& \text { no increase on transitions } \mathcal{T}_{2} \\
& t_{3} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{2} \text { reached, then } 1 \text { step: } \\
& \mathcal{T}_{2} \text { reached } \\
& \mathcal{R}\left(t_{2}\right)=1 \text { time and } \\
& \mathcal{R}\left(t_{5}\right)=|x| \text { times } \\
& \hookrightarrow \mathcal{R}\left(t_{3}\right)=\mathcal{R}\left(t_{2}\right) \cdot 1+\mathcal{R}\left(t_{5}\right) \cdot 1 \\
& =1 \cdot 1+|x| \cdot 1
\end{aligned}
$$

Runtime Bounds II: Modularity

\[

\]

Runtime Bounds II: Modularity

\[

\]

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF VI) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \\
& \mathcal{R}\left(t_{3}\right)=|x|+1 \\
& \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{5}\right)=|x| \\
& \text { Consider only } \mathcal{T}_{3}=\left\{t_{4}\right\} \\
& \mathcal{P}_{5}\left(\ell_{3}\right)=u \\
& \text { no increase on transitions } \mathcal{T}_{3} \\
& t_{4} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{3} \text { reached, then } u \text { steps: } \\
& \mathcal{T}_{3} \text { reached } \mathcal{R}\left(t_{3}\right)=|x|+1 \text { times }
\end{aligned}
$$

Runtime Bounds II: Modularity

$$
\begin{array}{ll|l}
\mathcal{R}\left(t_{0}\right)=1 & \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 & \text { Example (PRF VI) } \\
\mathcal{R}\left(t_{1}\right)=|x| & \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| & \text { Consider only } \mathcal{T}_{3}=\left\{t_{4}\right\} \\
\mathcal{R}\left(t_{2}\right)=1 & \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| & \\
\mathcal{R}\left(t_{3}\right)=|x|+1 & & \mathcal{P}_{5}\left(\ell_{3}\right)=u \\
& & \text { no increase on transitions } \mathcal{T}_{3} \\
\mathcal{R}\left(t_{5}\right)=|x| & & t_{4} \text { decreases, bounded } \\
& & \hookrightarrow \text { When } \mathcal{T}_{3} \text { reached, then } u \text { steps: } \\
& & \mathcal{T}_{3} \text { reached } \mathcal{R}\left(t_{3}\right)=|x|+1 \text { times } \\
& & u \text { has size } \mathcal{S}\left(t_{3}, u^{\prime}\right)
\end{array}
$$

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF VI) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \quad \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{3}\right)=|x|+1 \quad \mathcal{S}\left(t_{3}, u^{\prime}\right)=|x| \\
& \text { Consider only } \mathcal{T}_{3}=\left\{t_{4}\right\} \\
& \mathcal{P}_{5}\left(\ell_{3}\right)=u \\
& \mathcal{R}\left(t_{5}\right)=|x| \\
& \text { no increase on transitions } \mathcal{T}_{3} \\
& t_{4} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{3} \text { reached, then } u \text { steps: } \\
& \mathcal{T}_{3} \text { reached } \mathcal{R}\left(t_{3}\right)=|x|+1 \text { times } \\
& u \text { has size } \mathcal{S}\left(t_{3}, u^{\prime}\right)=|x|
\end{aligned}
$$

Runtime Bounds II: Modularity

$$
\begin{aligned}
& \mathcal{R}\left(t_{0}\right)=1 \quad \mathcal{S}\left(t_{0}, y^{\prime}\right)=0 \quad \text { Example (PRF VI) } \\
& \mathcal{R}\left(t_{1}\right)=|x| \quad \mathcal{S}\left(t_{1}, y^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{2}\right)=1 \quad \mathcal{S}\left(t_{2}, z^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{3}\right)=|x|+1 \quad \mathcal{S}\left(t_{3}, u^{\prime}\right)=|x| \\
& \mathcal{R}\left(t_{4}\right)=|x|^{2}+|x| \\
& \mathcal{R}\left(t_{5}\right)=|x| \\
& \text { Consider only } \mathcal{T}_{3}=\left\{t_{4}\right\} \\
& \mathcal{P}_{5}\left(\ell_{3}\right)=u \\
& \text { no increase on transitions } \mathcal{T}_{3} \\
& t_{4} \text { decreases, bounded } \\
& \hookrightarrow \text { When } \mathcal{T}_{3} \text { reached, then } u \text { steps: } \\
& \mathcal{T}_{3} \text { reached } \mathcal{R}\left(t_{3}\right)=|x|+1 \text { times } \\
& u \text { has size } \mathcal{S}\left(t_{3}, u^{\prime}\right)=|x| \\
& \hookrightarrow \mathcal{R}\left(t_{4}\right)=\mathcal{R}\left(t_{3}\right) \cdot \mathcal{S}\left(t_{3}, u^{\prime}\right) \\
& =(|x|+1) \cdot|x|
\end{aligned}
$$

TimeBounds: Procedure

TimeBounds $(\mathcal{R}, \mathcal{S})$

Input: Runtime bounds \mathcal{R}, Size bounds \mathcal{S}
$\mathcal{T}^{\prime} \leftarrow\{t \in \mathcal{T} \mid \mathcal{R}(t)$ unbounded $\}$
$\mathcal{P} \leftarrow \operatorname{synth} \operatorname{PRF}\left(\mathcal{T}^{\prime}\right)$
$\mathcal{L}_{\downarrow} \leftarrow$ entryLocations $\left(\mathcal{T}^{\prime}\right)$
$\mathcal{T}_{\ell} \leftarrow$ leadingTo $\left(\ell, \mathcal{T} \backslash \mathcal{T}^{\prime}\right)$
$\mathcal{R}^{\prime} \leftarrow \mathcal{R}$
for all $t \in \mathcal{T}^{\prime}$ decreasing under \mathcal{P} do

$$
\mathcal{R}^{\prime}(t) \leftarrow \sum_{\ell \in \mathcal{L}_{\downarrow}, \tilde{t} \in \mathcal{T}_{\ell}} \mathcal{R}(\tilde{t}) \cdot[\mathcal{P}(\ell)]\left(\mathcal{S}\left(\tilde{t}, v_{1}^{\prime}\right), \ldots, \mathcal{S}\left(\tilde{t}, v_{n}^{\prime}\right)\right)
$$

end for
Output: \mathcal{R}^{\prime}

SizeBounds: Procedure

SizeBoundsTriv ($\mathcal{R}, \mathcal{S}, C$)

Input: Runtime bounds \mathcal{R}, Size bounds $\mathcal{S}, C=\left\{\left|t, v^{\prime}\right|\right\}$ $\mathcal{T}_{t} \leftarrow$ leading $\operatorname{To}(t, \mathcal{T})$
$\mathcal{S}^{\prime} \leftarrow \mathcal{S}$
$\mathcal{S}^{\prime}\left(t, v^{\prime}\right) \leftarrow \max \left\{\mathcal{S}_{l}\left(t, v^{\prime}\right)\left(\mathcal{S}\left(\tilde{t}, v_{1}^{\prime}\right), \ldots, \mathcal{S}\left(\tilde{t}, v_{n}^{\prime}\right)\right) \mid \tilde{t} \in \mathcal{T}_{t}\right\}$
Output: \mathcal{S}^{\prime}

SizeBounds: Procedure

SizeBoundsTriv $(\mathcal{R}, \mathcal{S}, C)$

Input: Runtime bounds \mathcal{R}, Size bounds $\mathcal{S}, C=\left\{\left|t, v^{\prime}\right|\right\}$
$\mathcal{T}_{t} \leftarrow$ leading $\operatorname{To}(t, \mathcal{T})$
$\mathcal{S}^{\prime} \leftarrow \mathcal{S}$
$\mathcal{S}^{\prime}\left(t, v^{\prime}\right) \leftarrow \max \left\{\mathcal{S}_{l}\left(t, v^{\prime}\right)\left(\mathcal{S}\left(\tilde{t}, v_{1}^{\prime}\right), \ldots, \mathcal{S}\left(\tilde{t}, v_{n}^{\prime}\right)\right) \mid \tilde{t} \in \mathcal{T}_{t}\right\}$
Output: \mathcal{S}^{\prime}

SizeBoundsNonTriv($\mathcal{R}, \mathcal{S}, C$)

Case C non-trivial Strongly Connected Component: See paper

AlternatingCompl: Overall Procedure

> AlternatingCompl $(\mathcal{T}, \mathcal{V})$
> Input: Program of transitions \mathcal{T}, variables \mathcal{V}
> $\mathcal{R} \leftarrow$ unboundedTimeCompl (\mathcal{T})
> $\mathcal{S} \leftarrow$ unboundedSizeCompl $(\mathcal{T}, \mathcal{V})$
> while \mathcal{R}, \mathcal{S} have unbounded elements do
> $\mathcal{R} \leftarrow \operatorname{TimeBounds}(\mathcal{R}, \mathcal{S})$
> for all C SCC of $\operatorname{RVG}(\mathcal{T}, \mathcal{V})$ do $\mathcal{S} \leftarrow \operatorname{SizeBounds}(\mathcal{R}, \mathcal{S}, C)$
> end for
> end while
> Output: \mathcal{R}, \mathcal{S}

Are There Other Techniques and Tools?

- Using techniques from termination proving: $\mathrm{ABC}^{2}, \mathrm{AProVE}$, CoFloCo ${ }^{3}$, COSTA/PUBS ${ }^{4}$, Loopus ${ }^{5}$, Rank 6, TcT^{7}, ...

[^0]
Are There Other Techniques and Tools?

- Using techniques from termination proving: $\mathrm{ABC}^{2}, \mathrm{AProVE}$, CoFloCo ${ }^{3}$, COSTA/PUBS ${ }^{4}$, Loopus ${ }^{5}$, Rank 6, TcT^{7}, ...
- Using invariant generation: SPEED ${ }^{8}$

[^1]
Are There Other Techniques and Tools?

- Using techniques from termination proving: $\mathrm{ABC}^{2}, \mathrm{AProVE}$, CoFloCo ${ }^{3}$, COSTA/PUBS ${ }^{4}$, Loopus ${ }^{5}$, Rank 6, TcT^{7}, ...
- Using invariant generation: SPEED ${ }^{8}$
- Using type-based amortised analysis: ${ }^{9}$ RAML ${ }^{10}, \ldots$
${ }^{2}$ R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ' 10
${ }^{3}$ A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS '14
${ }^{4}$ E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs, TCS '12
${ }^{5}$ M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized Complexity Analysis, CAV '14
${ }^{6}$ C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs, SAS '10
${ }^{7}$ M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS '16
${ }^{8}$ S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational complexity, POPL '09
${ }^{9}$ J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS '22
${ }^{10}$ J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV '12

Did You Ever Test That?

Prototype: KoAT, using Microsoft's SMT solver Z3 (Z3 on github: https://github.com/Z3Prover/z3) to find PRFs, size bounds, ...

Did You Ever Test That?

Prototype: KoAT, using Microsoft's SMT solver Z3 (Z3 on github: https://github.com/Z3Prover/z3) to find PRFs, size bounds, ...
682 examples, taken from

- prior evaluations (of ABC, Loopus, PUBS/COSTA, Rank, SPEED)
- termination benchmarks (of T2, AProVE)
- examples from our article describing the techniques

Did You Ever Test That?

Prototype: KoAT, using Microsoft's SMT solver Z3 (Z3 on github: https://github.com/Z3Prover/z3) to find PRFs, size bounds, ... 682 examples, taken from

- prior evaluations (of ABC, Loopus, PUBS/COSTA, Rank, SPEED)
- termination benchmarks (of T2, AProVE)
- examples from our article describing the techniques

Tool	1	$\log n$	n	$n \log n$	n^{2}	n^{3}	$n^{>3}$	EXP	No res.

- timeout 60 s
- Time is average runtime for successful proof

Which Tool Should I Be Using, Then?

Comparing KoAT directly to other tools (wrt asymptotic bounds)

Compared tool	more precise	less precise
CoFloCo	31	80
KoAT-TACAS'14	0	118
PUBS	46	134
Loopus	16	117
Rank	5	327

\Rightarrow each tool has its own strengths and weaknesses

So, Is That Everything?

Extensions implemented:

- Recursion (beyond tail recursion)

So, Is That Everything?

Extensions implemented:

- Recursion (beyond tail recursion)
- Exponential data (e.g., while $x>0$ do $y=2 \cdot y ; x--$; done)

So, Is That Everything?

Extensions implemented:

- Recursion (beyond tail recursion)
- Exponential data (e.g., while $x>0$ do $y=2 \cdot y ; x--$; done)
- Exponential calls (e.g., $f(n)=f(n-1)+f(n-2))$

So, Is That Everything?

Extensions implemented:

- Recursion (beyond tail recursion)
- Exponential data (e.g., while $\mathrm{x}>0$ do $\mathrm{y}=2 \cdot \mathrm{y}$; $\mathrm{x}-$-; done)
- Exponential calls (e.g., $f(n)=f(n-1)+f(n-2))$
- Methods handled independently, composing results at call sites

So, Is That Everything?

Extensions implemented:

- Recursion (beyond tail recursion)
- Exponential data (e.g., while $x>0$ do $y=2 \cdot y ; x--$; done)
- Exponential calls (e.g., $f(n)=f(n-1)+f(n-2))$
- Methods handled independently, composing results at call sites
- Other cost measures (e.g., network traffic, energy usage, ...) \rightarrow annotate transitions with cost of transition (so far: each transition costs 1)

So, Is That Everything?

Extensions implemented:

- Recursion (beyond tail recursion)
- Exponential data (e.g., while $x>0$ do $y=2 \cdot y ; x--$; done)
- Exponential calls (e.g., $f(n)=f(n-1)+f(n-2))$
- Methods handled independently, composing results at call sites
- Other cost measures (e.g., network traffic, energy usage, ...) \rightarrow annotate transitions with cost of transition (so far: each transition costs 1)
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

Where Can I Learn More? Current Developments

- Precise handling of loops with computable complexity in the KoAT approach ${ }^{11}$

[^2]
Where Can I Learn More? Current Developments

- Precise handling of loops with computable complexity in the KoAT approach ${ }^{11}$
- Inference of lower bounds for worst-case runtime complexity ${ }^{12}$: LoAT 13

[^3]
Where Can I Learn More? Current Developments

- Precise handling of loops with computable complexity in the KoAT approach ${ }^{11}$
- Inference of lower bounds for worst-case runtime complexity ${ }^{12}$: LoAT 13
- Cost analysis for Java programs via Integer Transition Systems ${ }^{14}$

[^4]
Where Can I Learn More? Current Developments

- Precise handling of loops with computable complexity in the KoAT approach ${ }^{11}$
- Inference of lower bounds for worst-case runtime complexity ${ }^{12}$: LoAT 13
- Cost analysis for Java programs via Integer Transition Systems ${ }^{14}$
- Cost analysis for probabilistic programs ${ }^{151617}$

[^5]
Complexity of Integer Programs: What to Take Home?

Key insights:

- Data size influences runtime
- Runtime influences data size
- Other influences minor

Complexity of Integer Programs: What to Take Home?

Key insights:

- Data size influences runtime
- Runtime influences data size
- Other influences minor

Solution:

- Alternating size/runtime analysis
- Modularity by using only these results

II. 2 Complexity Analysis for Term Rewriting

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

```
Example (Term Rewrite
System (TRS) \mathcal{R)}
    double(0) }->
    double(s(x))}->\textrm{s}(\textrm{s}(\mathrm{ double }(x)
```


What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic
Example (Term Rewrite System (TRS) \mathcal{R})
double(0) $\rightarrow 0$
double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x))$

Compute "double of 3 is 6 ": double(s(s(s(0))))

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) \mathcal{R})

double(0) $\rightarrow 0$
double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x))$

Compute "double of 3 is 6 ": double(s(s(s(0))))
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}($ double(s(s(0)))))

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) \mathcal{R})

double(0) $\rightarrow 0$
double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x))$

Compute "double of 3 is 6 ": double(s(s(s(0))))
$\rightarrow_{\mathcal{R}} \quad \mathrm{s}(\mathrm{s}($ double(s(s(0)))))
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}($ double(s(0))))))

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

```
Example (Term Rewrite
System (TRS) \mathcal{R)}
    double(0) }->
    double(s(x)) }->\textrm{s}(\textrm{s}(\mathrm{ double }(x)
```

Compute "double of 3 is 6 ": double(s(s(s(0))))
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}($ double $(\mathrm{s}(\mathrm{s}(0)))))$
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{double}(\mathrm{s}(0))))))$
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}($ double $(0)))))))$

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) \mathcal{R})

double(0) $\rightarrow 0$
double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x))$

Compute "double of 3 is 6 ": double(s(s(s(0))))
$\rightarrow_{\mathcal{R}} \quad \mathrm{s}(\mathrm{s}($ double(s(s(0)))))
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{double}(\mathrm{s}(0))))))$
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}($ double(0) $))))))$
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))$

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) \mathcal{R})

double(0) $\rightarrow 0$
double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x))$

Compute "double of 3 is 6 ": double(s(s(s(0))))
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}($ double($\left.\mathrm{s}(\mathrm{s}(0))))\right)$
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{double}(\mathrm{s}(0))))))$
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}($ double(0) $))))))$
$\rightarrow_{\mathcal{R}} \mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(\mathrm{s}(0))))))$
in 4 steps with $\rightarrow_{\mathcal{R}}$

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of "real" FP:

- first-order (usually)
- no fixed evaluation strategy
- untyped
- no pre-defined data structures (integers, arrays, ...)
(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) \mathcal{R})
 double(0) $\rightarrow 0$
 double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x))$

Compute "double of 3 is 6 ": double(s $\left.{ }^{3}(0)\right)$
$\rightarrow_{\mathcal{R}} \quad \mathrm{s}^{2}\left(\right.$ double($\left.\left.\mathrm{s}^{2}(0)\right)\right)$
$\rightarrow_{\mathcal{R}} \quad \mathrm{s}^{4}($ double $(\mathrm{s}(0)))$
$\rightarrow_{\mathcal{R}} \quad s^{6}($ double $(0))$
$\rightarrow_{\mathcal{R}} \quad s^{6}(0)$
in 4 steps with $\rightarrow_{\mathcal{R}}$

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x)))\})$

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(s(x)) \rightarrow s(s($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(s(x)) \rightarrow s(s($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(s(x)) \rightarrow s(s($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps
- runtime complexity $\mathrm{rc}_{\mathcal{R}}(n)$: basic terms as start terms

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(s(x)) \rightarrow s(s($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps
- runtime complexity $\operatorname{rc}_{\mathcal{R}}(n)$: basic terms as start terms
- $\mathrm{rc}_{\mathcal{R}}(n)$ for program analysis

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(s(x)) \rightarrow s(s($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps
- runtime complexity $\operatorname{rc}_{\mathcal{R}}(n)$: basic terms as start terms
- $\mathrm{rc}_{\mathcal{R}}(n)$ for program analysis
(2) No!

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps
- runtime complexity $\operatorname{rc}_{\mathcal{R}}(n)$: basic terms as start terms
- $\mathrm{rc}_{\mathcal{R}}(n)$ for program analysis
(2) No!
double ${ }^{3}(\mathrm{~s}(0)) \rightarrow{ }_{\mathcal{R}}^{2}$ double ${ }^{2}\left(\mathrm{~s}^{2}(0)\right) \rightarrow{ }_{\mathcal{R}}^{3}$ double $\left(\mathrm{s}^{4}(0)\right) \rightarrow{ }_{\mathcal{R}}^{5} \mathrm{~s}^{8}(0)$ in 10 steps

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(s(x)) \rightarrow s(s($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps
- runtime complexity $\operatorname{rc}_{\mathcal{R}}(n)$: basic terms as start terms
- $\mathrm{rc}_{\mathcal{R}}(n)$ for program analysis
(2) No!
double ${ }^{3}(\mathrm{~s}(0)) \rightarrow{\underset{\mathcal{R}}{ }}_{2}^{2}$ double ${ }^{2}\left(\mathrm{~s}^{2}(0)\right) \rightarrow \stackrel{3}{\mathcal{R}}$ double $\left(\mathrm{s}^{4}(0)\right) \rightarrow{ }_{\mathcal{R}}^{5} \mathrm{~s}^{8}(0)$ in 10 steps
- double ${ }^{n-2}(\mathrm{~s}(0))$ allows $\Theta\left(2^{n}\right)$ many steps to $\mathrm{s}^{2^{n-2}}(0)$

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps
- runtime complexity $\operatorname{rc}_{\mathcal{R}}(n)$: basic terms as start terms
- $\mathrm{rc}_{\mathcal{R}}(n)$ for program analysis
(2) No!
double ${ }^{3}(\mathrm{~s}(0)) \rightarrow{\underset{\mathcal{R}}{ }}_{2}^{2}$ double ${ }^{2}\left(\mathrm{~s}^{2}(0)\right) \rightarrow \stackrel{3}{\mathcal{R}}$ double $\left(\mathrm{s}^{4}(0)\right) \rightarrow{ }_{\mathcal{R}}^{5} \mathrm{~s}^{8}(0)$ in 10 steps
- double ${ }^{n-2}(\mathrm{~s}(0))$ allows $\Theta\left(2^{n}\right)$ many steps to $\mathrm{s}^{2^{n-2}}(0)$
- derivational complexity $\mathrm{dc}_{\mathcal{R}}(n)$: no restrictions on start terms

What is Complexity of Term Rewriting?

Given: TRS \mathcal{R} (e.g., $\{$ double $(0) \rightarrow 0$, double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x)))\})$ Question: How long can $a \rightarrow_{\mathcal{R}}$ sequence from a term of size n become? (worst case)
Here: Does \mathcal{R} have complexity $\Theta(n)$?
(1) Yes!

$$
\text { double }\left(\mathrm{s}^{n-2}(0)\right) \rightarrow_{\mathcal{R}}^{n-1} \mathrm{~s}^{2 n-4}(0)
$$

- basic terms $f\left(t_{1}, \ldots, t_{n}\right)$ with t_{i} constructor terms allow only n steps
- runtime complexity $\operatorname{rc}_{\mathcal{R}}(n)$: basic terms as start terms
- $\mathrm{rc}_{\mathcal{R}}(n)$ for program analysis
(2) No!
double ${ }^{3}(\mathrm{~s}(0)) \rightarrow{\underset{\mathcal{R}}{ }}_{2}^{2}$ double ${ }^{2}\left(\mathrm{~s}^{2}(0)\right) \rightarrow \stackrel{3}{\mathcal{R}}$ double $\left(\mathrm{s}^{4}(0)\right) \rightarrow{ }_{\mathcal{R}}^{5} \mathrm{~s}^{8}(0)$ in 10 steps
- double ${ }^{n-2}(\mathrm{~s}(0))$ allows $\Theta\left(2^{n}\right)$ many steps to $\mathrm{s}^{2^{n-2}}(0)$
- derivational complexity $\mathrm{dc}_{\mathcal{R}}(n)$: no restrictions on start terms
- $\mathrm{dc}_{\mathcal{R}}(n)$ for equational reasoning: cost of solving the word problem $\mathcal{E} \models s \equiv t$ by rewriting s and t via an equivalent convergent $\operatorname{TRS} \mathcal{R}_{\mathcal{E}}$

Complexity Analysis for TRSs: Overview

(1) Introduction
(2) Automatically Finding Upper Bounds
(3) Automatically Finding Lower Bounds
(9) Transformational Techniques
(5) Analysing Program Complexity via TRS Complexity
(Current Developments

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs ${ }^{18}$

[^6]
A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs ${ }^{18}$
2001: Techniques for polynomial upper complexity bounds ${ }^{19}$

[^7]
A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs ${ }^{18}$
2001: Techniques for polynomial upper complexity bounds ${ }^{19}$
2008: Runtime complexity introduced with first analysis techniques ${ }^{20}$

[^8]
A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs ${ }^{18}$
2001: Techniques for polynomial upper complexity bounds ${ }^{19}$
2008: Runtime complexity introduced with first analysis techniques ${ }^{20}$
2008: First automated tools to find complexity bounds: $\mathrm{TcT}^{21}, \mathrm{CaT}^{22}$

[^9]
A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs ${ }^{18}$ 2001: Techniques for polynomial upper complexity bounds ${ }^{19}$
2008: Runtime complexity introduced with first analysis techniques ${ }^{20}$
2008: First automated tools to find complexity bounds: $\mathrm{TcT}^{21}, \mathrm{CaT}^{22}$
2008: First complexity analysis categories in the Termination Competition http://termination-portal.org/wiki/Termination_Competition

[^10]
A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs ${ }^{18}$ 2001: Techniques for polynomial upper complexity bounds ${ }^{19}$
2008: Runtime complexity introduced with first analysis techniques ${ }^{20}$
2008: First automated tools to find complexity bounds: $\mathrm{TcT}^{21}, \mathrm{CaT}^{22}$
2008: First complexity analysis categories in the Termination Competition http://termination-portal.org/wiki/Termination_Competition

[^11]
A Short Timeline (2/2)

2022: Termination Competition 2022 with complexity analysis tools AProVE ${ }^{23}$, TcT in August 2022
https://termcomp.github.io/Y2022
${ }^{23}$ J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, R. Thiemann: Analyzing Program Termination and Complexity Automatically with AProVE, JAR '17, http://aprove.informatik.rwth-aachen.de/

Some Definitions

Definition (Derivation Height dh)

For a term $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ and a relation \rightarrow, the derivation height is:

$$
\operatorname{dh}(t, \rightarrow)=\sup \left\{n \mid \exists t^{\prime} . t \rightarrow^{n} t^{\prime}\right\}
$$

If t starts an infinite \rightarrow-sequence, we set $\operatorname{dh}(t, \rightarrow)=\omega$.

Some Definitions

Definition (Derivation Height dh)

For a term $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ and a relation \rightarrow, the derivation height is:

$$
\operatorname{dh}(t, \rightarrow)=\sup \left\{n \mid \exists t^{\prime} . t \rightarrow^{n} t^{\prime}\right\}
$$

If t starts an infinite \rightarrow-sequence, we set $\operatorname{dh}(t, \rightarrow)=\omega$.
$\mathrm{dh}(t, \rightarrow)$: length of the longest \rightarrow-sequence from t.

Some Definitions

Definition (Derivation Height dh)

For a term $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ and a relation \rightarrow, the derivation height is:

$$
\operatorname{dh}(t, \rightarrow)=\sup \left\{n \mid \exists t^{\prime} . t \rightarrow^{n} t^{\prime}\right\}
$$

If t starts an infinite \rightarrow-sequence, we set $\operatorname{dh}(t, \rightarrow)=\omega$.
$\mathrm{dh}(t, \rightarrow)$: length of the longest \rightarrow-sequence from t.
Example: $\quad \operatorname{dh}\left(\right.$ double $\left.(\mathrm{s}(\mathrm{s}(\mathrm{s}(0)))), \rightarrow_{\mathcal{R}}\right)=4$

Some Definitions

Definition (Derivation Height dh)

For a term $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ and a relation \rightarrow, the derivation height is:

$$
\operatorname{dh}(t, \rightarrow)=\sup \left\{n \mid \exists t^{\prime} \cdot t \rightarrow^{n} t^{\prime}\right\}
$$

If t starts an infinite \rightarrow-sequence, we set $\operatorname{dh}(t, \rightarrow)=\omega$.
$\mathrm{dh}(t, \rightarrow)$: length of the longest \rightarrow-sequence from t.
Example: $\quad \operatorname{dh}\left(\right.$ double $\left.(\mathrm{s}(\mathrm{s}(\mathrm{s}(0)))), \rightarrow_{\mathcal{R}}\right)=4$

Definition (Derivational Complexity dc)

For a TRS \mathcal{R}, the derivational complexity is:

$$
\operatorname{dc}_{\mathcal{R}}(n)=\sup \left\{\operatorname{dh}\left(t, \rightarrow_{\mathcal{R}}\right)|t \in \mathcal{T}(\mathcal{F}, \mathcal{V}),|t| \leq n\}\right.
$$

Some Definitions

Definition (Derivation Height dh)

For a term $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ and a relation \rightarrow, the derivation height is:

$$
\operatorname{dh}(t, \rightarrow)=\sup \left\{n \mid \exists t^{\prime} . t \rightarrow^{n} t^{\prime}\right\}
$$

If t starts an infinite \rightarrow-sequence, we set $\operatorname{dh}(t, \rightarrow)=\omega$.
$\mathrm{dh}(t, \rightarrow)$: length of the longest \rightarrow-sequence from t.
Example: $\quad \operatorname{dh}\left(\right.$ double $\left.(\mathrm{s}(\mathrm{s}(\mathrm{s}(0)))), \rightarrow_{\mathcal{R}}\right)=4$

Definition (Derivational Complexity dc)

For a TRS \mathcal{R}, the derivational complexity is:

$$
\operatorname{dc}_{\mathcal{R}}(n)=\sup \left\{\operatorname{dh}\left(t, \rightarrow_{\mathcal{R}}\right)|t \in \mathcal{T}(\mathcal{F}, \mathcal{V}),|t| \leq n\}\right.
$$

$\mathrm{dc}_{\mathcal{R}}(n)$: length of the longest $\rightarrow_{\mathcal{R}}$-sequence from a term of size at most n

Some Definitions

Definition (Derivation Height dh)

For a term $t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ and a relation \rightarrow, the derivation height is:

$$
\operatorname{dh}(t, \rightarrow)=\sup \left\{n \mid \exists t^{\prime} . t \rightarrow^{n} t^{\prime}\right\}
$$

If t starts an infinite \rightarrow-sequence, we set $\operatorname{dh}(t, \rightarrow)=\omega$.
$\mathrm{dh}(t, \rightarrow)$: length of the longest \rightarrow-sequence from t.
Example: $\quad \operatorname{dh}\left(\right.$ double $\left.(\mathrm{s}(\mathrm{s}(\mathrm{s}(0)))), \rightarrow_{\mathcal{R}}\right)=4$

Definition (Derivational Complexity dc)

For a TRS \mathcal{R}, the derivational complexity is:

$$
\operatorname{dc}_{\mathcal{R}}(n)=\sup \left\{\operatorname{dh}\left(t, \rightarrow_{\mathcal{R}}\right)|t \in \mathcal{T}(\mathcal{F}, \mathcal{V}),|t| \leq n\}\right.
$$

$\mathrm{dc}_{\mathcal{R}}(n)$: length of the longest $\rightarrow_{\mathcal{R}}$-sequence from a term of size at most n
Example: \quad For \mathcal{R} for double, we have $\operatorname{dc}_{\mathcal{R}}(n) \in \Theta\left(2^{n}\right)$.

Upper Bounds

The Bad News for automation:

Upper Bounds

The Bad News for automation:
For a given TRS \mathcal{R}, the following questions are undecidable:

- $\operatorname{dc}_{\mathcal{R}}(n)=\omega$ for some $n ?(\rightarrow$ termination!)

Upper Bounds

The Bad News for automation:
For a given TRS \mathcal{R}, the following questions are undecidable:

- $\operatorname{dc}_{\mathcal{R}}(n)=\omega$ for some $n ?(\rightarrow$ termination!)
- $\operatorname{dc}_{\mathcal{R}}(n)$ polynomially bounded? ${ }^{24}$
${ }^{24}$ A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and runtime complexity, CSL '11

Upper Bounds

The Bad News for automation:
For a given TRS \mathcal{R}, the following questions are undecidable:

- $\operatorname{dc}_{\mathcal{R}}(n)=\omega$ for some $n ?(\rightarrow$ termination!)
- $\operatorname{dc}_{\mathcal{R}}(n)$ polynomially bounded? ${ }^{24}$

Goal: find approximations for derivational complexity
Initial focus: find upper bounds

$$
\mathrm{dc}_{\mathcal{R}}(n) \in \mathcal{O}(\ldots)
$$

[^12]
Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) $\rightarrow 0$
double $(\mathrm{s}(x)) \rightarrow \mathrm{s}(\mathrm{s}($ double $(x))$

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

$$
\begin{aligned}
\text { double(0) } & \succ 0 \\
\text { double(s }(x)) & \succ \mathrm{s}(\mathrm{~s}(\text { double }(x))
\end{aligned}
$$

Show $\operatorname{dc}_{\mathcal{R}}(n)<\omega$ by termination proof with reduction order \succ on terms.

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

$$
\begin{aligned}
\text { double(0) } & \succ 0 \\
\text { double }(\mathrm{s}(x)) & \succ \mathrm{s}(\mathrm{~s}(\text { double }(x))
\end{aligned}
$$

Show $\operatorname{dc}_{\mathcal{R}}(n)<\omega$ by termination proof with reduction order \succ on terms. Get \succ via polynomial interpretation ${ }^{25}[\cdot]$ over $\mathbb{N}: \ell \succ r \Longleftrightarrow[\ell] \succ[r]$
${ }^{25}$ D. Lankford: Canonical algebraic simplification in computational logic, U Texas '75

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

$$
\begin{aligned}
\text { double(0) } & \succ 0 \\
\text { double(s }(x)) & \succ \mathrm{s}(\mathrm{~s}(\text { double }(x))
\end{aligned}
$$

Show $\operatorname{dc}_{\mathcal{R}}(n)<\omega$ by termination proof with reduction order \succ on terms. Get \succ via polynomial interpretation ${ }^{25}[\cdot]$ over \mathbb{N} : $\ell \succ r \Longleftrightarrow[\ell] \succ[r]$ Example: $\quad[$ double $](x)=3 \cdot x, \quad[\mathrm{~s}](x)=x+1, \quad[0]=1$
${ }^{25}$ D. Lankford: Canonical algebraic simplification in computational logic, U Texas '75

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

$$
\begin{aligned}
\text { double(0) } & \succ 0 \\
\text { double }(\mathrm{s}(x)) & \succ \mathrm{s}(\mathrm{~s}(\text { double }(x))
\end{aligned}
$$

Show $\operatorname{dc}_{\mathcal{R}}(n)<\omega$ by termination proof with reduction order \succ on terms. Get \succ via polynomial interpretation ${ }^{25}[\cdot]$ over \mathbb{N} : $\ell \succ r \Longleftrightarrow[\ell] \succ[r]$
Example: $\quad[$ double $](x)=3 \cdot x, \quad[\mathrm{~s}](x)=x+1, \quad[0]=1$

Extend to terms:

- $[x]=x$
- $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=[f]\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$
${ }^{25}$ D. Lankford: Canonical algebraic simplification in computational logic, U Texas '75

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

$$
\begin{array}{rl|rl}
\text { double }(0) & \succ 0 & > & >1 \\
\text { double }(\mathrm{s}(x)) & \succ \mathrm{s}(\mathrm{~s}(\text { double }(x)) & 3 \cdot x+3 & >3 \cdot x+2
\end{array}
$$

Show $\operatorname{dc}_{\mathcal{R}}(n)<\omega$ by termination proof with reduction order \succ on terms. Get \succ via polynomial interpretation ${ }^{25}[\cdot]$ over \mathbb{N} : $\ell \succ r \Longleftrightarrow[\ell] \succ[r]$
Example: [double] $(x)=3 \cdot x$,
$[\mathrm{s}](x)=x+1$,
$[0]=1$

Extend to terms:

- $[x]=x$
- $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=[f]\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$
${ }^{25}$ D. Lankford: Canonical algebraic simplification in computational logic, U Texas '75

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

Show $\mathrm{dc}_{\mathcal{R}}(n)<\omega$ by termination proof with reduction order \succ on terms. Get \succ via polynomial interpretation ${ }^{25}[\cdot]$ over $\mathbb{N}: \ell \succ r \Longleftrightarrow[\ell] \succ[r]$
Example: [double] $(x)=3 \cdot x$,
$[\mathrm{s}](x)=x+1$,
[0] $=1$

Extend to terms:

- $[x]=x$
- $\left[f\left(t_{1}, \ldots, t_{n}\right)\right]=[f]\left(\left[t_{1}\right], \ldots,\left[t_{n}\right]\right)$

Automated search for [•] via SAT ${ }^{26}$ or SMT^{27} solving
${ }^{25}$ D. Lankford: Canonical algebraic simplification in computational logic, U Texas '75
${ }^{26}$ C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination analysis with polynomial interpretations, SAT '07
${ }^{27}$ C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving polynomial constraints, JAR '12

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

$$
\begin{array}{rl|rl}
\text { double }(0) & \succ 0 & > & >1 \\
\text { double }(\mathrm{s}(x)) & \succ \mathrm{s}(\mathrm{~s}(\text { double }(x)) & 3 \cdot x+3 & >3 \cdot x+2
\end{array}
$$

Example: $\quad[$ double $](x)=3 \cdot x, \quad[\mathrm{~s}](x)=x+1, \quad[0]=1$
This proves more than just termination...

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) $\succ 0$
double(s $(x)) \quad \succ \mathrm{s}(\mathrm{s}($ double $(x))$

$$
\begin{aligned}
3 & >1 \\
3 \cdot x+3 & >3 \cdot x+2
\end{aligned}
$$

Example: $\quad[$ double $](x)=3 \cdot x, \quad[\mathrm{~s}](x)=x+1, \quad[0]=1$
This proves more than just termination...
Theorem (Upper bounds for $\mathrm{dc}_{\mathcal{R}}(n)$
from polynomial interpretations ${ }^{28}$)

- Termination proof for TRS \mathcal{R} with polynomial interpretation

$$
\Rightarrow \mathrm{dc}_{\mathcal{R}}(n) \in 2^{2^{\mathcal{O}(n)}}
$$

${ }^{28}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) $\succ 0$
double(s $(x)) \quad \succ \mathrm{s}(\mathrm{s}($ double $(x))$

$$
\begin{aligned}
3 & >1 \\
3 \cdot x+3 & >3 \cdot x+2
\end{aligned}
$$

Example: $\quad[$ double $](x)=3 \cdot x, \quad[\mathrm{~s}](x)=x+1, \quad[0]=1$
This proves more than just termination...
Theorem (Upper bounds for $\mathrm{dc}_{\mathcal{R}}(n)$
from polynomial interpretations ${ }^{28}$)

- Termination proof for TRS \mathcal{R} with polynomial interpretation

$$
\Rightarrow \mathrm{dc}_{\mathcal{R}}(n) \in 2^{2^{\mathcal{O}(n)}}
$$

- Termination proof for TRS \mathcal{R} with linear polynomial interpretation

$$
\Rightarrow \mathrm{dc}_{\mathcal{R}}(n) \in 2^{\mathcal{O}(n)}
$$

${ }^{28}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89

Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS \mathcal{R} with...

- matchbounds ${ }^{29}$
- arctic matrix interpretations ${ }^{30}$

$$
\begin{aligned}
& \Rightarrow \operatorname{dc}_{\mathcal{R}}(n) \in \mathcal{O}(n) \\
& \Rightarrow \operatorname{dc}_{\mathcal{R}}(n) \in \mathcal{O}(n)
\end{aligned}
$$

[^13]
Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS \mathcal{R} with...

- matchbounds ${ }^{29}$
- arctic matrix interpretations ${ }^{30}$
- triangular matrix interpretation ${ }^{31} \Rightarrow \operatorname{dc}_{\mathcal{R}}(n)$ is at most polynomial
- matrix interpretation of spectral radius ${ }^{32} \leq 1$
$\Rightarrow \operatorname{dc}_{\mathcal{R}}(n)$ is at most polynomial

[^14]
Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS \mathcal{R} with...

- matchbounds ${ }^{29}$
- arctic matrix interpretations ${ }^{30}$
- triangular matrix interpretation ${ }^{31}$

$$
\begin{aligned}
& \Rightarrow \mathrm{dc}_{\mathcal{R}}(n) \in \mathcal{O}(n) \\
& \Rightarrow \mathrm{dc}_{\mathcal{R}}(n) \in \mathcal{O}(n)
\end{aligned}
$$

$\Rightarrow \operatorname{dc}_{\mathcal{R}}(n)$ is at most polynomial

- matrix interpretation of spectral radius ${ }^{32} \leq 1$
$\Rightarrow \operatorname{dc}_{\mathcal{R}}(n)$ is at most polynomial
- standard matrix interpretation ${ }^{33}$ $\Rightarrow \mathrm{dc}_{\mathcal{R}}(n)$ is at most exponential

[^15]
Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS \mathcal{R} with...

- lexicographic path order ${ }^{34} \Rightarrow \mathrm{dc}_{\mathcal{R}}(n)$ is at most multiple recursive ${ }^{35}$
${ }^{34}$ S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois '80 ${ }^{35} \mathrm{~A}$. Weiermann: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply recursive derivation lengths, TCS '95

Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS \mathcal{R} with...

- lexicographic path order ${ }^{34} \Rightarrow d_{\mathcal{R}}(n)$ is at most multiple recursive ${ }^{35}$
- Dependency Pairs method ${ }^{36}$ with dependency graphs and usable rules $\Rightarrow \mathrm{dc}_{\mathcal{R}}(n)$ is at most primitive recursive ${ }^{37}$

[^16]
Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS \mathcal{R} with...

- lexicographic path order ${ }^{34} \Rightarrow \operatorname{dc}_{\mathcal{R}}(n)$ is at most multiple recursive ${ }^{35}$
- Dependency Pairs method ${ }^{36}$ with dependency graphs and usable rules $\Rightarrow \mathrm{dc}_{\mathcal{R}}(n)$ is at most primitive recursive ${ }^{37}$
- Dependency Pairs framework ${ }^{3839}$ with dependency graphs, reduction pairs, subterm criterion $\quad \Rightarrow \mathrm{dc}_{\mathcal{R}}(n)$ is at most multiple recursive ${ }^{40}$

[^17]
Runtime Complexity

- So far: upper bounds for derivational complexity

Runtime Complexity

- So far: upper bounds for derivational complexity
- But: derivational complexity counter-intuitive, often infeasible

Runtime Complexity

- So far: upper bounds for derivational complexity
- But: derivational complexity counter-intuitive, often infeasible
- Wanted: complexity of evaluation of double on data: double $\left(s^{n}(0)\right)$

Runtime Complexity

- So far: upper bounds for derivational complexity
- But: derivational complexity counter-intuitive, often infeasible
- Wanted: complexity of evaluation of double on data: double $\left(s^{n}(0)\right)$

Definition (Basic Term ${ }^{41}$)

For defined symbols \mathcal{D} and constructor symbols \mathcal{C}, the term

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

is in the set $\mathcal{T}_{\text {basic }}$ of basic terms iff $f \in \mathcal{D}$ and $t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$.

[^18]
Runtime Complexity

- So far: upper bounds for derivational complexity
- But: derivational complexity counter-intuitive, often infeasible
- Wanted: complexity of evaluation of double on data: double($\left.s^{n}(0)\right)$

Definition (Basic Term ${ }^{41}$)

For defined symbols \mathcal{D} and constructor symbols \mathcal{C}, the term

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

is in the set $\mathcal{T}_{\text {basic }}$ of basic terms iff $f \in \mathcal{D}$ and $t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$.

Definition (Runtime Complexity rc ${ }^{41}$)

For a TRS \mathcal{R}, the runtime complexity is:

$$
\operatorname{rc}_{\mathcal{R}}(n)=\sup \left\{\operatorname{dh}\left(t, \rightarrow_{\mathcal{R}}\right)\left|t \in \mathcal{T}_{\text {basic }},|t| \leq n\right\}\right.
$$

[^19]
Runtime Complexity

- So far: upper bounds for derivational complexity
- But: derivational complexity counter-intuitive, often infeasible
- Wanted: complexity of evaluation of double on data: double($\left.s^{n}(0)\right)$

Definition (Basic Term ${ }^{41}$)

For defined symbols \mathcal{D} and constructor symbols \mathcal{C}, the term

$$
f\left(t_{1}, \ldots, t_{n}\right)
$$

is in the set $\mathcal{T}_{\text {basic }}$ of basic terms iff $f \in \mathcal{D}$ and $t_{1}, \ldots, t_{n} \in \mathcal{T}(\mathcal{C}, \mathcal{V})$.

Definition (Runtime Complexity rc ${ }^{41}$)

For a $\operatorname{TRS} \mathcal{R}$, the runtime complexity is:

$$
\operatorname{rc}_{\mathcal{R}}(n)=\sup \left\{\operatorname{dh}\left(t, \rightarrow_{\mathcal{R}}\right)\left|t \in \mathcal{T}_{\text {basic }},|t| \leq n\right\}\right.
$$

$\operatorname{rc}_{\mathcal{R}}(n)$: like derivational complexity. . . but for basic terms only!

[^20]
Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity: ${ }^{42}$ Definition (Strongly linear polynomial, restricted interpretation)

- Polynomial p is strongly linear iff $p\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}+a$ for some $a \in \mathbb{N}$.
- Polynomial interpretation [\cdot] is restricted iff for all constructor symbols $f,[f]\left(x_{1}, \ldots, x_{n}\right)$ is strongly linear.

Idea: $[t] \leq c \cdot|t|$ for fixed $c \in \mathbb{N}$.

[^21]
Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity: ${ }^{42}$

Definition (Strongly linear polynomial, restricted interpretation)

- Polynomial p is strongly linear iff

$$
p\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}+a \text { for some } a \in \mathbb{N}
$$

- Polynomial interpretation [\cdot] is restricted iff for all constructor symbols $f,[f]\left(x_{1}, \ldots, x_{n}\right)$ is strongly linear.

Idea: $[t] \leq c \cdot|t|$ for fixed $c \in \mathbb{N}$.

Theorem (Upper bounds for $\mathrm{rc}_{\mathcal{R}}(n)$ from restricted interpretations)

Termination proof for TRS \mathcal{R} with restricted interpretation [•] of degree at most d for [f]

$$
\Rightarrow \operatorname{rc}_{\mathcal{R}}(n) \in \mathcal{O}\left(n^{d}\right)
$$

[^22]
Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity: ${ }^{42}$

Definition (Strongly linear polynomial, restricted interpretation)

- Polynomial p is strongly linear iff

$$
p\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n}+a \text { for some } a \in \mathbb{N}
$$

- Polynomial interpretation [\cdot] is restricted iff for all constructor symbols $f,[f]\left(x_{1}, \ldots, x_{n}\right)$ is strongly linear.

Idea: $[t] \leq c \cdot|t|$ for fixed $c \in \mathbb{N}$.

Theorem (Upper bounds for $\mathrm{rc}_{\mathcal{R}}(n)$ from restricted interpretations)

Termination proof for TRS \mathcal{R} with restricted interpretation [•] of degree at most d for [f]

$$
\Rightarrow \operatorname{rc}_{\mathcal{R}}(n) \in \mathcal{O}\left(n^{d}\right)
$$

Example: [double] $(x)=3 \cdot x,[\mathrm{~s}](x)=x+1,[0]=1$ is restricted, degree 1 $\Rightarrow \operatorname{rc}_{\mathcal{R}}(n) \in \mathcal{O}(n)$ for TRS \mathcal{R} for double

[^23]
Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (\approx call-by-value)

Example (reverse)

$\operatorname{app}($ nil,$y)$	$\rightarrow y$			
reverse $($ nil $)$	\rightarrow nil	\quad	$\operatorname{app}(\operatorname{add}(n, x), y)$	$\rightarrow \operatorname{add}(n, \operatorname{app}(x, y))$
---:	:---			
$\operatorname{reverse}(\operatorname{add}(n, x))$	$\rightarrow \operatorname{app}(\operatorname{reverse}(x), \operatorname{add}(n$, nil $))$			

Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (\approx call-by-value)

Example (reverse)

$$
\begin{array}{cl}
\operatorname{app}(\text { nil }, y) & \rightarrow y \\
\text { reverse }(\text { nil }) & \left.\rightarrow \text { nil } \quad \begin{array}{rl}
\operatorname{app}(\operatorname{add}(n, x), y) & \rightarrow \operatorname{add}(n, \operatorname{app}(x, y)) \\
\operatorname{reverse}(\operatorname{add}(n, x)) & \rightarrow \operatorname{app}(\operatorname{reverse}(x), \operatorname{add}(n, \text { nil }))
\end{array}\right) .
\end{array}
$$

For rule $\ell \rightarrow r$, eval of ℓ costs $1+$ eval of all function calls in r together:

[^24]
Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (\approx call-by-value)

Example (reverse)

$$
\begin{aligned}
& \operatorname{app}(\text { nil }, y) \rightarrow y \quad \operatorname{app}(\operatorname{add}(n, x), y) \rightarrow \operatorname{add}(n, \operatorname{app}(x, y)) \\
& \text { reverse }(\text { nil }) \rightarrow \text { nil } \quad \operatorname{reverse}(\operatorname{add}(n, x)) \rightarrow \operatorname{app}(\text { reverse }(x), \operatorname{add}(n, \text { nil }))
\end{aligned}
$$

For rule $\ell \rightarrow r$, eval of ℓ costs $1+$ eval of all function calls in r together:

Example (Dependency Tuples ${ }^{43}$ for reverse)

$$
\begin{aligned}
\operatorname{app}^{\sharp}(\text { nil }, y) & \rightarrow \operatorname{Com}_{0} \\
\operatorname{app}^{\sharp}(\operatorname{add}(n, x), y) & \rightarrow \operatorname{Com}_{1}\left(\operatorname{app}^{\sharp}(x, y)\right) \\
\operatorname{reverse}^{\sharp}(\text { nil }) & \rightarrow \operatorname{Com}_{0}
\end{aligned}
$$

$\operatorname{reverse}^{\sharp}(\operatorname{add}(n, x)) \rightarrow \operatorname{Com}_{2}\left(\operatorname{app}^{\sharp}(\operatorname{reverse}(x), \operatorname{add}(n, \operatorname{nil}))\right.$, reverse $\left.^{\sharp}(x)\right)$

- Function calls to count marked with $\#$
- Compound symbols Com ${ }_{k}$ group function calls together
${ }^{43}$ L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term rewriting by dependency pairs, JAR '13

Polynomial Interpretations for Dependency Tuples

Example (reverse, Dependency Tuples for reverse)

$$
\begin{aligned}
\operatorname{app}^{\sharp}(\text { nil }, y) & \rightarrow \operatorname{Com}_{0} \\
\operatorname{app}^{\sharp}(\operatorname{add}(n, x), y) & \rightarrow \operatorname{Com}_{1}\left(\operatorname{app}^{\sharp}(x, y)\right) \\
\operatorname{reverse}^{\sharp}(\operatorname{nil}) & \rightarrow \operatorname{Com}_{0} \\
\operatorname{reverse}^{\sharp}(\operatorname{add}(n, x)) & \rightarrow \operatorname{Com}_{2}\left(\operatorname{app}^{\sharp}(\operatorname{reverse}(x), \operatorname{add}(n, \operatorname{nil})),\right. \text { reverse } \\
\text { app }(\text { nil }, y) \rightarrow y & \operatorname{app}(\operatorname{add}(n, x), y) \rightarrow \operatorname{add}(n, \operatorname{app}(x, y)) \\
\text { reverse }(\text { nil }) \rightarrow \text { nil } & \operatorname{reverse}(\operatorname{add}(n, x)) \rightarrow \operatorname{app}(\operatorname{reverse}(x), \operatorname{add}(n, \operatorname{nil}))
\end{aligned}
$$

Polynomial Interpretations for Dependency Tuples

Example (reverse, Dependency Tuples for reverse)

$$
\begin{aligned}
\operatorname{app}^{\sharp}(\operatorname{nil}, y) & \rightarrow \operatorname{Com}_{0} \\
\operatorname{app}^{\sharp}(\operatorname{add}(n, x), y) & \rightarrow \operatorname{Com}_{1}\left(\operatorname{app}^{\sharp}(x, y)\right) \\
\operatorname{reverse}^{\sharp}(\operatorname{nil}) & \rightarrow \operatorname{Com}_{0} \\
\operatorname{reverse}^{\sharp}(\operatorname{add}(n, x)) & \rightarrow \operatorname{Com}_{2}\left(\operatorname{app}^{\sharp}(\operatorname{reverse}(x), \operatorname{add}(n, \operatorname{nil})), \text { reverse }^{\sharp}(x)\right) \\
\text { app }(\text { nil }, y) \rightarrow y & \operatorname{app}(\operatorname{add}(n, x), y) \rightarrow \operatorname{add}(n, \operatorname{app}(x, y)) \\
\text { reverse }(\text { nil }) \rightarrow \text { nil } & \operatorname{reverse}(\operatorname{add}(n, x)) \rightarrow \operatorname{app}(\operatorname{reverse}(x), \operatorname{add}(n, \text { nil }
\end{aligned}
$$

Use interpretation [\cdot] with $\left[\mathrm{Com}_{k}\right]\left(x_{1}, \ldots, x_{k}\right)=x_{1}+\cdots+x_{k}$ and
[nil] $=0$ $[\operatorname{add}]\left(x_{1}, x_{2}\right)=x_{2}+1$ (\leq restricted interpret.)
$[\operatorname{app}]\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \quad[$ reverse $]\left(x_{1}\right)=x_{1}$ (bounds helper fct. result size) $\left[\right.$ app $\left.^{\sharp}\right]\left(x_{1}, x_{2}\right)=x_{1}+1 \quad\left[\right.$ reverse $\left.^{\sharp}\right]\left(x_{1}\right)=x_{1}^{2}+x_{1}+1$ (complexity of fct.) to show $[\ell] \geq[r]$ for all rules and $[\ell] \geq 1+[r]$ for all Dependency Tuples Maximum degree of $[\cdot]$ is $2 \Rightarrow \operatorname{irc}_{\mathcal{R}}(n) \in \mathcal{O}\left(n^{2}\right)$

Related Techniques

- Dependency Tuples are an adaptation of Dependency Pairs (DPs) from termination analysis to complexity analysis, allow for incremental complexity proofs with several techniques

Related Techniques

- Dependency Tuples are an adaptation of Dependency Pairs (DPs) from termination analysis to complexity analysis, allow for incremental complexity proofs with several techniques
- Further adaptation of DPs (incomparable): Weak (Innermost) Dependency Pairs for (innermost) runtime complexity ${ }^{44}$

[^25]
Related Techniques

- Dependency Tuples are an adaptation of Dependency Pairs (DPs) from termination analysis to complexity analysis, allow for incremental complexity proofs with several techniques
- Further adaptation of DPs (incomparable): Weak (Innermost) Dependency Pairs for (innermost) runtime complexity ${ }^{44}$
- Extensions by polynomial path orders ${ }^{45}$, usable replacement maps ${ }^{46}$, a combination framework for complexity analysis ${ }^{47}$, ...

[^26]
How about Lower Bounds for Complexity?

How about Lower Bounds for Complexity?

How about Lower Bounds for Complexity?

runtime

Here: Two techniques for finding lower bounds ${ }^{48}$ inspired by proving non-termination
${ }^{48}$ F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term rewriting, JAR '17

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination ${ }^{49}$

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination ${ }^{49}$

- Generate infinite family $\mathcal{T}_{\text {witness }}$ of basic terms as witnesses in

$$
\forall n \in \mathbb{N} . \quad \exists t_{n} \in \mathcal{T}_{\text {witness }} . \quad\left|t_{n}\right| \leq q(n) \quad \wedge \quad \operatorname{dh}\left(t_{n}, \rightarrow_{\mathcal{R}}\right) \geq p(n)
$$

to conclude $\operatorname{rc}_{\mathcal{R}}(n) \in \Omega\left(p^{\prime}(n)\right)$.
${ }^{49}$ F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically, IJCAR '12

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination ${ }^{49}$

- Generate infinite family $\mathcal{T}_{\text {witness }}$ of basic terms as witnesses in

$$
\forall n \in \mathbb{N} . \quad \exists t_{n} \in \mathcal{T}_{\text {witness }} . \quad\left|t_{n}\right| \leq q(n) \quad \wedge \quad \operatorname{dh}\left(t_{n}, \rightarrow_{\mathcal{R}}\right) \geq p(n)
$$

to conclude $\operatorname{rc}_{\mathcal{R}}(n) \in \Omega\left(p^{\prime}(n)\right)$.

- Constructor terms for arguments can be built recursively after type inference: $0, \mathrm{~s}(0), \mathrm{s}(\mathrm{s}(0)), \ldots$ (here $q(n)=n+1$, often linear)
${ }^{49}$ F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically, IJCAR '12

Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination ${ }^{49}$

- Generate infinite family $\mathcal{T}_{\text {witness }}$ of basic terms as witnesses in

$$
\forall n \in \mathbb{N} . \quad \exists t_{n} \in \mathcal{T}_{\text {witness }} . \quad\left|t_{n}\right| \leq q(n) \quad \wedge \quad \operatorname{dh}\left(t_{n}, \rightarrow_{\mathcal{R}}\right) \geq p(n)
$$

to conclude $\operatorname{rc}_{\mathcal{R}}(n) \in \Omega\left(p^{\prime}(n)\right)$.

- Constructor terms for arguments can be built recursively after type inference: $0, \mathrm{~s}(0), \mathrm{s}(\mathrm{s}(0)), \ldots$ (here $q(n)=n+1$, often linear)
- Evaluate t_{n} by narrowing, get rewrite sequences with recursive calls

[^27]
Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination ${ }^{49}$

- Generate infinite family $\mathcal{T}_{\text {witness }}$ of basic terms as witnesses in

$$
\forall n \in \mathbb{N} . \quad \exists t_{n} \in \mathcal{T}_{\text {witness }} . \quad\left|t_{n}\right| \leq q(n) \quad \wedge \quad \operatorname{dh}\left(t_{n}, \rightarrow_{\mathcal{R}}\right) \geq p(n)
$$

to conclude $\operatorname{rc}_{\mathcal{R}}(n) \in \Omega\left(p^{\prime}(n)\right)$.

- Constructor terms for arguments can be built recursively after type inference: $0, \mathrm{~s}(0), \mathrm{s}(\mathrm{s}(0)), \ldots$ (here $q(n)=n+1$, often linear)
- Evaluate t_{n} by narrowing, get rewrite sequences with recursive calls
- Speculate polynomial $p(n)$ based on values for $n=0,1, \ldots, k$

[^28]
Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination ${ }^{49}$

- Generate infinite family $\mathcal{T}_{\text {witness }}$ of basic terms as witnesses in

$$
\forall n \in \mathbb{N} . \quad \exists t_{n} \in \mathcal{T}_{\text {witness }} . \quad\left|t_{n}\right| \leq q(n) \quad \wedge \quad \operatorname{dh}\left(t_{n}, \rightarrow_{\mathcal{R}}\right) \geq p(n)
$$

to conclude $\operatorname{rc}_{\mathcal{R}}(n) \in \Omega\left(p^{\prime}(n)\right)$.

- Constructor terms for arguments can be built recursively after type inference: $0, \mathrm{~s}(0), \mathrm{s}(\mathrm{s}(0)), \ldots$ (here $q(n)=n+1$, often linear)
- Evaluate t_{n} by narrowing, get rewrite sequences with recursive calls
- Speculate polynomial $p(n)$ based on values for $n=0,1, \ldots, k$
- Prove rewrite lemma $t_{n} \rightarrow_{\mathcal{R}}^{\geq p(n)} t_{n}^{\prime}$ inductively

[^29]
Finding Lower Bounds by Induction

(1) Induction technique, inspired by non-looping non-termination ${ }^{49}$

- Generate infinite family $\mathcal{T}_{\text {witness }}$ of basic terms as witnesses in

$$
\forall n \in \mathbb{N} . \quad \exists t_{n} \in \mathcal{T}_{\text {witness }} . \quad\left|t_{n}\right| \leq q(n) \quad \wedge \quad \operatorname{dh}\left(t_{n}, \rightarrow_{\mathcal{R}}\right) \geq p(n)
$$

to conclude $\operatorname{rc}_{\mathcal{R}}(n) \in \Omega\left(p^{\prime}(n)\right)$.

- Constructor terms for arguments can be built recursively after type inference: $0, \mathrm{~s}(0), \mathrm{s}(\mathrm{s}(0)), \ldots$ (here $q(n)=n+1$, often linear)
- Evaluate t_{n} by narrowing, get rewrite sequences with recursive calls
- Speculate polynomial $p(n)$ based on values for $n=0,1, \ldots, k$
- Prove rewrite lemma $t_{n} \rightarrow{ }_{\mathcal{R}}^{\geq p(n)} t_{n}^{\prime}$ inductively
- Get lower bound for $\operatorname{rc}_{\mathcal{R}}(n)$ from $p(n)$ in rewrite lemma and $q(n)$

[^30]
Finding Lower Bounds by Induction: Example

Example (quicksort)

```
        qs(nil) \(\rightarrow\) nil
    qs \((\operatorname{cons}(x, x s)) \rightarrow\) qs(low \((x, x s))++\operatorname{cons}(x\), qs \((\operatorname{low}(x, x s)))\)
        low \((x\), nil \() \rightarrow\) nil
    \(\operatorname{low}(x, \operatorname{cons}(y, y s)) \quad \rightarrow \quad \mathrm{if}(x \leq y, x, \operatorname{cons}(y, y s))\)
if( \(\mathrm{tt}, x, \operatorname{cons}(y, y s)) \quad \rightarrow \quad \operatorname{low}(x, y s)\)
if(ff, \(x, \operatorname{cons}(y, y s)) \quad \rightarrow \quad \operatorname{cons}(y, \operatorname{low}(x, y s))\)
```


Finding Lower Bounds by Induction: Example

Example (quicksort)

$$
\begin{aligned}
\mathrm{qs}(\mathrm{nil}) & \rightarrow \mathrm{nil} \\
\mathrm{qs}(\operatorname{cons}(x, x s)) & \rightarrow \mathrm{qs}(\operatorname{low}(x, x s))++\operatorname{cons}(x, \mathrm{qs}(\operatorname{low}(x, x s))) \\
\operatorname{low}(x, \mathrm{nil}) & \rightarrow \mathrm{nil} \\
\operatorname{low}(x, \operatorname{cons}(y, y s)) & \rightarrow \mathrm{if}(x \leq y, x, \operatorname{cons}(y, y s)) \\
\text { if }(\mathrm{tt}, x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{low}(x, y s) \\
\text { if(ff, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \operatorname{low}(x, y s))
\end{aligned}
$$

Speculate and prove rewrite lemma:
qs $(\operatorname{cons}($ zero $, \ldots, \operatorname{cons}($ zero, nil $))) \rightarrow^{3 n^{2}+2 n+1} \operatorname{cons(zero,\ldots ,\operatorname {cons}(zero,~nil))~}$

Finding Lower Bounds by Induction: Example

Example (quicksort)

$$
\begin{aligned}
\mathrm{qs}(\mathrm{nil}) & \rightarrow \mathrm{nil} \\
\mathrm{qs}(\operatorname{cons}(x, x s)) & \rightarrow \mathrm{qs}(\operatorname{low}(x, x s))++\operatorname{cons}(x, \mathrm{qs}(\operatorname{low}(x, x s))) \\
\operatorname{low}(x, \mathrm{nil}) & \rightarrow \mathrm{nil} \\
\operatorname{low}(x, \operatorname{cons}(y, y s)) & \rightarrow \mathrm{if}(x \leq y, x, \operatorname{cons}(y, y s)) \\
\text { if }(\mathrm{tt}, x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{low}(x, y s) \\
\text { if(ff, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \operatorname{low}(x, y s))
\end{aligned}
$$

Speculate and prove rewrite lemma:

$$
\begin{aligned}
& \text { qs(cons(zero, } \ldots, \operatorname{cons}(\text { zero }, \text { nil }))) \rightarrow{ }^{3 n^{2}+2 n+1} \operatorname{cons(zero}, \ldots, \operatorname{cons}(\text { zero, nil) }) \\
& \text { qs }\left(\text { cons }^{n}(\text { zero, nil })\right) \rightarrow^{3 n^{2}+2 n+1} \operatorname{cons(zero,\ldots ,\operatorname {cons}(\text {zero,nil)})~}
\end{aligned}
$$

Finding Lower Bounds by Induction: Example

Example (quicksort)

$$
\begin{aligned}
\mathrm{qs}(\mathrm{nil}) & \rightarrow \mathrm{nil} \\
\mathrm{qs}(\operatorname{cons}(x, x s)) & \rightarrow \mathrm{qs}(\operatorname{low}(x, x s))++\operatorname{cons}(x, \mathrm{qs}(\operatorname{low}(x, x s))) \\
\operatorname{low}(x, \operatorname{nil}) & \rightarrow \mathrm{nil} \\
\operatorname{low}(x, \operatorname{cons}(y, y s)) & \rightarrow \mathrm{if}(x \leq y, x, \operatorname{cons}(y, y s)) \\
\mathrm{if}(\mathrm{tt}, x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{low}(x, y s) \\
\text { if(ff, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \operatorname{low}(x, y s))
\end{aligned}
$$

Speculate and prove rewrite lemma:

$$
\begin{aligned}
\text { qs }(\text { cons }(\text { zero }, \ldots, \operatorname{cons}(\text { zero }, \text { nil }))) & \left.\rightarrow 3^{3 n^{2}+2 n+1} \operatorname{cons(zero}, \ldots, \operatorname{cons}(\text { zero, nil })\right) \\
\text { qs }\left(\operatorname{cons}^{n}(\text { zero }, \text { nil })\right) & \left.\rightarrow{ }^{3 n^{2}+2 n+1} \operatorname{cons(zero}, \ldots, \operatorname{cons}(\text { zero, nil })\right)
\end{aligned}
$$

From $\mid \mathrm{qs}\left(\operatorname{cons}^{n}(\right.$ zero, nil $\left.)\right) \mid=2 n+2$ we get

$$
\mathrm{rc}_{\mathcal{R}}(2 n+2) \geq 3 n^{2}+2 n+1
$$

Finding Lower Bounds by Induction: Example

Example (quicksort)

$$
\begin{aligned}
\mathrm{qs}(\mathrm{nil}) & \rightarrow \mathrm{nil} \\
\mathrm{qs}(\operatorname{cons}(x, x s)) & \rightarrow \mathrm{qs}(\operatorname{low}(x, x s))++\operatorname{cons}(x, \mathrm{qs}(\operatorname{low}(x, x s))) \\
\operatorname{low}(x, \operatorname{nil}) & \rightarrow \mathrm{nil} \\
\operatorname{low}(x, \operatorname{cons}(y, y s)) & \rightarrow \mathrm{if}(x \leq y, x, \operatorname{cons}(y, y s)) \\
\mathrm{if}(\mathrm{tt}, x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{low}(x, y s) \\
\text { if(ff, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \operatorname{low}(x, y s))
\end{aligned}
$$

Speculate and prove rewrite lemma:
qs(cons(zero, ..., cons(zero, nil))) $\rightarrow^{3 n^{2}+2 n+1} \operatorname{cons(zero,\ldots ,\operatorname {cons}(zero,~nil))~}$

$$
\text { qs }\left(\text { cons }^{n}(\text { zero, nil })\right) \rightarrow^{3 n^{2}+2 n+1} \operatorname{cons(zero,\ldots ,\text {cons(zero,nil)})~}
$$

From $\mid \mathrm{qs}\left(\operatorname{cons}^{n}(\right.$ zero, nil $\left.)\right) \mid=2 n+2$ we get

$$
\operatorname{rc}_{\mathcal{R}}(2 n+2) \geq 3 n^{2}+2 n+1 \text { and } \operatorname{rc}_{\mathcal{R}}(n) \in \Omega\left(n^{2}\right) .
$$

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

$$
s \rightarrow_{\mathcal{R}}^{+} C[s \sigma] \rightarrow_{\mathcal{R}}^{+} C\left[C \sigma\left[s \sigma^{2}\right]\right] \rightarrow_{\mathcal{R}}^{+} \cdots
$$

Example: $\mathrm{f}(y) \rightarrow \mathrm{f}(\mathrm{s}(y))$ has loop $\mathrm{f}(y) \rightarrow_{\mathcal{R}}^{+} \mathrm{f}(\mathrm{s}(y))$ with $\sigma(y)=0$.

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

$$
s \rightarrow_{\mathcal{R}}^{+} C[s \sigma] \rightarrow_{\mathcal{R}}^{+} C\left[C \sigma\left[s \sigma^{2}\right]\right] \rightarrow_{\mathcal{R}}^{+} \cdots
$$

Example: $\mathrm{f}(y) \rightarrow \mathrm{f}(\mathrm{s}(y))$ has loop $\mathrm{f}(y) \rightarrow_{\mathcal{R}}^{+} \mathrm{f}(\mathrm{s}(y))$ with $\sigma(y)=0$.
Intuition for linear lower bounds:
some fixed context D is removed in an argument of recursive call, other arguments may grow, sequence can be repeated (loop)

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

$$
s \rightarrow_{\mathcal{R}}^{+} C[s \sigma] \rightarrow_{\mathcal{R}}^{+} C\left[C \sigma\left[s \sigma^{2}\right]\right] \rightarrow_{\mathcal{R}}^{+} \cdots
$$

Example: $\mathrm{f}(y) \rightarrow \mathrm{f}(\mathrm{s}(y))$ has loop $\mathrm{f}(y) \rightarrow_{\mathcal{R}}^{+} \mathrm{f}(\mathrm{s}(y))$ with $\sigma(y)=0$.
Intuition for linear lower bounds:
some fixed context D is removed in an argument of recursive call, other arguments may grow, sequence can be repeated (loop)
Example: plus $(\mathrm{s}(x), y) \rightarrow$ plus $(x, \mathrm{~s}(y))$ has decreasing loop

$$
\operatorname{plus}(\mathrm{s}(x), y) \rightarrow_{\mathcal{R}}^{+} \operatorname{plus}(x, \mathrm{~s}(y)) \text { with } D[x]=\mathrm{s}(x)
$$

Finding Linear Lower Bounds by Decreasing Loops

(2) Decreasing loops, inspired by looping non-termination with

$$
s \rightarrow_{\mathcal{R}}^{+} C[s \sigma] \rightarrow_{\mathcal{R}}^{+} C\left[C \sigma\left[s \sigma^{2}\right]\right] \rightarrow_{\mathcal{R}}^{+} \cdots
$$

Example: $\mathrm{f}(y) \rightarrow \mathrm{f}(\mathrm{s}(y))$ has loop $\mathrm{f}(y) \rightarrow_{\mathcal{R}}^{+} \mathrm{f}(\mathrm{s}(y))$ with $\sigma(y)=0$.
Intuition for linear lower bounds:
some fixed context D is removed in an argument of recursive call, other arguments may grow, sequence can be repeated (loop)
Example: plus $(\mathrm{s}(x), y) \rightarrow$ plus $(x, \mathrm{~s}(y))$ has decreasing loop

$$
\operatorname{plus}(\mathrm{s}(x), y) \rightarrow_{\mathcal{R}}^{+} \operatorname{plus}(x, \mathrm{~s}(y)) \text { with } D[x]=\mathrm{s}(x)
$$

for base term $s=\operatorname{plus}(x, y)$, pumping substitution $\theta=[x \mapsto \mathrm{~s}(x)]$, and result substitution $\sigma=[y \mapsto \mathrm{~s}(y)]$:

$$
s \theta \rightarrow_{\mathcal{R}}^{+} C[s \sigma]
$$

Implies $\mathrm{rc}(n) \in \Omega(n)$!

Finding Exponential Lower Bounds by Decreasing Loops

Exponential lower bounds: several "compatible" parallel recursive calls:

- Example: $\mathrm{fib}(\mathrm{s}(\mathrm{s}(n))) \rightarrow \operatorname{plus}(\mathrm{fib}(\mathrm{s}(n))$, $\mathrm{fib}(n))$ has 2 decreasing loops:

$$
\mathrm{fib}(\mathrm{~s}(\mathrm{~s}(n))) \rightarrow_{\mathcal{R}}^{+} C[\mathrm{fib}(\mathrm{~s}(n))] \quad \text { and } \quad \mathrm{fib}(\mathrm{~s}(\mathrm{~s}(n))) \rightarrow_{\mathcal{R}}^{+} C[\mathrm{fib}(n)]
$$

Implies $\mathrm{rc}(n) \in \Omega\left(2^{n}\right)$!

Finding Exponential Lower Bounds by Decreasing Loops

Exponential lower bounds: several "compatible" parallel recursive calls:

- Example: $\mathrm{fib}(\mathrm{s}(\mathrm{s}(n))) \rightarrow \operatorname{plus}(\mathrm{fib}(\mathrm{s}(n))$, $\mathrm{fib}(n))$ has 2 decreasing loops:

$$
\mathrm{fib}(\mathrm{~s}(\mathrm{~s}(n))) \rightarrow_{\mathcal{R}}^{+} C[\mathrm{fib}(\mathrm{~s}(n))] \quad \text { and } \quad \mathrm{fib}(\mathrm{~s}(\mathrm{~s}(n))) \rightarrow_{\mathcal{R}}^{+} C[\mathrm{fib}(n)]
$$

Implies $\mathrm{rc}(n) \in \Omega\left(2^{n}\right)$!

- (Non-) Example: $\operatorname{tr}(\operatorname{node}(x, y)) \rightarrow \operatorname{node}(\operatorname{tr}(x), \operatorname{tr}(y))$ Has linear complexity. But:

$$
\operatorname{tr}(\operatorname{node}(x, y)) \rightarrow_{\mathcal{R}}^{+} C[\operatorname{tr}(x)] \quad \text { and } \quad \operatorname{tr}(\operatorname{node}(x, y)) \rightarrow_{\mathcal{R}}^{+} C[\operatorname{tr}(y)]
$$

are not compatible (their pumping substitutions do not commute).

Finding Exponential Lower Bounds by Decreasing Loops

Exponential lower bounds: several "compatible" parallel recursive calls:

- Example: $\mathrm{fib}(\mathrm{s}(\mathrm{s}(n))) \rightarrow \operatorname{plus}(\mathrm{fib}(\mathrm{s}(n)), \mathrm{fib}(n))$ has 2 decreasing loops:

$$
\mathrm{fib}(\mathrm{~s}(\mathrm{~s}(n))) \rightarrow_{\mathcal{R}}^{+} C[\mathrm{fib}(\mathrm{~s}(n))] \quad \text { and } \quad \mathrm{fib}(\mathrm{~s}(\mathrm{~s}(n))) \rightarrow_{\mathcal{R}}^{+} C[\mathrm{fib}(n)]
$$

Implies $\mathrm{rc}(n) \in \Omega\left(2^{n}\right)$!

- (Non-) Example: $\operatorname{tr}(\operatorname{node}(x, y)) \rightarrow \operatorname{node}(\operatorname{tr}(x), \operatorname{tr}(y))$ Has linear complexity. But:

$$
\operatorname{tr}(\operatorname{node}(x, y)) \rightarrow_{\mathcal{R}}^{+} C[\operatorname{tr}(x)] \quad \text { and } \quad \operatorname{tr}(\operatorname{node}(x, y)) \rightarrow_{\mathcal{R}}^{+} C[\operatorname{tr}(y)]
$$

are not compatible (their pumping substitutions do not commute).

Automation for decreasing loops: narrowing.

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:

- Can find non-linear polynomial lower bounds
- Also works on non-left-linear TRSs

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:

- Can find non-linear polynomial lower bounds
- Also works on non-left-linear TRSs

Benefits of Decreasing Loops:

- Does not rely as much on heuristics
- Computationally more lightweight

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:

- Can find non-linear polynomial lower bounds
- Also works on non-left-linear TRSs

Benefits of Decreasing Loops:

- Does not rely as much on heuristics
- Computationally more lightweight
\Rightarrow First try decreasing loops, then induction technique

Lower Bounds: Induction Technique vs Decreasing Loops

Benefits of Induction Technique:

- Can find non-linear polynomial lower bounds
- Also works on non-left-linear TRSs

Benefits of Decreasing Loops:

- Does not rely as much on heuristics
- Computationally more lightweight
\Rightarrow First try decreasing loops, then induction technique
Both techniques can be adapted to innermost runtime complexity!

A Landscape of Complexity Properties and Transformations

dc		rc

A Landscape of Complexity Properties and Transformations

idc, irc: like dc, rc,
but for innermost rewriting

A Landscape of Complexity Properties and Transformations

${ }^{50}$ F. Frohn, J. Giesl: Analyzing runtime complexity via innermost runtime complexity, LPAR '17

A Landscape of Complexity Properties and Transformations

${ }^{50}$ F. Frohn, J. Giesl: Analyzing runtime complexity via innermost runtime complexity, LPAR '17
${ }^{51}$ C. Fuhs: Transforming Derivational Complexity of Term Rewriting to Runtime Complexity, FroCoS '19

Transforming Derivational Complexity to Runtime Complexity

The big picture:

- Have: Tool for automated analysis of runtime complexity $\mathrm{rc}_{\mathcal{R}}$

Transforming Derivational Complexity to Runtime Complexity

The big picture:

- Have: Tool for automated analysis of runtime complexity $\mathrm{rc}_{\mathcal{R}}$
- Want: Tool for automated analysis of derivational complexity $\mathrm{dc}_{\mathcal{R}}$

Transforming Derivational Complexity to Runtime Complexity

The big picture:

- Have: Tool for automated analysis of runtime complexity $\mathrm{rc}_{\mathcal{R}}$
- Want: Tool for automated analysis of derivational complexity $\mathrm{dc}_{\mathcal{R}}$
- Idea:
"rc $\mathcal{R}_{\mathcal{R}}$ analysis tool + transformation on TRS $\mathcal{R}=\mathrm{dc}_{\mathcal{R}}$ analysis tool"

Transforming Derivational Complexity to Runtime Complexity

The big picture:

- Have: Tool for automated analysis of runtime complexity $\mathrm{rc}_{\mathcal{R}}$
- Want: Tool for automated analysis of derivational complexity $\mathrm{dc}_{\mathcal{R}}$
- Idea:
"rc $\mathcal{R}_{\mathcal{R}}$ analysis tool + transformation on TRS $\mathcal{R}=\mathrm{dc}_{\mathcal{R}}$ analysis tool"
- Benefits:
- Get analysis of derivational complexity "for free"
- Progress in runtime complexity analysis automatically improves derivational complexity analysis

From dc to rc: Results

- program transformation such that runtime complexity of transformed TRS is identical to derivational complexity of original TRS

From dc to rc: Results

- program transformation such that runtime complexity of transformed TRS is identical to derivational complexity of original TRS
- transformation correct also from idc to irc

From dc to rc: Results

- program transformation such that runtime complexity of transformed TRS is identical to derivational complexity of original TRS
- transformation correct also from idc to irc
- implemented in program analysis tool AProVE

From dc to rc: Results

- program transformation such that runtime complexity of transformed TRS is identical to derivational complexity of original TRS
- transformation correct also from idc to irc
- implemented in program analysis tool AProVE
- evaluated successfully on TPDB^{52} relative to state of the art TcT

[^31]
From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms

From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms

Idea:

- Introduce constructor symbol c_{f} for defined symbol f

From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms

Idea:

- Introduce constructor symbol c_{f} for defined symbol f
- Add generator rewrite rules \mathcal{G} to reconstruct arbitrary term with f from basic term with c_{f}

From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms

Idea:

- Introduce constructor symbol c_{f} for defined symbol f
- Add generator rewrite rules \mathcal{G} to reconstruct arbitrary term with f from basic term with c_{f}
Represent
$t=$ double(double(double(s(0))))

From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms

Idea:

- Introduce constructor symbol c_{f} for defined symbol f
- Add generator rewrite rules \mathcal{G} to reconstruct arbitrary term with f from basic term with c_{f}
Represent
$t=$ double(double(double(s(0))))
by basic variant
$\operatorname{bv}(t)=$
enc $_{\text {double }}\left(\mathrm{c}_{\text {double }}\left(\mathrm{c}_{\text {double }}(\mathrm{s}(0))\right)\right)$

From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms

Idea:

- Introduce constructor symbol c_{f} for defined symbol f
- Add generator rewrite rules \mathcal{G} to reconstruct arbitrary term with f from basic term with c_{f}
Represent

Example (Generator rules \mathcal{G})

$t=$ double(double(double(s(0))))
by basic variant

$$
\begin{aligned}
& \operatorname{bv}(t)= \\
& \quad \text { enc }_{\text {double }}\left(\mathrm{c}_{\text {double }}\left(\mathrm{c}_{\text {double }}(\mathrm{s}(0))\right)\right)
\end{aligned}
$$

enc $_{\text {double }}(x) \rightarrow$ double $(\operatorname{argenc}(x))$

$$
\mathrm{enc}_{0} \rightarrow 0
$$

$$
\operatorname{enc}_{\mathrm{s}}(x) \rightarrow \mathrm{s}(\operatorname{argenc}(x))
$$

$$
\operatorname{argenc}\left(\mathrm{c}_{\text {double }}(x)\right) \rightarrow \text { double }(\operatorname{argenc}(x))
$$

$$
\operatorname{argenc}(0) \rightarrow 0
$$

$$
\operatorname{argenc}(\mathrm{s}(x)) \rightarrow \mathbf{s}(\operatorname{argenc}(x))
$$

From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms Idea:
- Introduce constructor symbol c_{f} for defined symbol f
- Add generator rewrite rules \mathcal{G} to reconstruct arbitrary term with f from basic term with c_{f}
Represent

Example (Generator rules \mathcal{G})

$t=$ double(double(double(s(0)))) by basic variant
$\operatorname{bv}(t)=$
enc double $\left(\mathrm{c}_{\text {double }}\left(\mathrm{c}_{\text {double }}(\mathrm{s}(0))\right)\right)$
Then:

- $\operatorname{bv}(t)$ is basic term, size $|t|$
enc $_{\text {double }}(x) \rightarrow$ double $(\operatorname{argenc}(x))$

$$
\text { enc }_{0} \rightarrow 0
$$

$$
\operatorname{enc}_{\mathrm{s}}(x) \rightarrow \mathrm{s}(\operatorname{argenc}(x))
$$

$\operatorname{argenc}\left(\mathrm{c}_{\text {double }}(x)\right) \rightarrow$ double $(\operatorname{argenc}(x))$

$$
\operatorname{argenc}(0) \rightarrow 0
$$

$$
\operatorname{argenc}(\mathrm{s}(x)) \longrightarrow \mathrm{s}(\operatorname{argenc}(x))
$$

From dc to rc: Transformation

Issue:

- Runtime complexity assumes basic terms as start terms
- We want to analyse complexity for arbitrary terms Idea:
- Introduce constructor symbol c_{f} for defined symbol f
- Add generator rewrite rules \mathcal{G} to reconstruct arbitrary term with f from basic term with c_{f}
Represent

Example (Generator rules \mathcal{G})

$t=$ double(double(double(s(0)))) by basic variant
$\operatorname{bv}(t)=$
enc double $\left(\mathrm{c}_{\text {double }}\left(\mathrm{c}_{\text {double }}(\mathrm{s}(0))\right)\right)$
Then:

- $\operatorname{bv}(t)$ is basic term, size $|t|$
- $\operatorname{bv}(t) \rightarrow_{\mathcal{G}}^{*} t$

$$
\text { enc }_{0} \rightarrow 0
$$

$$
\operatorname{enc}_{\mathrm{s}}(x) \rightarrow \mathrm{s}(\operatorname{argenc}(x))
$$

$\operatorname{argenc}\left(\mathrm{c}_{\text {double }}(x)\right) \rightarrow$ double $(\operatorname{argenc}(x))$

$$
\operatorname{argenc}(0) \rightarrow 0
$$

$$
\operatorname{argenc}(\mathrm{s}(x)) \rightarrow \mathbf{s}(\operatorname{argenc}(x))
$$

General Case: Relative Rewriting

Issue:

- $\rightarrow_{\mathcal{R} \cup \mathcal{G}}$ has extra rewrite steps not present in $\rightarrow_{\mathcal{R}}$
- may change complexity

General Case: Relative Rewriting

Issue:

- $\rightarrow_{\mathcal{R} \cup \mathcal{G}}$ has extra rewrite steps not present in $\rightarrow_{\mathcal{R}}$
- may change complexity

Solution:

- add \mathcal{G} as relative rewrite rules:
$\rightarrow_{\mathcal{G}}$ steps are not counted for complexity analysis!
- transform \mathcal{R} to $\mathcal{R} / \mathcal{G}\left(\rightarrow_{\mathcal{R}}\right.$ steps are counted, $\rightarrow_{\mathcal{G}}$ steps are not $)$

General Case: Relative Rewriting

Issue:

- $\rightarrow_{\mathcal{R} \cup \mathcal{G}}$ has extra rewrite steps not present in $\rightarrow_{\mathcal{R}}$
- may change complexity

Solution:

- add \mathcal{G} as relative rewrite rules:
$\rightarrow_{\mathcal{G}}$ steps are not counted for complexity analysis!
- transform \mathcal{R} to $\mathcal{R} / \mathcal{G}\left(\rightarrow_{\mathcal{R}}\right.$ steps are counted, $\rightarrow_{\mathcal{G}}$ steps are not $)$
- more generally: transform $\mathcal{R} / \mathcal{S}$ to $\mathcal{R} /(\mathcal{S} \cup \mathcal{G})$ (input may contain relative rules \mathcal{S}, too)

From dc to rc: Correctness

Theorem (Derivational Complexity via Runtime Complexity)

Let $\mathcal{R} / \mathcal{S}$ be a relative $T R S$, let \mathcal{G} be the generator rules for $\mathcal{R} / \mathcal{S}$. Then
(1) $\mathrm{dc}_{\mathcal{R} / \mathcal{S}}(n)=\mathrm{rc}_{\mathcal{R} /(\mathcal{S} \cup \mathcal{G})}(n)$ (arbitrary rewrite strategies)
(2) $\operatorname{idc}_{\mathcal{R} / \mathcal{S}}(n)=\operatorname{irc}_{\mathcal{R} /(\mathcal{S} \cup \mathcal{G})}(n)$ (innermost rewriting)

Note: equalities hold also non-asymptotically!

From (i)dc to (i)rc: Experiments

Experiments on TPDB, compare with state of the art in TcT:

- upper bounds idc: both AProVE and TcT with transformation are stronger than standard TcT
- upper bounds dc: TcT stronger than AProVE and TcT with transformation, but AProVE still solves some new examples
- lower bounds idc and dc: heuristics do not seem to benefit much

From (i)dc to (i)rc: Experiments

Experiments on TPDB, compare with state of the art in TcT:

- upper bounds idc: both AProVE and TcT with transformation are stronger than standard TcT
- upper bounds dc: TcT stronger than AProVE and TcT with transformation, but AProVE still solves some new examples
- lower bounds idc and dc: heuristics do not seem to benefit much
\Rightarrow Transformation-based approach should be part of the portfolio of analysis tools for derivational complexity

Derivational Complexity: Future Work

- Possible applications
- compiler simplifications
- SMT solver preprocessing

Start terms may have nested defined symbols, so $\mathrm{dc}_{\mathcal{R}}$ is appropriate

Derivational Complexity: Future Work

- Possible applications
- compiler simplifications
- SMT solver preprocessing

Start terms may have nested defined symbols, so $\mathrm{dc}_{\mathcal{R}}$ is appropriate

- Go between derivational and runtime complexity
- So far: encode full term universe \mathcal{T} via basic terms $\mathcal{T}_{\text {basic }}$
- Generalise: write relative rules to generate arbitrary set \mathcal{U} of terms "between" basic and all terms ($\mathcal{T}_{\text {basic }} \subseteq \mathcal{U} \subseteq \mathcal{T}$).

Derivational Complexity: Future Work

- Possible applications
- compiler simplifications
- SMT solver preprocessing

Start terms may have nested defined symbols, so $\mathrm{dc}_{\mathcal{R}}$ is appropriate

- Go between derivational and runtime complexity
- So far: encode full term universe \mathcal{T} via basic terms $\mathcal{T}_{\text {basic }}$
- Generalise: write relative rules to generate arbitrary set \mathcal{U} of terms "between" basic and all terms ($\mathcal{T}_{\text {basic }} \subseteq \mathcal{U} \subseteq \mathcal{T}$).
- Want to adapt techniques from runtime complexity analysis to derivational complexity! How?
- (Useful) adaptation of Dependency Pairs?
- Abstractions to numbers?
- ...

A Landscape of Complexity Properties and Transformations

A Landscape of Complexity Properties and Transformations

${ }^{53}$ M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for term rewriting by integer transition systems, FroCoS '17

A Landscape of Complexity Properties and Transformations

${ }^{53}$ M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for term rewriting by integer transition systems, FroCoS '17

Bottom-Up Complexity Analysis for Imperative Programs

Recently significant progress in complexity analysis tools for Integer Transition Systems (ITSs):

- CoFloCo ${ }^{54}$
- KoAT ${ }^{55}$
- PUBS ${ }^{56}$

Goal: use these tools to find upper bounds for TRS complexity

[^32]
Analysing irc of Insertion Sort by Hand: Bottom-Up

Example

$$
\begin{aligned}
& \text { isort }(\mathrm{nil}, y s) \rightarrow y s \\
& \text { isort }(\operatorname{cons}(x, x s), y s) \rightarrow \operatorname{isort}(x s, \operatorname{insert}(x, y s)) \\
& \text { insert }(x, \text { nil }) \rightarrow \operatorname{cons}(x, \text { nil }) \\
& \text { insert }(x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
&\text { if(true, } x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
&\text { if(false, } x, \operatorname{cons}(y, y s)) \longrightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
& \operatorname{gt}(0, y)= \\
& \operatorname{gt}(\mathrm{s}(x), 0)= \\
& \operatorname{gtalse} \\
&\operatorname{gt}(x), \mathrm{s}(y))=\operatorname{true} \\
& \operatorname{gt}(x, y)
\end{aligned}
$$

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example

$$
\begin{aligned}
\text { isort }(\mathrm{nil}, y s) & \rightarrow y s \\
\text { isort }(\operatorname{cons}(x, x s), y s) & \rightarrow \operatorname{isort}(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \text { nil }) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(true, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & =\text { false } \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{true} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & =\operatorname{gt}(x, y)
\end{aligned}
$$

Note: innermost reduction strategy

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example

$$
\begin{aligned}
\text { isort }(\mathrm{nil}, y s) & \rightarrow y s \\
\text { isort }(\operatorname{cons}(x, x s), y s) & \rightarrow \operatorname{isort}(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \text { nil }) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(true, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & =\text { false } \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{true} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & =\operatorname{gt}(x, y)
\end{aligned}
$$

- $\operatorname{rt}(\operatorname{gt}(x, y)) \in \mathcal{O}(1) \quad$ (" $\xlongequal{\Longrightarrow}$ " for relative rules)

Note: innermost reduction strategy

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example

$$
\begin{aligned}
& \text { isort }(\text { nil }, y s) \rightarrow y s \\
& \text { isort }(\operatorname{cons}(x, x s), y s) \rightarrow \\
& \text { isort }(x s, \text { insert }(x, y s)) \\
& \text { insert }(x, \text { nil }) \rightarrow \operatorname{cons}(x, \text { nil }) \\
& \text { insert }(x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
&\text { if(true, } x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
&\text { if(false, } x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
& \operatorname{gt}(0, y)= \\
& \operatorname{gt}(\mathrm{s}(x), 0) \exists \operatorname{trulse} \\
& \operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y))=\operatorname{true} \\
& \operatorname{gt}(x, y)
\end{aligned}
$$

- $\operatorname{rt}(\operatorname{gt}(x, y)) \in \mathcal{O}(1) \quad$ (" $\xrightarrow{\Longrightarrow}$ " for relative rules)
- $\operatorname{rt}(\operatorname{insert}(x, y s)) \in \mathcal{O}($ length $(y s))$

Note: innermost reduction strategy

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example

$$
\begin{aligned}
&\text { isort(nil, } y s) \rightarrow y s \\
& \text { isort }(\operatorname{cons}(x, x s), y s) \rightarrow \\
& \text { isort }(x s, \operatorname{insert}(x, y s)) \\
& \text { insert }(x, \text { nil }) \rightarrow \operatorname{cons}(x, \text { nil }) \\
& \text { insert }(x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
&\text { if(true, } x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
&\text { if(false, } x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
& \operatorname{gt}(0, y)= \\
& \operatorname{gt}(\mathrm{s}(x), 0)=\operatorname{tralse} \\
& \operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y))=\operatorname{gt}(x, y)
\end{aligned}
$$

- $\operatorname{rt}(\operatorname{gt}(x, y)) \in \mathcal{O}(1) \quad$ (" $\xrightarrow{\Longrightarrow}$ " for relative rules)
- $\operatorname{rt}($ insert $(x, y s)) \in \mathcal{O}($ length $(y s))$
- $\mathrm{rt}($ isort $(x s, y s)) \in \mathcal{O}($ length $(x s) \cdot \ldots)$

Note: innermost reduction strategy

Analysing irc of Insertion Sort by Hand: Bottom-Up

Example

$$
\begin{aligned}
&\text { isort(nil, } y s) \rightarrow y s \\
& \text { isort }(\operatorname{cons}(x, x s), y s) \rightarrow \\
& \text { isort }(x s, \operatorname{insert}(x, y s)) \\
& \text { insert }(x, \text { nil }) \rightarrow \operatorname{cons}(x, \text { nil }) \\
& \text { insert }(x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
&\text { if(true, } x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
&\text { if(false, } x, \operatorname{cons}(y, y s)) \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
& \operatorname{gt}(0, y)= \\
& \operatorname{gt}(\mathrm{s}(x), 0)= \\
& \operatorname{lalse} \\
& \operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y))=\operatorname{gt}(x, y)
\end{aligned}
$$

- $\operatorname{rt}(\operatorname{gt}(x, y)) \in \mathcal{O}(1) \quad$ (" $\xrightarrow{\text { 数 }}$ " for relative rules)
- $\operatorname{rt}(\operatorname{insert}(x, y s)) \in \mathcal{O}($ length $(y s))$
- $\mathrm{rt}($ isort $(x s, y s)) \in \mathcal{O}($ length $(x s) \cdot($ length $(x s)+$ length $(y s)))$

Note: innermost reduction strategy

Using Dependency Tuples: Top-Down

Example

$$
\begin{aligned}
\text { isort(nil, } y s) & \rightarrow y s \\
\text { isort }(\operatorname{cons}(x, x s), y s) & \rightarrow \text { isort }(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \operatorname{nil}) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(true, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & = \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{true} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & =\operatorname{gt}(x, y)
\end{aligned}
$$

- the recursive isort rule is at most applied linearly often

Using Dependency Tuples: Top-Down

Example

$$
\begin{aligned}
\text { isort(nil, } y s) & \rightarrow y s \\
\text { isort }(\operatorname{cons}(x, x s), y s) & \rightarrow \text { isort }(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \operatorname{nil}) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(true, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & = \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{true} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & =\operatorname{gt}(x, y)
\end{aligned}
$$

- the recursive isort rule is at most applied linearly often
- the recursive insert rule is at most applied quadratically often

Using Dependency Tuples: Top-Down

Example

$$
\begin{aligned}
\text { isort(nil, } y s) & \rightarrow y s \\
\text { isort }(\operatorname{cons}(x, x s), y s) & \rightarrow \text { isort }(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \operatorname{nil}) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(true, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & = \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{true} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & =\operatorname{gt}(x, y)
\end{aligned}
$$

- the recursive isort rule is at most applied linearly often
- the recursive insert rule is at most applied quadratically often
- note: requires reasoning about isort, insert, and if rules!

Using Dependency Tuples: Top-Down

Example

$$
\begin{aligned}
\text { isort }(\text { nil, } y s) & \rightarrow y s \\
\text { isort }(\operatorname{cons}(x, x s), y s) & \rightarrow \text { isort }(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \text { nil }) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(true, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & = \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{tralse} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & =\operatorname{gt}(x, y)
\end{aligned}
$$

- the recursive isort rule is at most applied linearly often
- the recursive insert rule is at most applied quadratically often
- note: requires reasoning about isort, insert, and if rules!
- found via quadratic polynomial interpretation

Using Dependency Tuples: Top-Down

Example

$$
\begin{aligned}
\text { isort }(\mathrm{nil}, y s) & \rightarrow y s \\
\text { isort }(\operatorname{cons}(x, x s), y s) & \rightarrow \text { isort }(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \text { nil }) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(true, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & = \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{truse} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & =\operatorname{gt}(x, y)
\end{aligned}
$$

- the recursive isort rule is at most applied linearly often
- the recursive insert rule is at most applied quadratically often
- note: requires reasoning about isort, insert, and if rules!
- found via quadratic polynomial interpretation
- the recursive if rule is applied as often as the recursive insert rule

Bird's Eye View of the Transformation

Example

$$
\begin{aligned}
\text { isort(nil, } y s) & \rightarrow y s \\
\text { isort(cons }(x, x s), y s) & \rightarrow \text { isort }(x s, \operatorname{insert}(x, y s)) \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \text { nil }) \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
\text { if(}(\operatorname{true}, x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \operatorname{insert}(x, y s)) \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
\operatorname{gt}(0, y) & =\text { false } \\
\operatorname{gt}(\mathrm{s}(x), 0) & =\operatorname{true} \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & \longrightarrow \operatorname{gt}(x, y)
\end{aligned}
$$

(1) abstract terms to integers

Bird's Eye View of the Transformation

Example

$$
\begin{aligned}
& \text { isort }\left(x s^{\prime}, y s\right) \quad \xrightarrow{1} y s \quad \mid \quad x s^{\prime}=1 \\
& \text { isort }(\operatorname{cons}(x, x s), y s) \quad \rightarrow \text { isort }(x s, \operatorname{insert}(x, y s)) \\
& \text { insert }(x, \text { nil }) \rightarrow \operatorname{cons}(x, \text { nil }) \\
& \text { insert }(x, \operatorname{cons}(y, y s)) \quad \rightarrow \text { if }(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) \\
& \text { if }(\text { true, } x, \operatorname{cons}(y, y s)) \quad \rightarrow \operatorname{cons}(y, \text { insert }(x, y s)) \\
& \text { if(false, } x, \operatorname{cons}(y, y s)) \quad \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) \\
& \operatorname{gt}(0, y) \quad \stackrel{=}{\longrightarrow} \text { false } \\
& \operatorname{gt}(\mathrm{s}(x), 0) \quad \underset{ }{=} \text { true } \\
& \operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) \quad \stackrel{=}{\longrightarrow} \operatorname{gt}(x, y)
\end{aligned}
$$

(1) abstract terms to integers

Bird's Eye View of the Transformation

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{l} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{\rightarrow} \operatorname{isort}(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }(x, \text { nil }) & \rightarrow \operatorname{cons}(x, \operatorname{nil}) & \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) & \\
\text { if(true }, x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \operatorname{insert}(x, y s)) & \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) & \\
\operatorname{gt}(0, y) & \xrightarrow{=} \text { false } & \\
\operatorname{gt}(\mathrm{s}(x), 0) & \xrightarrow{=} \operatorname{true} & \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & \xrightarrow{=} \operatorname{gt}(x, y) &
\end{array}
$$

(1) abstract terms to integers

Bird's Eye View of the Transformation

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{l} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow[\rightarrow]{l} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{ } 2+x & y s^{\prime}=1 \\
\text { insert }(x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{if}(\operatorname{gt}(x, y), x, \operatorname{cons}(y, y s)) & \\
\text { if(true }, x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(y, \operatorname{insert}(x, y s)) & \\
\text { if(false, } x, \operatorname{cons}(y, y s)) & \rightarrow \operatorname{cons}(x, \operatorname{cons}(y, y s)) & \\
\operatorname{gt}(0, y) & \xrightarrow{=} \text { false } & \\
\operatorname{gt}(\mathrm{s}(x), 0) & \xrightarrow{=} \operatorname{true} & \\
\operatorname{gt}(\mathrm{s}(x), \mathrm{s}(y)) & \xrightarrow{=} \operatorname{gt}(x, y) &
\end{array}
$$

(1) abstract terms to integers

Bird's Eye View of the Transformation

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \operatorname{isort}(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} \operatorname{if}\left(\operatorname{gt}(x, y), x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1+x \wedge y^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} \operatorname{gt}(x, y) & x^{\prime}=1+x \wedge y^{\prime}=1+y
\end{array}
$$

(1) abstract terms to integers

Bird's Eye View of the Transformation

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \operatorname{isort}(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \operatorname{if}\left(\operatorname{gt}(x, y), x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1+x \wedge y^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} \operatorname{gt}(x, y) & x^{\prime}=1+x \wedge y^{\prime}=1+y
\end{array}
$$

(1) abstract terms to integers

- $[c]\left(x_{1}, \ldots, x_{n}\right)=1+x_{1}+\cdots+x_{n}$ for constructors c
- note: variables range over \mathbb{N}
- just + and .

Bird's Eye View of the Transformation

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \operatorname{if}\left(\operatorname{gt}(x, y), x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1+x \wedge y^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow[\rightarrow]{0} \operatorname{gt}(x, y) & x^{\prime}=1+x \wedge y^{\prime}=1+y
\end{array}
$$

(1) abstract terms to integers

- $[c]\left(x_{1}, \ldots, x_{n}\right)=1+x_{1}+\cdots+x_{n}$ for constructors c
- note: variables range over \mathbb{N}
- just + and .
(2) analyse result size for bottom-SCC (Strongly Connected Component) of call graph using standard ITS tools

Call Graph \& Bottom JCs

Call Graph \& Bottom SCCs

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \operatorname{if}\left(\operatorname{gt}(x, y), x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1+x \wedge y^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow[\rightarrow]{0} \operatorname{gt}(x, y) & x^{\prime}=1+x \wedge y^{\prime}=1+y
\end{array}
$$

(1) abstract terms to integers

- $[c]\left(x_{1}, \ldots, x_{n}\right)=1+x_{1}+\cdots+x_{n}$ for constructors c
- note: variables range over \mathbb{N}
- just + and .
(2) analyse result size for bottom-SCC using standard ITS tools

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \operatorname{if}\left(\operatorname{gt}(x, y), x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1+x \wedge y^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} \operatorname{gt}(x, y) & x^{\prime}=1+x \wedge y^{\prime}=1+y
\end{array}
$$

(1) abstract terms to integers

- $[c]\left(x_{1}, \ldots, x_{n}\right)=1+x_{1}+\cdots+x_{n}$ for constructors c
- note: variables range over \mathbb{N}
- just + and .
(2) analyse result size for bottom-SCC using standard ITS tools

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \operatorname{if}\left(\operatorname{gt}(x, y), x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} 1 & x^{\prime}=1+x \wedge y^{\prime}=1 \\
\operatorname{gt}\left(x^{\prime}, y^{\prime}\right) & \xrightarrow{0} \operatorname{gt}(x, y) & x^{\prime}=1+x \wedge y^{\prime}=1+y
\end{array}
$$

(1) abstract terms to integers

- $[c]\left(x_{1}, \ldots, x_{n}\right)=1+x_{1}+\cdots+x_{n}$ for constructors c
- note: variables range over \mathbb{N}
- just + and .
(2) analyse result size for bottom-SCC using standard ITS tools
(3) analyse runtime of bottom-SCC using standard ITS tools

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

(1) abstract terms to integers

- $[c]\left(x_{1}, \ldots, x_{n}\right)=1+x_{1}+\cdots+x_{n}$ for constructors c
- note: variables range over \mathbb{N}
- just + and .
(2) analyse result size for bottom-SCC using standard ITS tools
(3) analyse runtime of bottom-SCC using standard ITS tools

Abstracting Terms to Integers: Pitfalls

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\rightrightarrows} \mathrm{g}(\mathrm{a})
$$

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \stackrel{\mathrm{g}}{\rightarrow} \mathrm{~g}(\mathrm{a})
$$

innermost rewriting:
$\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \ldots$

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \stackrel{\mathrm{g}}{\longrightarrow} \mathrm{~g}(\mathrm{a})
$$

innermost rewriting:

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \ldots
$$

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\stackrel{ }{\longrightarrow}} \mathrm{g}(\mathrm{a})
$$

innermost rewriting:

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \ldots
$$

- Just ground rewriting?

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\rightrightarrows} \mathrm{g}(\mathrm{a})
$$

innermost rewriting: ground rewriting:
$\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \ldots$
$\mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \ldots$

- Just ground rewriting?

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\rightrightarrows} \mathrm{g}(\mathrm{a})
$$

innermost rewriting:
ground rewriting:

$$
\begin{align*}
& \mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \ldots \\
& \mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{~g}(\mathrm{a})) \xrightarrow{=} \ldots \tag{1}
\end{align*}
$$

$$
\mathcal{O}(\infty)
$$

- Just ground rewriting?

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\rightrightarrows} \mathrm{g}(\mathrm{a})
$$

innermost rewriting: ground rewriting:

$$
\begin{align*}
& \mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \ldots \\
& \mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{~g}(\mathrm{a})) \xrightarrow{=} \ldots \tag{1}
\end{align*}
$$

$$
\mathcal{O}(\infty)
$$

- Just ground rewriting?
- Add terminating variant of relative rules!

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\rightrightarrows} \mathrm{g}(\mathrm{a})
$$

innermost rewriting: ground rewriting:

$$
\begin{align*}
& \mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \rightarrow \ldots \\
& \mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{~g}(\mathrm{a})) \xrightarrow{=} \ldots \tag{1}
\end{align*}
$$

- Just ground rewriting?
- Add terminating variant of relative rules!

Definition

\mathcal{N} is a terminating variant of \mathcal{S} iff \mathcal{N} terminates and every \mathcal{N}-normal form is an \mathcal{S}-normal form.

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\rightrightarrows} \mathrm{g}(\mathrm{a}) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{=} \mathrm{a}
$$

innermost rewriting:
$\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \ldots$
ground rewriting:
$\mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \ldots$

- Just ground rewriting?
- Add terminating variant of relative rules!

Definition

\mathcal{N} is a terminating variant of \mathcal{S} iff \mathcal{N} terminates and every \mathcal{N}-normal form is an \mathcal{S}-normal form.

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\stackrel{ }{\longrightarrow} \mathrm{g}(\mathrm{a}) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{=} \mathrm{a}, ~}
$$

innermost rewriting:
$\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \ldots$
ground rewriting:
$\mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \ldots$
with terminating variant: $\mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \stackrel{=}{\rightarrow} \mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{a}) \rightarrow \ldots$

- Just ground rewriting?
- Add terminating variant of relative rules!

Definition

\mathcal{N} is a terminating variant of \mathcal{S} iff \mathcal{N} terminates and every \mathcal{N}-normal form is an \mathcal{S}-normal form.

Terminating Variants

Term Rewriting	Integer Transition Systems
start terms may have variables	ground start terms only

Example

$$
\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{~g}(x)) \quad \mathrm{f}(x) \rightarrow \mathrm{f}(x) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{\stackrel{ }{\longrightarrow} \mathrm{g}(\mathrm{a}) \quad \mathrm{g}(\mathrm{a}) \xrightarrow{=} \mathrm{a}, ~}
$$

innermost rewriting:
$\mathrm{h}(x) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \mathrm{f}(\mathrm{g}(x)) \rightarrow \ldots$
ground rewriting:
$\mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \ldots$
with terminating variant: $\mathrm{h}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \xrightarrow{=} \mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{a}) \rightarrow \ldots \mathcal{O}(\infty)$

- Just ground rewriting?
- Add terminating variant of relative rules!

Definition

\mathcal{N} is a terminating variant of \mathcal{S} iff \mathcal{N} terminates and every \mathcal{N}-normal form is an \mathcal{S}-normal form.

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a}
$$

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a}
$$

original TRS:

$$
\mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \ldots
$$

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a}
$$

original TRS:

$$
\mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \ldots
$$

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a}
$$

original TRS:
resulting ITS:
$\mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1))$

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a}
$$

original TRS:
resulting ITS:

$$
\mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \ldots
$$

$$
\mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{~g}(1))
$$

$\mathcal{O}(1)$

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a}
$$

original TRS:

$$
\begin{align*}
& \mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \ldots \\
& \mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{~g}(1))
\end{align*}
$$

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a} \quad \mathrm{~g}(x) \xrightarrow{=} \mathrm{a}
$$

original TRS:

$$
\begin{array}{lr}
\mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \rightarrow \ldots & \mathcal{O}(\infty) \\
\mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{~g}(1)) & \mathcal{O}(1)
\end{array}
$$ resulting ITS:

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

TRS not completely defined? \curvearrowright Add suitable terminating variant!

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a} \quad \mathrm{~g}(x) \xrightarrow{=} \mathrm{a}
$$

original TRS:
$\mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \rightarrow \ldots$
resulting ITS:
$\mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1))$

ITS after completion: $\mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1)) \xrightarrow{0} \mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1)) \xrightarrow{0} \ldots$

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

TRS not completely defined? \curvearrowright Add suitable terminating variant!

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a} \quad \mathrm{~g}(x) \xrightarrow{=} \mathrm{a}
$$

original TRS: $\quad \mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \rightarrow \ldots \quad \mathcal{O}(\infty)$ resulting ITS: $\quad \mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1))$
ITS after completion: $\mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1)) \xrightarrow{0} \mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1)) \xrightarrow{0} \ldots \quad \mathcal{O}(\infty)$

Definition

A TRS is completely defined iff its ground normal forms do not contain defined symbols.

TRS not completely defined? \curvearrowright Add suitable terminating variant!

Ensuring Complete Definedness

Term Rewriting	Integer Transition Systems
arbitrary matchers	integer substitutions only

Example

$$
\mathrm{f}(x) \rightarrow \mathrm{f}(\mathrm{~g}(\mathrm{a})) \quad \mathrm{g}(\mathrm{~b}(\mathrm{a})) \rightarrow \mathrm{a} \quad \mathrm{~g}(x) \xrightarrow{=} \mathrm{a}
$$

original TRS: $\quad \mathrm{f}(\mathrm{a}) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \rightarrow \mathrm{f}(\mathrm{g}(\mathrm{a})) \rightarrow \ldots \quad \mathcal{O}(\infty)$ resulting ITS: $\quad \mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1))$
ITS after completion: $\mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1)) \xrightarrow{0} \mathrm{f}(1) \xrightarrow{1} \mathrm{f}(\mathrm{g}(1)) \xrightarrow{0} \ldots \quad \mathcal{O}(\infty)$

Definition

A TRS is completely defined iff its well-typed ground normal forms do not contain defined symbols.

TRS not completely defined? \curvearrowright Add suitable terminating variant!

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \operatorname{if}\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

(1) abstract terms to integers
(2) analyse result size for bottom-SCC using standard ITS tools
(3) analyse runtime of bottom-SCC using standard ITS tools
\$

Call Graph \& Bottom JCs

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \text { insert }(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

(1) abstract terms to integers
(2) analyse result size for bottom-SCC using standard ITS tools
(3) analyse runtime of bottom-SCC using standard ITS tools

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \text { isort }(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

(1) abstract terms to integers
(2) analyse result size for bottom-SCC using standard ITS tools
(3) analyse runtime of bottom-SCC using standard ITS tools

Analyse Size Using Standard ITS Tools

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\operatorname{insert}\left(x, y s^{\prime}\right) & \xrightarrow{1} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} & 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\operatorname{insert}\left(x, y s^{\prime}\right) & \xrightarrow{1} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\operatorname{if}\left(b, x, y s^{\prime}\right) & \xrightarrow{1} & 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

Idea: move "integer context" to weights

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} & \text { if }\left(b, x, y s^{\prime}\right) & \mid y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} & 1+y s^{\prime} & \mid \\
\hline
\end{array}
$$

Idea: move "integer context" to weights

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{0} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} & 1+y+\text { insert }(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} & 1+y s^{\prime} & \mid
\end{array}
$$

Idea: move "integer context" to weights

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{0} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1} & 1+y s^{\prime} & \\
& b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

Idea: move "integer context" to weights

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rlll}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{0} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y s^{\prime}} & 1+y s^{\prime} & \\
& b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

Idea: move "integer context" to weights

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{0} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y} & 1+y+\text { insert }(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y s^{\prime}} & 1+y s^{\prime} & \mid \\
\hline
\end{array}
$$

Idea: move "integer context" to weights $\curvearrowright \operatorname{sz}\left(\operatorname{insert}\left(x, y s^{\prime}\right)\right) \leq 1+x+y s^{\prime}$

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{0} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y s^{\prime}} & 1+y s^{\prime} & \\
& b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

Idea: move "integer context" to weights $\curvearrowright \operatorname{sz}\left(\operatorname{insert}\left(x, y s^{\prime}\right)\right) \leq 1+x+y s^{\prime}$

Example

$$
\mathrm{f}(x) \quad \xrightarrow{1} \quad 2+x \cdot \mathrm{f}(x-1) \quad \mid \quad x>0
$$

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{0} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y s^{\prime}} & 1+y s^{\prime} & \\
& b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

Idea: move "integer context" to weights $\curvearrowright \operatorname{sz}\left(\operatorname{insert}\left(x, y s^{\prime}\right)\right) \leq 1+x+y s^{\prime}$

Example

$$
\mathrm{f}(x) \quad \xrightarrow{1} \quad 2+x \cdot \mathrm{f}(x-1) \quad \mid \quad x>0
$$

Idea: use accumulator

Using Runtime Analysis to Compute Size Bounds

Idea: time bound for insert in transformed rules gives size bound for insert in original rules

Example

$$
\begin{array}{rll|l}
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{2+x} & 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{0} & \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y} & 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow{1+y s^{\prime}} & 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

Idea: move "integer context" to weights $\curvearrowright \operatorname{sz}\left(\operatorname{insert}\left(x, y s^{\prime}\right)\right) \leq 1+x+y s^{\prime}$

Example

$$
\begin{array}{rlll}
\mathrm{f}(x) & \xrightarrow{1} & 2+x \cdot \mathrm{f}(x-1) & x>0 \\
\mathrm{f}(x, a c c) & \xrightarrow{a c c \cdot 2} 2+x \cdot \mathrm{f}(x-1, a c c \cdot x) & \mid & x>0
\end{array}
$$

Idea: use accumulator

Bird's Eye View

Example

$$
\begin{array}{rl|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \operatorname{isort}(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow{1} 2+x & y s^{\prime}=1 \\
\text { insert }\left(x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} \text { if }\left(b, x, y s^{\prime}\right) & y s^{\prime}=1+y+y s \wedge b \leq 1 \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y+\operatorname{insert}(x, y s) & b=1 \wedge y s^{\prime}=1+y+y s \\
\text { if }\left(b, x, y s^{\prime}\right) & \xrightarrow[\rightarrow]{1} 1+y s^{\prime} & b=1 \wedge y s^{\prime}=1+y+y s
\end{array}
$$

(1) abstract terms to integers
(2) analyse result size for bottom-SCC using standard ITS tools
(3) analyse runtime of bottom-SCC using standard ITS tools

Bird's Eye View

Example

$$
\begin{array}{ll|l}
\operatorname{isort}\left(x s^{\prime}, y s\right) & \xrightarrow{1} y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} \operatorname{isort}(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s
\end{array}
$$

(1) abstract terms to integers
(2) analyse result size for bottom-SCC using standard ITS tools
(3) analyse runtime of bottom-SCC using standard ITS tools

Analyse Runtime Using Standard Tools

Removing Nested Function Calls

Example

```
isort(x\mp@subsup{s}{}{\prime},ys) }\quad->\quadys\quadx\mp@subsup{s}{}{\prime}=
isort (x\mp@subsup{s}{}{\prime},ys) }\quad\xrightarrow{}{1}\quad\mathrm{ isort (xs, insert (x,ys)) | xs'}=1+x+x
```

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- $\mathrm{rt}($ insert $(x, y s)) \leq 2 \cdot y s$

Removing Nested Function Calls

Example

$$
\begin{array}{lll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & \operatorname{isort}(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s
\end{array}
$$

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- $\mathrm{rt}($ insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call

Removing Nested Function Calls

Example

$$
\begin{array}{lll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} & \operatorname{isort}(x s, \operatorname{insert}(x, y s)) & x s^{\prime}=1+x+x s
\end{array}
$$

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- $\mathrm{rt}($ insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call

Removing Nested Function Calls

Example

$$
\begin{array}{lll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} & \operatorname{isort}(x s, \text { insert }(x, y s)) & x s^{\prime}=1+x+x s
\end{array}
$$

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- $\mathrm{rt}($ insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}

Removing Nested Function Calls

Example

$$
\begin{array}{ll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} \text { isort }\left(x s, x_{f}\right) & \mid \\
x s^{\prime}=1+x+x s
\end{array}
$$

- sz(insert $(x, y s)) \leq 1+x+y s$
- rt(insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}

Removing Nested Function Calls

Example

$$
\begin{array}{ll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} \text { isort }\left(x s, x_{f}\right) & \mid \\
x s^{\prime}=1+x+x s
\end{array}
$$

- sz(insert $(x, y s)) \leq 1+x+y s$
- rt(insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}
- add constraint " $x_{f} \leq$ size bound"

Removing Nested Function Calls

Example

$$
\begin{array}{lll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} \text { isort }\left(x s, x_{f}\right) & \mid x s^{\prime}=1+x+x s \wedge x_{f} \leq 1+x+y s
\end{array}
$$

- sz(insert $(x, y s)) \leq 1+x+y s$
- rt(insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}
- add constraint " $x_{f} \leq$ size bound"

Removing Nested Function Calls

Example

$$
\begin{array}{lll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s & x s^{\prime}=1 \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} \text { isort }\left(x s, x_{f}\right) & \mid x s^{\prime}=1+x+x s \wedge x_{f} \leq 1+x+y s
\end{array}
$$

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- $\mathrm{rt}($ insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}
- add constraint " $x_{f} \leq$ size bound"
$\curvearrowright \mathrm{rt}\left(\right.$ isort $\left.\left(x s^{\prime}, y s\right)\right) \leq \mathcal{O}\left(x s^{\prime 2}+x s^{\prime} \cdot y s\right)$

Removing Nested Function Calls

Example

$$
\begin{array}{ll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} \text { isort }\left(x s, x_{f}\right) & \mid \\
x s^{\prime}=1 \\
& x s^{\prime}=1+x+x s \wedge x_{f} \leq 1+x+y s
\end{array}
$$

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- rt(insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}
- add constraint " $x_{f} \leq$ size bound"
$\curvearrowright \mathrm{rt}\left(\right.$ isort $\left.\left(x s^{\prime}, y s\right)\right) \leq \mathcal{O}\left(x s^{\prime 2}+x s^{\prime} \cdot y s\right)$
- similar techniques to eliminate outer function calls

Removing Nested Function Calls

Example

$$
\begin{array}{ll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} \text { isort }\left(x s, x_{f}\right) & \mid \\
x s^{\prime}=1 \\
& x s^{\prime}=1+x+x s \wedge x_{f} \leq 1+x+y s
\end{array}
$$

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- rt(insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}
- add constraint " $x_{f} \leq$ size bound"
$\curvearrowright \mathrm{rt}\left(\right.$ isort $\left.\left(x s^{\prime}, y s\right)\right) \leq \mathcal{O}\left(x s^{\prime 2}+x s^{\prime} \cdot y s\right)$
- similar techniques to eliminate outer function calls

$$
\operatorname{times}(\mathrm{s}(x), y) \rightarrow \text { plus }(\operatorname{times}(x, y), y)
$$

Removing Nested Function Calls

Example

$$
\begin{array}{ll|l}
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1} & y s \\
\text { isort }\left(x s^{\prime}, y s\right) & \xrightarrow{1+2 \cdot y s} \text { isort }\left(x s, x_{f}\right) & \mid \\
x s^{\prime}=1 \\
& x s^{\prime}=1+x+x s \wedge x_{f} \leq 1+x+y s
\end{array}
$$

- $\operatorname{sz}(\operatorname{insert}(x, y s)) \leq 1+x+y s$
- $\mathrm{rt}($ insert $(x, y s)) \leq 2 \cdot y s$
- add costs of nested function call
- replace nested function call by fresh variable x_{f}
- add constraint " $x_{f} \leq$ size bound"
$\curvearrowright \mathrm{rt}\left(\right.$ isort $\left.\left(x s^{\prime}, y s\right)\right) \leq \mathcal{O}\left(x s^{\prime 2}+x s^{\prime} \cdot y s\right)$
- similar techniques to eliminate outer function calls \Longrightarrow see paper!

$$
\operatorname{times}(\mathrm{s}(x), y) \rightarrow \text { plus }(\operatorname{times}(x, y), y)
$$

Experiments

ITS tools CoFloCo, KoAT, and PUBS used as back-ends.

Experiments

ITS tools CoFloCo, KoAT, and PUBS used as back-ends.
Results on the TPDB (922 examples):

Experiments

ITS tools CoFloCo, KoAT, and PUBS used as back-ends.
Results on the TPDB (922 examples):

- AProVE + ITS back-end finds better bounds than AProVE \& TcT for 127 TRSs
- transformation a useful additional inference technique for upper bounds

From irc of TRSs to Integer Transition Systems: Summary

- Abstraction from terms to integers
- Modular bottom-up approach using standard ITS tools
- Approach complements and improves state of the art
- Note: abstraction hard-coded to term size
\Rightarrow Future work: more flexible approach?

Derivational_Complexity_Full_Rewriting/AG01/\#3.12, TPDB

| $\operatorname{app}($ nil,$y)$ | $\rightarrow y$ | $\operatorname{app}(\operatorname{add}(n, x), y)$ |
| ---: | :--- | :--- |$\rightarrow \operatorname{add}(n, \operatorname{app}(x, y))$

Derivational_Complexity_Full_Rewriting/AG01/\#3.12, TPDB

$$
\begin{array}{rl|l}
\operatorname{app}(\text { nil }, y) & \rightarrow y & \operatorname{app}(\operatorname{add}(n, x), y)
\end{array} \rightarrow \operatorname{add}(n, \operatorname{app}(x, y))
$$

AProVE finds (tight) upper bound $\mathcal{O}\left(n^{4}\right)$ for $\mathrm{dc}_{\mathcal{R}}$:

Derivational_Complexity_Full_Rewriting/AG01/\#3.12, TPDB

$$
\begin{array}{rl|l}
\operatorname{app}(\text { nil }, y) & \rightarrow y & \operatorname{app}(\operatorname{add}(n, x), y)
\end{array} \rightarrow \operatorname{add}(n, \operatorname{app}(x, y))
$$

AProVE finds (tight) upper bound $\mathcal{O}\left(n^{4}\right)$ for $\mathrm{dc}_{\mathcal{R}}$:
(1) Add generator rules \mathcal{G}, so analyse $\mathrm{rc}_{\mathcal{R} / \mathcal{G}}$ instead (FroCoS'19)

Derivational_Complexity_Full_Rewriting/AG01/\#3.12, TPDB

$$
\begin{array}{rl|l}
\operatorname{app}(\text { nil }, y) & \rightarrow y & \operatorname{app}(\operatorname{add}(n, x), y)
\end{array} \rightarrow \operatorname{add}(n, \operatorname{app}(x, y))
$$

AProVE finds (tight) upper bound $\mathcal{O}\left(n^{4}\right)$ for $\mathrm{dc}_{\mathcal{R}}$:
(1) Add generator rules \mathcal{G}, so analyse $\mathrm{rc}_{\mathcal{R} / \mathcal{G}}$ instead (FroCoS'19)
(2) Detect: innermost is worst case here, analyse $\operatorname{irc}_{\mathcal{R} / \mathcal{G}}$ instead (LPAR'17)

Derivational_Complexity_Full_Rewriting/AG01/\#3.12, TPDB

```
app(nil,y) ->y 
reverse(nil) }->\mathrm{ nil
shuffle(nil) }->\mathrm{ nil
```

```
reverse(add}(n,x))->\operatorname{app}(reverse(x),\operatorname{add}(n,\operatorname{nil})
```

reverse(add}(n,x))->\operatorname{app}(reverse(x),\operatorname{add}(n,\operatorname{nil})
shuffle(add}(n,x))->\operatorname{add}(n,\mathrm{ shuffle(reverse(x)))

```
shuffle(add}(n,x))->\operatorname{add}(n,\mathrm{ shuffle(reverse(x)))
```

AProVE finds (tight) upper bound $\mathcal{O}\left(n^{4}\right)$ for $\mathrm{dc}_{\mathcal{R}}$:
(1) Add generator rules \mathcal{G}, so analyse $\mathrm{rc}_{\mathcal{R} / \mathcal{G}}$ instead (FroCoS'19)
(2) Detect: innermost is worst case here, analyse $\operatorname{irc}_{\mathcal{R} / \mathcal{G}}$ instead (LPAR'17)
(3) Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS instead (FroCoS'17)

Derivational_Complexity_Full_Rewriting/AG01/\#3.12, TPDB

| $\operatorname{app}($ nil,$y)$ | $\rightarrow y$ | $\operatorname{app}(\operatorname{add}(n, x), y)$ |
| ---: | :--- | :--- |$\rightarrow \operatorname{add}(n, \operatorname{app}(x, y))$

AProVE finds (tight) upper bound $\mathcal{O}\left(n^{4}\right)$ for $\mathrm{dc}_{\mathcal{R}}$:
(1) Add generator rules \mathcal{G}, so analyse $\mathrm{rc}_{\mathcal{R} / \mathcal{G}}$ instead (FroCoS'19)
(2) Detect: innermost is worst case here, analyse $\operatorname{irc}_{\mathcal{R} / \mathcal{G}}$ instead (LPAR'17)
(3) Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS instead (FroCoS'17)
(4) ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS functions, combine to complexity of RITS

Derivational_Complexity_Full_Rewriting/AG01/\#3.12, TPDB

$$
\begin{array}{rl|l}
\operatorname{app}(\text { nil }, y) & \rightarrow y & \operatorname{app}(\operatorname{add}(n, x), y)
\end{array} \rightarrow \operatorname{add}(n, \operatorname{app}(x, y))
$$

AProVE finds (tight) upper bound $\mathcal{O}\left(n^{4}\right)$ for $\mathrm{dc}_{\mathcal{R}}$:
(1) Add generator rules \mathcal{G}, so analyse $\mathrm{rc}_{\mathcal{R} / \mathcal{G}}$ instead (FroCoS'19)
(2) Detect: innermost is worst case here, analyse $\operatorname{irc}_{\mathcal{R} / \mathcal{G}}$ instead (LPAR'17)
(3) Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS instead (FroCoS'17)
(4) ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS functions, combine to complexity of RITS
(© Upper bound $\mathcal{O}\left(n^{4}\right)$ for RITS complexity carries over to $\mathrm{dc}_{\mathcal{R}}$ of input!

AProVE finds lower bound $\Omega\left(n^{3}\right)$ for $\mathrm{dc}_{\mathcal{R}}$ using induction technique.

Input for Automated Tools (1/4)

Automated tools for TRS Complexity at the Termination Competition 2022:

- AProVE: https://aprove.informatik.rwth-aachen.de/
- TcT: https://tcs-informatik.uibk.ac.at/tools/tct/
${ }^{57}$ For TcT Web, use only VAR and RULES entries in the text format and configure other aspects (e.g., start terms) in the web interface.

Input for Automated Tools (1/4)

Automated tools for TRS Complexity at the Termination Competition 2022:

- AProVE: https://aprove.informatik.rwth-aachen.de/
- TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:

- AProVE: https://aprove.informatik.rwth-aachen.de/interface
- TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

[^33]
Input for Automated Tools (1/4)

Automated tools for TRS Complexity at the Termination Competition 2022:

- AProVE: https://aprove.informatik.rwth-aachen.de/
- TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:

- AProVE: https://aprove.informatik.rwth-aachen.de/interface
- TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity: ${ }^{57}$
(VAR $\times \mathrm{y}$)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
)
> ${ }^{57}$ For TcT Web, use only VAR and RULES entries in the text format and configure other aspects (e.g., start terms) in the web interface.

Input for Automated Tools (2/4)

Innermost runtime complexity:

```
(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(STRATEGY INNERMOST)
(RULES
    plus(0, y) -> y
    plus(s(x), y) -> s(plus(x, y))
)
```


Input for Automated Tools (3/4)

Derivational complexity:
(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))
)

Input for Automated Tools (4/4)

Innermost derivational complexity:

```
(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(STRATEGY INNERMOST)
(RULES
    plus(0, y) -> y
    plus(s(x), y) -> s(plus(x, y))
)
```


A Landscape of Complexity Properties and Transformations

A Landscape of Complexity Properties and Transformations

A Landscape of Complexity Properties and Transformations

[^34]
Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to term rewriting

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to term rewriting

Challenge for translation to TRS: OCaml is higher-order - functions can take functions as arguments: $\operatorname{map}(F, x s)$

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to term rewriting

Challenge for translation to TRS: OCaml is higher-order - functions can take functions as arguments: $\operatorname{map}(F, x s)$

Solution:

- Defunctionalisation to: a(a(map, $F), x s)$
- Analyse start term with non-functional parameter types, then partially evaluate functions to instantiate higher-order variables
- Further program transformations
\Rightarrow First-order TRS \mathcal{R} with $\operatorname{rc}_{\mathcal{R}}(n)$ an upper bound for the complexity of the OCaml program

Program Complexity Analysis via Term Rewriting: Prolog and Java

Complexity analysis for Prolog programs and for Java programs by translation to term rewriting

Program Complexity Analysis via Term Rewriting: Prolog and Java

Complexity analysis for Prolog programs and for Java programs by translation to term rewriting

Common ideas:

- Analyse program via symbolic execution and generalisation (a form of abstract interpretation ${ }^{61}$)
- Deal with language specifics in program analysis
- Extract TRS \mathcal{R} such that $\mathrm{rc}_{\mathcal{R}}(n)$ is provably at least as high as runtime of program on input of size n
- Can represent tree structures of program as terms in TRS!
> ${ }^{61}$ P. Cousot, R. Cousot: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints, POPL '77

Current Developments

- amortised complexity analysis for term rewriting ${ }^{62}$
${ }^{62}$ G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP '20

Current Developments

- amortised complexity analysis for term rewriting ${ }^{62}$
- probabilistic term rewriting \rightarrow upper bounds on expected runtime ${ }^{63}$

[^35]
Current Developments

- amortised complexity analysis for term rewriting ${ }^{62}$
- probabilistic term rewriting \rightarrow upper bounds on expected runtime ${ }^{63}$
- complexity analysis for logically constrained rewriting with built-in data types from SMT theories (integers, booleans, arrays, ...) ${ }^{64}$

[^36]
Current Developments

- amortised complexity analysis for term rewriting ${ }^{62}$
- probabilistic term rewriting \rightarrow upper bounds on expected runtime ${ }^{63}$
- complexity analysis for logically constrained rewriting with built-in data types from SMT theories (integers, booleans, arrays, ...) ${ }^{64}$
- direct analysis of complexity for higher-order term rewriting ${ }^{65}$

[^37]
Current Developments

- amortised complexity analysis for term rewriting ${ }^{62}$
- probabilistic term rewriting \rightarrow upper bounds on expected runtime ${ }^{63}$
- complexity analysis for logically constrained rewriting with built-in data types from SMT theories (integers, booleans, arrays, ...) ${ }^{64}$
- direct analysis of complexity for higher-order term rewriting ${ }^{65}$
- analysis of parallel-innermost runtime complexity ${ }^{66}$

[^38]
III. Termination and Complexity

 Proof Certification
Certification: Who Watches the Watchers?

- Termination and complexity analysis tools are large, e.g., AProVE has several 100,000 s LOC - most likely with bugs!

Certification: Who Watches the Watchers?

- Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC - most likely with bugs!
- Observation in early Termination Competitions: some tools disagreed on YES / NO for termination

Certification: Who Watches the Watchers?

- Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC - most likely with bugs!
- Observation in early Termination Competitions: some tools disagreed on YES / NO for termination
- Step 1: Require human-readable proof output. But: can be large!

Certification: Who Watches the Watchers?

- Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC - most likely with bugs!
- Observation in early Termination Competitions: some tools disagreed on YES / NO for termination
- Step 1: Require human-readable proof output. But: can be large!
- Step 2: Machine-readable XML proof output, can be certified independently by trustworthy tools based on Coq and Isabelle

Certification: Who Watches the Watchers?

- Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC - most likely with bugs!
- Observation in early Termination Competitions: some tools disagreed on YES / NO for termination
- Step 1: Require human-readable proof output. But: can be large!
- Step 2: Machine-readable XML proof output, can be certified independently by trustworthy tools based on Coq and Isabelle
- \sim 2007/8: projects A3PAT ${ }^{67}$, CoLoR ${ }^{68}$, IsaFoR ${ }^{69}$ formalise term rewriting, termination, proof techniques \rightarrow automatic proof checkers

[^39]
Certification: Who Watches the Watchers?

- Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC - most likely with bugs!
- Observation in early Termination Competitions: some tools disagreed on YES / NO for termination
- Step 1: Require human-readable proof output. But: can be large!
- Step 2: Machine-readable XML proof output, can be certified independently by trustworthy tools based on Coq and Isabelle
- \sim 2007/8: projects A3PAT ${ }^{67}$, CoLoR ${ }^{68}$, IsaFoR ${ }^{69}$ formalise term rewriting, termination, proof techniques \rightarrow automatic proof checkers
- performance bottleneck: computations in theorem prover

[^40]
Certification: Who Watches the Watchers?

- Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC - most likely with bugs!
- Observation in early Termination Competitions: some tools disagreed on YES / NO for termination
- Step 1: Require human-readable proof output. But: can be large!
- Step 2: Machine-readable XML proof output, can be certified independently by trustworthy tools based on Coq and Isabelle
- ~ 2007 /8: projects A3PAT 67, CoLoR ${ }^{68}$, IsaFoR ${ }^{69}$ formalise term rewriting, termination, proof techniques \rightarrow automatic proof checkers
- performance bottleneck: computations in theorem prover
- solution: extract source code (Haskell, OCaml, ...) for proof checker \rightarrow CeTA tool from IsaFoR

[^41]
Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/
CeTA can certify proofs for...

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/
CeTA can certify proofs for...

- termination of TRSs (several flavours), ITSs, and LLVM programs ${ }^{70}$
${ }^{70} \mathrm{M}$. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE's termination method for LLVM IR, CPP '21

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/
CeTA can certify proofs for...

- termination of TRSs (several flavours), ITSs, and LLVM programs ${ }^{70}$
- non-termination for TRSs
${ }^{70} \mathrm{M}$. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE's termination method for LLVM IR, CPP '21

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/
CeTA can certify proofs for...

- termination of TRSs (several flavours), ITSs, and LLVM programs ${ }^{70}$
- non-termination for TRSs
- upper bounds for complexity
${ }^{70}$ M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE's termination method for LLVM IR, CPP '21

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/
CeTA can certify proofs for...

- termination of TRSs (several flavours), ITSs, and LLVM programs ${ }^{70}$
- non-termination for TRSs
- upper bounds for complexity
- confluence and non-confluence proofs for TRSs

[^42]
Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/
CeTA can certify proofs for...

- termination of TRSs (several flavours), ITSs, and LLVM programs ${ }^{70}$
- non-termination for TRSs
- upper bounds for complexity
- confluence and non-confluence proofs for TRSs
- safety: invariants for ITSs ${ }^{71}$

[^43]
Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/
CeTA can certify proofs for...

- termination of TRSs (several flavours), ITSs, and LLVM programs ${ }^{70}$
- non-termination for TRSs
- upper bounds for complexity
- confluence and non-confluence proofs for TRSs
- safety: invariants for ITSs ${ }^{71}$

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

[^44]
termCOMP with Certification $(\checkmark)(1 / 2)$

Termination Com... x \&

Termination Competition 2022 [show conigs] [Show scorse] [One columm]

Competition-Wide Ranking

Advancing-the-State-of-the-Art Ranking

Matchbox(67) MultumNonMulta(48) APioVE+LoAT(31.25) SOL(16) NaTT(1) NTI+CT|(1) TTT2+TCT(0.375) iRankFinder(0) MU-TERM(0) Ultimate(0) Wanda(0)
Termination of Rewriting Progress: 100\%, CPU Time: 85d 8.05.33, Node Time: 34d 3.49:50

Termination of Programs prooress 100\%, CPu Time: 3d 32:22:33, Node Time: 2d 4.20:44

C 54224	C integer 54225	Integer Transition Systems $5+213$	Logic Programming 54212
11.1. Aprove22-C	1. Aprove22-C	1. irankfinder v1.3.2	- 1. NT\|+cTI_22
2. UltimateAutomizer2022v2	12. UltimateAutomizer2022v2	2. LoAT TermComp 2021	2. AProVE21

Complexity Analysis Prooress: 100\%, CPU Time: 129a 22:10:39, Noce Time:42d 19:13:03

Derivational Complexity. TRS 5421554214	Derivational Complexity: TRS Innermost 5422154217	Runtime Complexity: TRS 5621854216
- 1. AProVE21	- 1. AProVE21	1. AProVE21
$\square 1$. tct-trs v3.2.0 2020-06-28	/1. tct-trs v3.2.0 2020-06-28	2. tct-trs v3.2.0 2020-06-28

termCOMP with Certification $(\checkmark)(2 / 2)$

Let's zoom in ...
Termination of Rewriting Progress: 100\%, CPU Time: 85d 8:05:33, Node Time: 34d 3:4

TRS Standard 5420054199

SRS Standard 5420254201

termCOMP with Certification $(\checkmark)(2 / 2)$

Let's zoom in ...
Termination of Rewriting Progress: 100\%, CPU Time: 85d 8:05:33, Node Time: 34d 3:4

TRS Standard 5420054199

	1. AProVE21
\square	-1. AProVE21
	2. NaTT 2.3.2
	3. ttt2-1.20
\square	2. ttt2-1.20
\square	4. muterm 6.0.3
\square	-3. NaTT 1.6 .2
	5. NTI_22

SRS Standard 5420254201

\Rightarrow proof certification is competitive!

Termination and Complexity: Conclusion

- Termination and complexity analysis: active fields of research

Termination and Complexity: Conclusion

- Termination and complexity analysis: active fields of research
- Push-button tools to prove (non-)termination and to infer upper and lower complexity bounds available

Termination and Complexity: Conclusion

- Termination and complexity analysis: active fields of research
- Push-button tools to prove (non-)termination and to infer upper and lower complexity bounds available
- Cross-fertilisation between techniques for different formalisms (integer transition systems, functional programs, ...)

Termination and Complexity: Conclusion

- Termination and complexity analysis: active fields of research
- Push-button tools to prove (non-)termination and to infer upper and lower complexity bounds available
- Cross-fertilisation between techniques for different formalisms (integer transition systems, functional programs, ...)
- Certification helps raise trust in automatically found proofs of (non-)termination and complexity bounds

Termination and Complexity: Conclusion

- Termination and complexity analysis: active fields of research
- Push-button tools to prove (non-)termination and to infer upper and lower complexity bounds available
- Cross-fertilisation between techniques for different formalisms (integer transition systems, functional programs, ...)
- Certification helps raise trust in automatically found proofs of (non-)termination and complexity bounds

Thanks a lot for your attention!

References I

围 E．Albert，P．Arenas，S．Genaim，G．Puebla，and D．Zanardini．Cost analysis of object－oriented bytecode programs．Theoretical Computer Science，413（1）：142－159， 2012.

囦 C．Alias，A．Darte，P．Feautrier，and L．Gonnord．Multi－dimensional rankings，program termination，and complexity bounds of flowchart programs．In SAS＇10，pages 117－133， 2010.

T．Arts and J．Giesl．Termination of term rewriting using dependency pairs．Theoretical Computer Science，236（1－2）：133－178， 2000.

M．Avanzini and G．Moser．Dependency pairs and polynomial path orders．In RTA＇09，pages 48－62， 2009.

國 M．Avanzini and G．Moser．A combination framework for complexity． Information and Computation，248：22－55， 2016.

References II

围 M. Avanzini, G. Moser, and M. Schaper. TcT: Tyrolean Complexity Tool. In TACAS '16, pages 407-423, 2016.
(M. Avanzini, U. Dal Lago, and A. Yamada. On probabilistic term rewriting. Science of Computer Programming, 185, 2020.
(1. Baudon, C. Fuhs, and L. Gonnord. Analysing parallel complexity of term rewriting. In LOPSTR '22, 2022. To appear.

- J. Berdine, B. Cook, D. Distefano, and P. W. O'Hearn. Automatic termination proofs for programs with shape-shifting heaps. In CAV '06, pages 386-400, 2006.
R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: algebraic bound computation for loops. In LPAR (Dakar) '10, pages 103-118, 2010.

References III

（ F．Blanqui and A．Koprowski．CoLoR：a Coq library on well－founded rewrite relations and its application to the automated verification of termination certificates．Mathematical Structures in Computer Science， 21（4）：827－859， 2011.

雷 G．Bonfante，A．Cichon，J．Marion，and H．Touzet．Algorithms with polynomial interpretation termination proof．Journal of Functional Programming，11（1）：33－53， 2001.

图 C．Borralleras，S．Lucas，A．Oliveras，E．Rodríguez－Carbonell，and A．Rubio．SAT modulo linear arithmetic for solving polynomial constraints．Journal of Automated Reasoning，48（1）：107－131， 2012.

目 M．Brockschmidt，C．Otto，and J．Giesl．Modular termination proofs of recursive Java Bytecode programs by term rewriting．In RTA＇11， pages 155－170， 2011.

References IV

图 M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs for Java programs with cyclic data. In CAV '12, pages 105-122, 2012a.

- M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detection of non-termination and NullPointerExceptions for Java Bytecode. In FoVeOOS '11, pages 123-141, 2012b.

围 M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through cooperation. In CAV '13, pages 413-429, 2013.
(M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: temporal property verification. In TACAS '16, pages 387-393, 2016a.
R M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and size complexity of integer programs. ACM Transactions on Programming Languages and Systems, 38(4), 2016b.

References V

R M. Brockschmidt, S. J. C. Joosten, R. Thiemann, and A. Yamada. Certifying safety and termination proofs for integer transition systems. In CADE '17, pages 454-471, 2017.
國 H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. W. O'Hearn. Proving nontermination via safety. In TACAS '14, pages 156-171, 2014.
囦 M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT solving for termination proofs with recursive path orders and dependency pairs. Journal of Automated Reasoning, 49(1):53-93, 2012.
(-i. E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated certified proofs with CiME3. In RTA '11, pages 21-30, 2011.
B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV '06, pages 415-418, 2006a.

References VI

(R. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In PLDI '06, pages 415-426, 2006b.

R B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In PLDI '07, pages 320-330, 2007.
B. Cook, C. Fuhs, K. Nimkar, and P. W. O'Hearn. Disproving termination with overapproximation. In FMCAD '14, pages 67-74, 2014.

固 B. Cook, H. Khlaaf, and N. Piterman. Verifying increasingly expressive temporal logics for infinite-state systems. Journal of the ACM, 64(2): 15:1-15:39, 2017.
國 P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In POPL '77, pages 238-252, 1977.

References VII

（ N．Dershowitz．Orderings for term－rewriting systems．Theoretical Computer Science，17（3）：279－301， 1982.

N．Dershowitz and Z．Manna．Proving termination with multiset orderings．Communications of the ACM，22（8）：465－476， 1979.

围 F．Emmes，T．Enger，and J．Giesl．Proving non－looping non－termination automatically．In IJCAR＇12，pages 225－240， 2012.

固 J．Endrullis，J．Waldmann，and H．Zantema．Matrix interpretations for proving termination of term rewriting．Journal of Automated Reasoning，40（2－3）：195－220， 2008.

圊 S．Falke and D．Kapur．A term rewriting approach to the automated termination analysis of imperative programs．In CADE＇09，pages 277－293， 2009.

References VIII

嗇 A．Flores－Montoya and R．Hähnle．Resource analysis of complex programs with cost equations．In APLAS＇14，pages 275－295， 2014.

國 F．Frohn and J．Giesl．Analyzing runtime complexity via innermost runtime complexity．In Proc．LPAR＇17，pages 249－268，2017a．

图 F．Frohn and J．Giesl．Complexity analysis for Java with AProVE．In iFM＇17，pages 85－101，2017b．

目 F．Frohn and J．Giesl．Proving non－termination and lower runtime bounds with loat（system description）．In IJCAR＇22，pages 712－722， 2022.

葍 F．Frohn，J．Giesl，J．Hensel，C．Aschermann，and T．Ströder．Lower bounds for runtime complexity of term rewriting．Journal of Automated Reasoning，59（1）：121－163， 2017.

References IX

國 F. Frohn, M. Naaf, M. Brockschmidt, and J. Giesl. Inferring lower runtime bounds for integer programs. ACM Transactions on Programming Languages and Systems, 42(3):13:1-13:50, 2020.
(1) C. Fuhs. Transforming derivational complexity of term rewriting to runtime complexity. In FroCoS '19, pages 348-364, 2019.
R. Cuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT solving for termination analysis with polynomial interpretations. In SAT '07, pages 340-354, 2007.
(C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal termination. In RTA '08, pages 110-125, 2008a.
R C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and P. Schneider-Kamp. Search techniques for rational polynomial orders. In AISC '08, pages 109-124, 2008b.

References X

國 C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of integer term rewriting. In RTA '09, pages 32-47, 2009.
A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting systems. Applicable Algebra in Engineering, Communication and Computing, 15(3-4):149-171, 2004.

嗇 J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of higher-order functions. In FroCoS '05, pages 216-231, 2005.
(in J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving dependency pairs. Journal of Automated Reasoning, 37 (3):155-203, 2006.

References XI

嗇 J．Giesl，M．Raffelsieper，P．Schneider－Kamp，S．Swiderski，and R．Thiemann．Automated termination proofs for Haskell by term rewriting．ACM Transactions on Programming Languages and Systems，33（2）：1－39，2011．See also http：／／aprove．informatik．rwth－aachen．de／eval／Haskell／．

囯 J．Giesl，T．Ströder，P．Schneider－Kamp，F．Emmes，and C．Fuhs． Symbolic evaluation graphs and term rewriting：A general methodology for analyzing logic programs．In PPDP＇12，pages 1－12， 2012.

围 J．Giesl，C．Aschermann，M．Brockschmidt，F．Emmes，F．Frohn， C．Fuhs，J．Hensel，C．Otto，M．Plücker，P．Schneider－Kamp， T．Ströder，S．Swiderski，and R．Thiemann．Analyzing program termination and complexity automatically with AProVE．Journal of Automated Reasoning，58（1）：3－31， 2017.

References XII

囯 S．Gulwani，K．K．Mehra，and T．M．Chilimbi．SPEED：precise and efficient static estimation of program computational complexity．In POPL＇09，pages 127－139， 2009.
－A．Gupta，T．A．Henzinger，R．Majumdar，A．Rybalchenko，and R．－G． Xu．Proving non－termination．In POPL＇08，pages 147－158， 2008.
击 M．W．Haslbeck and R．Thiemann．An isabelle／hol formalization of aprove＇s termination method for LLVM IR．In CPP＇21，pages 238－249， 2021.

囦 J．Hensel，J．Giesl，F．Frohn，and T．Ströder．Termination and complexity analysis for programs with bitvector arithmetic by symbolic execution．Journal of Logical and Algebraic Methods in Programming， 97：105－130， 2018.

References XIII

葍 J．Hensel，C．Mensendiek，and J．Giesl．AProVE：Non－termination witnesses for C programs－（competition contribution）．In TACAS＇22， Part II，pages 403－407， 2022.

囯 N．Hirokawa and A．Middeldorp．Tyrolean Termination Tool： Techniques and features．Information and Computation，205（4）： 474－511， 2007.

圊 N．Hirokawa and G．Moser．Automated complexity analysis based on the dependency pair method．In IJCAR＇08，pages 364－379， 2008.

囲 N．Hirokawa and G．Moser．Automated complexity analysis based on context－sensitive rewriting．In RTA－TLCA＇14，pages 257－271， 2014.

D．Hofbauer and C．Lautemann．Termination proofs and the length of derivations．In RTA＇89，pages 167－177， 1989.

References XIV

围 J．Hoffmann and S．Jost．Two decades of automatic amortized resource analysis．Mathematical Structures in Computer Science，pages 1－31， 2022.
囯 J．Hoffmann and Z．Shao．Type－based amortized resource analysis with integers and arrays．Journal of Functional Programming，25， 2015.
围 J．Hoffmann，K．Aehlig，and M．Hofmann．Resource aware ML．In CAV＇12，pages 781－786， 2012.

嗇 H．Hong and D．Jakuš．Testing positiveness of polynomials．Journal of Automated Reasoning，21（1）：23－38， 1998.
嗇 I．S．Hristakiev．Confluence Analysis for a Graph Programming Language．PhD thesis，University of York， 2009.

References XV

圊 S．Kamin and J．－J．Lévy．Two generalizations of the recursive path ordering．Unpublished Manuscript，University of Illinois，Urbana，IL， USA， 1980.

嗇 D．E．Knuth and P．B．Bendix．Simple word problems in universal algebras．Computational Problems in Abstract Algebra，pages 263－297， 1970.
囯 C．Kop．Higher Order Termination．PhD thesis，VU Amsterdam， 2012.
目 C．Kop and N．Nishida．Term rewriting with logical constraints．In FroCoS＇13，pages 343－358， 2013.

围 C．Kop and D．Vale．Tuple interpretations for higher－order complexity． In FSCD＇21，pages 31：1－31：22， 2021.
嗇 A．Koprowski and J．Waldmann．Max／plus tree automata for termination of term rewriting．Acta Cybernetica，19（2）：357－392， 2009.

References XVI

䍰 K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order. Information and Computation, 183(2):165-186, 2003.
R. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In RTA '09, pages 295-304, 2009.
D. S. Lankford. Canonical algebraic simplification in computational logic. Technical Report ATP-25, University of Texas, 1975.
(R. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Proving termination of imperative programs using Max-SMT. In FMCAD '13, pages 218-225, 2013.
俥 L. Leutgeb, G. Moser, and F. Zuleger. Automated expected amortised cost analysis of probabilistic data structures. In CAV '22, Part II, pages 70-91, 2022.

References XVII

R N. Lommen, F. Meyer, and J. Giesl. Automatic complexity analysis of integer programs via triangular weakly non-linear loops. In IJCAR '22, pages 734-754, 2022.
S. Lucas. Polynomials over the reals in proofs of termination: from theory to practice. RAIRO - Theoretical Informatics and Applications, 39(3):547-586, 2005.

图 S. Lucas. Context-sensitive rewriting. ACM Computing Surveys, 53(4): 78:1-78:36, 2020.

囲 J. McCarthy. Recursive functions of symbolic expressions and their computation by machine, part I. Communications of the ACM, 3(4): 184-195, 1960.
A. Merayo Corcoba. Resource analysis of integer and abstract programs. PhD thesis, Universidad Complutense de Madrid, 2022.

References XVIII

国 F．Meyer，M．Hark，and J．Giesl．Inferring expected runtimes of probabilistic integer programs using expected sizes．In TACAS＇21， Part I，pages 250－269， 2021.
国 G．Moser and M．Schaper．From Jinja bytecode to term rewriting：A complexity reflecting transformation．Information and Computation， 261：116－143， 2018.
園 G．Moser and A．Schnabl．The derivational complexity induced by the dependency pair method．Logical Methods in Computer Science，7（3）， 2011a．
图 G．Moser and A．Schnabl．Termination proofs in the dependency pair framework may induce multiple recursive derivational complexity．In RTA＇11，pages 235－250，2011b．

References XIX

© G. Moser and M. Schneckenreither. Automated amortised resource analysis for term rewrite systems. Science of Computer Programming, 185, 2020.
圊 G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on matrix and context dependent interpretations. In FSTTCS '08, pages 304-315, 2008.
(1. M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. Complexity analysis for term rewriting by integer transition systems. In FroCoS '17, pages 132-150, 2017.
(F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for polynomial derivational complexity of term rewriting. In LPAR (Yogyakarta) '10, pages 550-564, 2010.

References XX

R. L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term rewriting by dependency pairs. Journal of Automated Reasoning, 51(1):27-56, 2013.
R. P. W. O'Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data structures. In CSL '01, pages 1-19, 2001.

击 C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated termination analysis of Java Bytecode by term rewriting. In RTA '10, pages 259-276, 2010.

É. Payet. Loop detection in term rewriting using the eliminating unfoldings. Theoretical Computer Science, 403(2-3), 2008.
(A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking functions. In VMCAI '04, pages 239-251, 2004.

References XXI

围 A．Schnabl and J．G．Simonsen．The exact hardness of deciding derivational and runtime complexity．In CSL＇11，pages 481－495， 2011.

围 P．Schneider－Kamp，J．Giesl，A．Serebrenik，and R．Thiemann． Automated termination proofs for logic programs by term rewriting． ACM Transactions on Computational Logic，11（1）：1－52， 2009.

目 M．Sinn，F．Zuleger，and H．Veith．A simple and scalable static analysis for bound analysis and amortized complexity analysis．In CAV＇14，pages 745－761， 2014.

國 T．Ströder，F．Emmes，P．Schneider－Kamp，J．Giesl，and C．Fuhs．A linear operational semantics for termination and complexity analysis of ISO Prolog．In LOPSTR＇11，pages 237－252， 2012.

References XXII

囯 T．Ströder，J．Giesl，M．Brockschmidt，F．Frohn，C．Fuhs，J．Hensel， P．Schneider－Kamp，and C．Aschermann．Automatically proving termination and memory safety for programs with pointer arithmetic． Journal of Automated Reasoning，58（1）：33－65， 2017.

A．Stump，G．Sutcliffe，and C．Tinelli．Starexec：A cross－community infrastructure for logic solving．In IJCAR＇14，pages 367－373， 2014. https：／／www．starexec．org／．

囲 R．Thiemann and C．Sternagel．Certification of termination proofs using CeTA．In TPHOLs＇09，pages 452－468， 2009.

國 A．M．Turing．On computable numbers，with an application to the Entscheidungsproblem．Proceedings of the London Mathematical Society，42（2）：230－265， 1936.

A．M．Turing．Checking a large routine．In Report of a Conference on High Speed Automatic Calculating Machines，pages 67－69， 1949.

References XXIII

（ F．van Raamsdonk．Translating logic programs into conditional rewriting systems．In ICLP＇97，pages 168－182， 1997.
國 P．Wang，H．Fu，A．K．Goharshady，K．Chatterjee，X．Qin，and W．Shi． Cost analysis of nondeterministic probabilistic programs．In PLDI＇19， pages 204－220， 2019.
䍰 A．Weiermann．Termination proofs for term rewriting systems by lexicographic path orderings imply multiply recursive derivation lengths．Theoretical Computer Science，139（1\＆2）：355－362， 1995.

嗇 S．Winkler and G．Moser．Runtime complexity analysis of logically constrained rewriting．In LOPSTR＇20，pages 37－55， 2020.

A．Yamada．Tuple interpretations for termination of term rewriting． Journal of Automated Reasoning，2022．To appear．Online at https：／／doi．org／10．1007／s10817－022－09640－4．

References XXIV

（ A．Yamada，K．Kusakari，and T．Sakabe．A unified ordering for termination proving．Science of Computer Programming，111：110－134， 2015.

國 H．Zankl and A．Middeldorp．Satisfiability of non－linear（ir）rational arithmetic．In LPAR（Dakar）＇10，pages 481－500， 2010.

R．Zankl，N．Hirokawa，and A．Middeldorp．KBO orientability．Journal of Automated Reasoning，43（2）：173－201， 2009.

圊 H．Zankl，C．Sternagel，D．Hofbauer，and A．Middeldorp．Finding and certifying loops．In SOFSEM＇10，pages 755－766， 2010.

䡒 J．Zhao，S．Nagarakatte，M．M．K．Martin，and S．Zdancewic． Formalizing the LLVM intermediate representation for verified program transformations．In POPL＇12，pages 427－440， 2012.

[^0]: ${ }^{2}$ R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) '10
 ${ }^{3}$ A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS '14
 ${ }^{4}$ E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs, TCS '12
 ${ }^{5}$ M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized Complexity Analysis, CAV '14
 ${ }^{6}$ C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs, SAS '10
 ${ }^{7}$ M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS '16

[^1]: ${ }^{2}$ R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) '10
 ${ }^{3}$ A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS '14
 ${ }^{4}$ E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs, TCS '12
 ${ }^{5}$ M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized Complexity Analysis, CAV '14
 ${ }^{6}$ C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity Bounds of Flowchart Programs, SAS '10
 ${ }^{7}$ M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS '16
 ${ }^{8}$ S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational complexity, POPL '09

[^2]: ${ }^{11}$ N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly Non-Linear Loops, IJCAR '22

[^3]: ${ }^{11}$ N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly Non-Linear Loops, IJCAR '22
 ${ }^{12}$ F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs, TOPLAS '20
 ${ }^{13}$ F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description), IJCAR '22

[^4]: ${ }^{11}$ N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly Non-Linear Loops, IJCAR '22
 ${ }^{12}$ F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs, TOPLAS '20
 ${ }^{13}$ F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description), IJCAR '22
 ${ }^{14}$ F. Frohn, J. Giesl: Complexity Analysis for Java with AProVE, iFM '17

[^5]: ${ }^{11}$ N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly Non-Linear Loops, IJCAR '22
 ${ }^{12}$ F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs, TOPLAS '20
 ${ }^{13}$ F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description), IJCAR '22
 ${ }^{14}$ F. Frohn, J. Giesl: Complexity Analysis for Java with AProVE, iFM '17
 ${ }^{15}$ P. Wang, H. Fu, A. Goharshady, K. Chatterjee, X. Qin, W. Shi: Cost analysis of nondeterministic probabilistic programs, PLDI '19
 ${ }^{16}$ F. Meyer, M. Hark, J. Giesl: Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes, TACAS '21
 ${ }^{17}$ L. Leutgeb, G. Moser, F. Zuleger: Automated Expected Amortised Cost Analysis of Probabilistic Data Structures, CAV '22

[^6]: ${ }^{18}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89

[^7]: ${ }^{18}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89
 ${ }^{19} \mathrm{G}$. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01

[^8]: ${ }^{18}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89
 ${ }^{19} \mathrm{G}$. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01
 ${ }^{20}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08

[^9]: ${ }^{18}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89
 ${ }^{19} \mathrm{G}$. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01
 ${ }^{20}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08
 ${ }^{21}$ M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS '16, https://tcs-informatik.uibk.ac.at/tools/tct/
 ${ }^{22}$ M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA '09, http://cl-informatik.uibk.ac.at/software/cat/

[^10]: ${ }^{18}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89
 ${ }^{19} \mathrm{G}$. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01
 ${ }^{20}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08
 ${ }^{21}$ M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS '16, https://tcs-informatik.uibk.ac.at/tools/tct/
 ${ }^{22}$ M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA '09, http://cl-informatik.uibk.ac.at/software/cat/

[^11]: ${ }^{18}$ D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA '89
 ${ }^{19} \mathrm{G}$. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01
 ${ }^{20}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08
 ${ }^{21}$ M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS '16, https://tcs-informatik.uibk.ac.at/tools/tct/
 ${ }^{22}$ M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA '09, http://cl-informatik.uibk.ac.at/software/cat/

[^12]: ${ }^{24}$ A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and runtime complexity, CSL '11

[^13]: ${ }^{29}$ A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC '04
 ${ }^{30}$ A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. '09

[^14]: ${ }^{29}$ A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC '04
 ${ }^{30}$ A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. '09
 ${ }^{31}$ G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context dependent interpretations, FSTTCS '08
 ${ }^{32}$ F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of term rewriting, LPAR (Yogyakarta) '10

[^15]: ${ }^{29}$ A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC ' 04
 ${ }^{30}$ A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. '09
 ${ }^{31}$ G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context dependent interpretations, FSTTCS '08
 ${ }^{32}$ F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of term rewriting, LPAR (Yogyakarta) '10
 ${ }^{33} \mathrm{~J}$. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving termination of term rewriting, JAR '08

[^16]: ${ }^{34}$ S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois '80 ${ }^{35}$ A. Weiermann: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply recursive derivation lengths, TCS '95
 ${ }^{36}$ T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS '00
 ${ }^{37}$ G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair method, LMCS '11

[^17]: ${ }^{34}$ S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois '80 ${ }^{35}$ A. Weiermann: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply recursive derivation lengths, TCS '95
 ${ }^{36} \mathrm{~T}$. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS '00
 ${ }^{37}$ G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair method, LMCS '11
 ${ }^{38}$ J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving dependency pairs, JAR '06
 ${ }^{39}$ N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and features, IC '07
 ${ }^{40}$ G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may induce multiple recursive derivational complexity, RTA '11

[^18]: ${ }^{41}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08

[^19]: ${ }^{41}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08

[^20]: ${ }^{41}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08

[^21]: ${ }^{42}$ G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01

[^22]: ${ }^{42}$ G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01

[^23]: ${ }^{42}$ G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial interpretation termination proof, JFP '01

[^24]: ${ }^{43}$ L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term rewriting by dependency pairs, JAR '13

[^25]: ${ }^{44}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08

[^26]: ${ }^{44}$ N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR '08
 ${ }^{45}$ M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA '09
 ${ }^{46}$ N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive rewriting, RTA-TLCA '14
 ${ }^{47}$ M. Avanzini, G. Moser: A combination framework for complexity, IC '16

[^27]: ${ }^{49}$ F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically, IJCAR '12

[^28]: ${ }^{49}$ F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically, IJCAR '12

[^29]: ${ }^{49}$ F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically, IJCAR '12

[^30]: ${ }^{49}$ F. Emmes, T. Enger, J. Giesl: Proving non-looping non-termination automatically, IJCAR '12

[^31]: ${ }^{52}$ Termination Problem DataBase, standard benchmark source for annual Termination Competition (termCOMP) with 1000s of problems, http://termination-portal.org/wiki/TPDB

[^32]: ${ }^{54}$ A. Flores-Montoya, R. Hähnle: Resource analysis of complex programs with cost equations, APLAS '14, https://github.com/aeflores/CoFloCo
 ${ }^{55}$ M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl: Analyzing Runtime and Size Complexity of Integer Programs, TOPLAS '16, https://github.com/s-falke/kittel-koat
 ${ }^{56}$ E. Albert, P. Arenas, S. Genaim, G. Puebla: Closed-Form Upper Bounds in Static Cost Analysis, JAR '11, https://costa.fdi.ucm.es/pubs/

[^33]: ${ }^{57}$ For TcT Web, use only VAR and RULES entries in the text format and configure other aspects (e.g., start terms) in the web interface.

[^34]: ${ }^{58}$ M. Avanzini, U. Dal Lago, G. Moser: Analysing the Complexity of Functional Programs: Higher-Order Meets First-Order, ICFP '15
 ${ }^{59}$ G. Moser, M. Schaper: From Jinja bytecode to term rewriting: A complexity reflecting transformation, IC '18
 ${ }^{60}$ J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, C. Fuhs: Symbolic evaluation graphs and term rewriting: A general methodology for analyzing logic programs, PPDP '12

[^35]: ${ }^{62}$ G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP '20
 ${ }^{63}$ M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP '20

[^36]: ${ }^{62}$ G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP '20
 ${ }^{63}$ M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP '20
 ${ }^{64}$ S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR '20

[^37]: ${ }^{62}$ G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP '20
 ${ }^{63}$ M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP '20
 ${ }^{64}$ S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR '20
 ${ }^{65}$ C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD '21

[^38]: ${ }^{62}$ G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP '20
 ${ }^{63}$ M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP '20
 ${ }^{64}$ S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR '20
 ${ }^{65}$ C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD '21
 ${ }^{66}$ T. Baudon, C. Fuhs, L. Gonnord: Analysing parallel complexity of term rewriting, LOPSTR '22

[^39]: ${ }^{67}$ E. Contejean, P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA '11
 ${ }^{68}$ F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, MSCS '11
 ${ }^{69}$ R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs '09

[^40]: ${ }^{67}$ E. Contejean, P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA '11
 ${ }^{68}$ F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, MSCS '11
 ${ }^{69}$ R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs '09

[^41]: ${ }^{67}$ E. Contejean, P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA '11
 ${ }^{68}$ F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates, MSCS '11
 ${ }^{69}$ R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs '09

[^42]: ${ }^{70} \mathrm{M}$. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE's termination method for LLVM IR, CPP '21

[^43]: ${ }^{70} \mathrm{M}$. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE's termination method for LLVM IR, CPP '21
 ${ }^{71}$ M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer Transition Systems, CADE '17

[^44]: ${ }^{70} \mathrm{M}$. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE's termination method for LLVM IR, CPP '21
 ${ }^{71}$ M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer Transition Systems, CADE '17

