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Abstract

This paper  presents a biologically-inspired, hardware-realisable spiking neuron model, which
we call the Temporal Noisy-Leaky Integrator (TNLI).  The dynamic applications of the model
as well as its applications in Computational Neuroscience are demonstrated and a learning
algorithm based on postsynaptic delays is proposed.  The TNLI incorporates temporal dynamics
at the neuron level by modelling both the temporal summation of dendritic postsynaptic currents
which have controlled delay and duration and the decay of the somatic potential due to its
membrane leak.  Moreover, the TNLI models the stochastic neurotransmitter release by real
neuron synapses (with probabilistic RAMs at each input) and the firing times including the
refractory period and action potential repolarisation.  The temporal features of the TNLI make
it suitable for use in dynamic time-dependent tasks like its application as a motion and velocity
detector system presented in this paper.  This is done by modelling the experimental velocity
selectivity curve of the motion sensitive H1 neuron of the visual system of the fly.  This
application of the TNLI indicates its potential applications in artificial vision systems for robots.
It is also demonstrated that Hebbian-based learning can be applied in the TNLI for postsynaptic
delay training based on coincidence detection, in such a way that an arbitrary temporal pattern
can be detected and recognised.  The paper also demonstrates that the TNLI can be used to
control the firing variability through inhibition; with 80% inhibition to concurrent excitation,
firing at high rates is nearly consistent with a Poisson-type firing variability observed in cortical
neurons.  It is also shown with the TNLI, that the gain of the neuron (slope of its transfer
function) can be controlled by the balance between inhibition and excitation, the gain being a
decreasing function of the proportion of inhibitory inputs.  Finally, in the case of perfect balance
between inhibition and excitation, i.e., where the average input current is zero, the neuron can
still fire as a result of membrane potential fluctuations.  The firing rate is then determined by the
average input firing rate.  Overall this work illustrates how a hardware-realisable neuron model
can capitalise on the unique computational capabilities of biological neurons.

Keywords:  Spiking Neuron Model; Temporal Noisy-Leaky Integrator; Motion detection;
Directional selectivity; postsynaptic delay learning; temporal pattern detection; high firing
variability; inhibition.
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1.  Introduction
There are several types of spiking neuron models ranging from detailed biophysical ones to the
`integrate-and-fire` type (for an excellent review, see Gerstner, 1998) which form the basis of
spiking neuron networks (Maass, 2001).  A class of the more detailed models, known as
conductance-based ones, have their origins in the classic work by Hodgkin & Huxley (1952)
(H&H) who have summarised their experimental studies of the giant axon of the squid in four
differential equations.  The main equation describes the conservation of electric charge on a piece
of membrane capacitance of a neuron under the influence of a current and a voltage  (see Cronin,
1987, for a detailed mathematical analysis).  The H&H equations can be regarded as describing
the variations of membrane potential and ion conductances that occur `naturally` at a fixed point
on the axon.  Due to the model's success there have been several attempts to generalise it in order
to describe other experimental situations (see for example Jack et al., 1975, for a review).
Although this model has originally been designed to describe the form of a temporal change of
an action potential during axonal transmission, analogous models to the H&H equations which
include additional ion channels, have been recently used to describe spike generation at the soma
of the neuron (Bernander et al., 1991; Bush & Douglas, 1991; Ekeberg et al., 1991; Rapp et al.,
1992; Stuart & Sakmann, 1994).  Due to the complexity of the H&H equations, mainly caused
by their nonlinearity and four-dimensionality, various simpler models have been proposed;
FitzHugh (1961) and Nagumo et al. (1962) and more recently Abbott & Kepler (1990)
systematically reduced the H&H equations to two variables, so as to allow a phase plane analysis
of a stationary and oscillatory states of the system (Rinzel & Ermentrout, 1998).

A different approach takes the neuron as a leaky integrator which is reset, if firing occurs.  This
leads to the class of leaky integrate-and-fire (LIF) models which have been studied extensively
by Stein (1967).  The LIF model was first employed by Lapicque (1907) (see Tuckwell, 1988 for
a detailed description of the Lapicque model).  This model is a very simple mechanism of spike
generation and dendritic integration.  A detailed discussion of the properties of the LIF model for
different sets of parameters is given in Stein (1967) and Jack et al., (1975).  The LIF model gives
in general a simple picture of neuronal spike generation which is primarily based on the loading
time of the cell.  Abbott & Kepler (1990) have shown that the more complex H&H model can
be reduced to an LIF model in the limit that the membrane loading time is the dominant time
scale of the neuronal dynamics.

In order to examine the temporal capabilities of biological neurons one needs to incorporate in
modelling more of the details of neuronal structure.  One should consider for example the relative
effectiveness of the synapses close to the soma compared to those of the same strength on distal
parts of the dendritic tree or consider how branching affects the integration of various inputs.
These and other issues that mainly deal with the cell geometry and in particular with passive
nerve cylinders (i.e., ones for which the membrane conductance is fixed) or cables can be
described by partial differential equations of linear cable theory which can represent the entire
dendritic tree (Hodgkin & Rushton, 1946; Davis & Lorente de Nó, 1947; Rall, 1959; 1962; 1977;
Jack et al., 1975; see also Rall & Agmon-Snir, 1998 for a recent review).  With cable theory one
can get straightforward analytical solutions for transient current inputs to an idealised class of
dendritic trees that are equivalent to unbranched cylinders (Rall, 1959).  However, for
nonuniform dendritic trees with general branching structure (Butz & Cowan, 1974; Horwitz,
1981;1983; Wilson, 1984; Koch & Poggio, 1985) and for spatiotemporal inputs associated with
synaptic current produced by conductance changes (Rinzel & Rall, 1974; Poggio & Torre, 1977;
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Koch et al., 1982; Holmes, 1986), the solutions become much more complicated.  In such cases,
it is simpler and less computationally expensive to use compartmental models rather than
analytical models (Rall, 1964; see also Segev & Burke, 1998 for a review).  The main advantage
of the compartmental approach over cable theory is flexibility.  Firstly, the membrane properties
and the amount of synaptic conductance input or current injection can be different in every
compartment and secondly dendritic branching may not need to satisfy equivalent-cylinder
constraints.  It is also possible with compartmental models to compute the consequences of any
branching geometry and any possible input spatiotemporal pattern (Bressloff & Taylor, 1993).
In case of complex models the compartmental approach leads to simpler and less computationally
expensive treatment of dendritic structure than cable theory and has been used extensively in
computational studies of neuronal systems (Koch & Segev, 1998).

All the above models include the important characteristics of nonlinearity (caused for example
by the action potential generation mechanism) and some of them incorporate temporal sensitivity
(arising from the dendritic geometric structure, from leaky membranes and the time course of
numerous ionic currents).  

However, few of them include intrinsic stochasticity which is another very significant
characteristic of real neurons.  Neurophysiological evidence (Katz, 1969; Pun et al., 1986;
Redman, 1990), indicates that there is a large number of synapses with a small probability to
release a quanta of neurotransmitter, i.e., an input spike does not always produce a postsynaptic
potential (excitatory or inhibitory).  The probability distribution of quantal release is determined
in general by a Bernoulli (1 vesicle), binomial (many vesicle) or compound binomial
distributions occurring on arrival of a nerve impulse; similar although lower probability
distributions occur as part of the spontaneous activity on the cell body, when there is no nerve
impulse (Taylor, 1972).  The importance of noise in models was, for instance, pointed out by
Buchmann & Schulten (1987) who showed, by including a noise source to the membrane
potential dynamics, that the membrane potential fluctuations induce spontaneous spike activity
and that noise regulates the level of attention, possibly comparable to the arousal level in animals.

In Section 2 of this paper we present a spiking neuron model, the Temporal Noisy-Leaky
Integrator (TNLI) incorporating the important  features of single cells identified above, i.e., of
nonlinearity, temporal sensitivity and intrinsic stochasticity as well as being hardware realisable.
Section 3 demonstrates how the TNLI can be used as a motion and velocity detector system.  This
is done by modelling the experimental velocity selectivity curve of the motion sensitive H1
neuron of the visual system of the fly as measured by Franceschini (Franceschini, 1985;
Franceschini et al., 1989).  Section 4 starts by referring to experimental and modelling work on
synaptic plasticity and then describes a Hebbian-based learning technique which enables the
TNLI to be successfully trained to detect an arbitrary temporal pattern.  The work presented in
Sections 3 and 4 is an extension of the preliminary results presented in Christodoulou et al.
(1992; 1995) respectively.  Section 5 discusses extensively the role of stochastic synapses (1-
pRAMs) in the TNLI.  Sections 6 and 7 describe applications of the TNLI in Computational
Neuroscience: the first identifies inhibition as one of the determinants of the highly variable
firing observed in neurons and demonstrates how it can be used to control it and the latter shows
how the TNLI can be used to control the gain of the neuron through inhibition.  A preliminary
report on the latter has been presented in Christodoulou et al. (2000). The paper finishes with a
discussion in Section 8.
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Figure 1:  Analogue hardware outline of the TNLI neuron model.  The dotted line boxes indicate the corresponding
parts of the real neuron which the TNLI modules are inspired by.  At inputs n and n + m, the Postsynaptic Current
Response shapes utilised are shown (EPSCs and IPSCs respectively) where:  t : Synaptic delay time,  t : Peak Periodd p
time,  d : Rise time,  d : Fall time, h: Postsynaptic Peak Current.r f

2.  The Spiking Neuron model:  Temporal Noisy-Leaky Integrator
The TNLI neuron model (Christodoulou et al., 1992), is a simple, biologically inspired and
hardware realisable computational model.  Fig. 1 shows an analogue hardware outline of the
TNLI using a pRAM (probabilistic RAM, Clarkson et al., 1992; 1993) at each input and a
Hodgkin & Huxley (1952) equivalent circuit for a leaky cell membrane.  Details of how the TNLI
can be realised in digital hardware can be found in Christodoulou et al. (1992); they are not given
in this paper since all the results presented here are taken through software simulations of the
TNLI.

2.1  Synaptic and dendritic modelling
The 1-pRAMs in the TNLI model the stochastic and spontaneous neurotransmitter release by the
synapses of real neurons, i.e., stochastic synapses can either generate EPSPs (Excitatory
Postsynaptic Potentials) spontaneously or cause presynaptic spikes to fail to produce EPSPs.  The
0-pRAMs shown in the model (Fig. 1) are used in the simulations to produce random spike input
trains from other neurons of controlled mean input frequency, according to their probability p.
The postsynaptic response (PSR) generators (Fig. 1), model the effects of dendritic propagation
of the postsynaptic potentials and in particular their temporal summation (Nicholls et al., 1992).
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(1)

The presynaptic transmitter release creates an ion-specific conductance change in the
postsynaptic neuron which in the TNLI we approximate with an inward or outward current flow
model (see eqn. 2, Section 2.3). The separation of dendritic and somatic integration make the
current-based model approximation necessary, because a current input is needed to the leaky
integrator circuit following in the model, which is the active single-compartment representing
the somatic membrane.  We have therefore voltage as output of that circuit, representing the
somatic membrane potential.  For every spike generated by the pRAMs, the PSR generators
produce postsynaptic current responses PSR (t) (i.e., a postsynaptic response at neuron i causedij
by an input spike at time t from input neuron j), of controlled shapes, shown in Fig. 1 (at inputs
n and n + m), which can either be excitatory (Excitatory Postsynaptic Currents, EPSCs) or
inhibitory (Inhibitory Postsynaptic Currents, IPSCs).  Such EPSCs and IPSCs extended in time,
have been used previously in the form of an alpha function (see Walmsley & Stuklis, 1989 and
references therein).  In the TNLI, these particular ramp shapes chosen for the PSRs are an
approximation of alpha functions in the form of linear splines that can easily be implemented in
digital hardware. 

2.2  Modelling of the soma, the somatic membrane and the firing times
The EPSCs and IPSCs are then summed temporally and the total postsynaptic current response
is fed into the RC circuit (Fig. 1).  The synaptic saturation that occurs in the real neuron during
the temporal summation of the postsynaptic potentials (Burke & Rudomin, 1977) is not currently
modelled in the TNLI, but it could be easily incorporated by applying the methods used in
(Bugmann, 1992).  The capacitance C and the resistance R represent the somatic leaky membrane
of real neurons and therefore this circuit models the decay that occurs in the somatic potential
of the real neuron due to its membrane leak.  The capacitance C and the resistance R are fixed
at a suitable value to give the leaky membrane time constant (� = RC).  For simplicity, the TNLI
does not differentiate in its leaky integrator circuit between different ionic currents as may occur
in the real neuron.  If the potential of the capacitor exceeds a constant threshold (V ), then theth
TNLI neuron fires.  It then waits for an absolute refractory period (t ) and fires again if theR
membrane potential is above the threshold after the refractory period elapses.  Therefore, the
maximum firing rate of the TNLI is given by 1/t .  In this model the integration of inputsR
continues during the refractory time, but without having the value of the membrane potential
compared with the firing threshold during that time.  Depending on the application for which the
TNLI is being used, the membrane potential, i.e., the potential of the capacitor, can be completely
discharged or reset whenever the neuron fires (Christodoulou & Bugmann, 2000) (as in Lapique,
1907) or not reset at all (Christodoulou et al., 1992) (as in Bressloff & Taylor, 1991) or partially
reset (as in Bugmann et al., 1997).

2.3  Theoretical basis of the TNLI
Most of the leaky integrator models are based on the equation that Hodgkin & Huxley (1952)
used to describe the generation of an action potential in the giant squid axon (a similar equation
was first used by Lapique, 1907).  By linearising that equation, a simplified version for a network
of single-compartment leaky integrator neurons with synaptic noise (as used in Bressloff &
Taylor, 1991), can be described by the shunting differential equation:
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(2)

(3)

(4)

where the term on the LHS is the variation of accumulated charge in neuron i, the first term on
the RHS the the membrane leakage current in neuron i (negative term) and the second term on
the RHS is the synaptic input current which is excitatory for S  > 0 and inhibitory for S  < 0ij ij
(where 0mV is considered to be the resting membrane potential instead of -70mV).

V (t) is the membrane potential of the ith neuron at time t and �g  is the increase in conductancei ij
at the synaptic connection between neuron j and neuron i, with membrane reversal potential S ,ij
due to the release of chemical neurotransmitters. R  is the leakage resistance and C  the somatici i
capacitance of the membrane.

The TNLI corresponds to the model described by eqn. 1 since it consists of a single active
compartment representing the soma and performing integration of EPSCs and IPSCs.  For the
hardware TNLI model however, eqn. 1 is further simplified by assuming that S  » V  (t) forij i
excitatory synapses and  S  « V  (t) for inhibitory synapses.  Then [S  - V (t)] in term (III) of eqn.ij i ij i
1 can be approximated as S , so the synaptic current flow is independent of the membraneij
potential.  With this independence assumption, the shunting effects of the conductance are
removed.  Note that for our simulations, the resting membrane potential is shifted to 0mV for
simplicity.  Term (III) as a whole, which represents the current flow into the soma, corresponds
in our model to the total postsynaptic response current produced by the temporal summation of
the postsynaptic current responses each of which is initiated by an input spike.  Thus, after the
above approximation, the leaky integrator equation for the TNLI becomes:

where PSR (t-t ) is the postsynaptic current response caused by an input spike having arrived atij k
time t  from input neuron j. The response can either be excitatory or inhibitory depending on thek
sign of PSR .  T is the total number of time steps that the system is left to operate.  Discrete timeij
steps are used in the simulations so dt can be replaced by �t in eqn. 2, and the double summation
term represents current so we can call it I(t).  In the hardware model of the TNLI neuron
(Christodoulou et al., 1992) the postsynaptic current responses are temporally summed in a
counter where they are multiplied at regular time intervals with a decay rate.  The term C�Vi i
(which results after discretisation) represents the counter contents in the TNLI and can be written
as C V (t+�t)�C V (t).  So with the above simplifications, eqn. 2 becomes (after dropping the ii i i i
notation):

In the hardware model of the TNLI this equation can be realised in two steps:
First step:

and the second step:
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(5)

(6)

(7)

(8)

where � is the decay rate with which the initial counter output contents (CV (t)) are multiplied*

before they are routed back to the counter via the load input.  In other words this decay rate
replaces the term [(-V(t)/R ) × �t] due to the hardware structure.  The relationship between thei
decay rate � and the time constant � = RC can be deduced from eqns. 3, 4 and 5 and is given by:

From eqns. 4 and 5 we deduce that the capacitor is charged according to the equation:

When reset is applied to the TNLI, after each firing at time t, V(t + �t) � 0 (i.e., the membrane
potential resets to 0).  In other words, the potential of the capacitor (soma) is reset, but the
temporal summation of the postsynaptic currents on each input line is not reset.  When partial
reset is applied to the soma (Bugmann et al., 1997) then after each firing at time t, V(t + �t) �
� × V(t); � is the reset parameter taking values between 0 and 1.

The firing times in the TNLI neuron i ( ) are determined (as in Bressloff & Taylor, 1991) by
the iterative threshold condition:

where  is the threshold voltage of neuron i and n is the time of firing and inf means a union
satisfying both terms in the brackets.

3.  Dynamic Time-Dependent Applications of the TNLI: Motion Detection
In this section we explore the temporal powers of the TNLI given the temporal features of
neurons that it incorporates, namely: the dendritic temporal summation (see Section 2.1) and the
modelling of the decay of the somatic potential due to its membrane leak, with the leaky
integrator circuit (see Section 2.2).  The inclusion of the postsynaptic response currents with
certain delays and durations (see Section 2.1) was inspired by the results of Reiss & Taylor
(1991).  These authors showed that neurons with delayed responses of certain duration
(reminiscent of the response of retinal ganglion cells to short light pulses, Levick & Zacks, 1970)
can be used to store and replay temporal sequences of input patterns.  As pointed out in Section
2.1, in the TNLI we have included the temporal function as a property of spike propagation in
the postsynaptic dendrites (as observed in motor neurons, Redman, 1986), rather than as a
property of the output of the neuron, in addition to the temporality provided by the modelled time
course of the somatic potential due to its membrane leak.  This allows single neurons, like the
TNLI, to exhibit much more complex temporal properties and are indeed well suited for
applications of temporal storage.  Other potential application fields are the recognition of
temporal sequences or the more complex computing in the temporal domain where intensities
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are not coded by spike frequencies but by the spike arrival time (Burgi & Pun, 1991).  Here we
show how motion detection, which is a basic example of temporal sequence recognition, can be
performed with the TNLI, while it is an impossible task for formal neurons (e.g., McCulloch &
Pitts, 1943; Hopfield, 1984). 

3.1  The TNLI as a motion detector
The TNLI performs motion detection in a manner similar to that occurring in the compound eyes
of the fly, where visual orientation and course stabilisation rely essentially on the evaluation of
the retinal motion patterns perceived by the animal during flight (Hausen & Egelhaaf, 1989;
Borst & Egelhaaf, 1995).  One of the best characterised biological motion sensitive neurons is
the H1 cell of the fly which displays unique response properties.  This neuron is sensitive to
directional motion, which arises from the pooling of signals from smallfield units, the correlation
type Elementary Movement Detectors (EMDs, see Hassenstein & Reichardt, 1956; Reichardt,
1961; 1987; Buchner, 1976; 1984).  According to observations by Franceschini (1985) and
Franceschini et al.(1989), the response of the H1 neuron to sequential stimulation of two of its
receptor cells occurs after the second light flash is facilitated by the first flash (effectively one
of the signals is delayed by low-pass filtering).  The time span over which the facilitatory control
acts, defines a "temporal window" (given by the velocity selectivity curve) which ultimately sets
the limits to the speed range of the motion detector. By analysing signals from the H1 motion
sensitive neuron of the fly, Bialek et al. (1991) tried to address the problem of signal
discrimination by attempting to give an answer on how an organism inverts output spikes in order
to reconstruct the two input spike trains and thus discriminate them (see also Rieke et al., 1997).
Bialek's work (Bialek et al., 1991) is concerned with the extraction of motion information from
the spike trains of the H1 cell; we are concerned with how these spikes are produced initially.
Some other models have been proposed for motion detection both for the invertebrate retina
(Zanker et al., 1999; Srinivasan et al., 1999) and the vertebrate retina (Koch et al., 1986; Koch
& Mathur, 1996).  The originality of the model we propose here is that the dendritic propagation
delays are used rather than temporal filters which is the case with most of the models above.

For realising a motion detector, a TNLI with two inputs I  and I  is used (Christodoulou et al.,1 2
1992).  The motion of a stimulus (for instance an edge of a picture) from I  to I  is encoded by1 2
two spikes, one arriving at input I  at time t  and the other with a certain delay, at input I  at time1 1 2
t .  The faster the motion, the shorter the delay t  - t .  A motion in the opposite direction would2 2 1
result in a first spike arriving at I  and a delayed one at I .2 1

In order to make the detector direction selective, we have chosen a temporal response to input
I  with a long duration and an initial postsynaptic delay (t  = 10ms), as shown in Fig. 2a.  The1 d
temporal response to input I  is short with no delay (t  = 0), shown in Fig. 2b.  The configuration2 d
of the postsynaptic responses for two incoming spikes representing the motion of a stimulus,
arriving 50ms apart from each other, is presented in Fig. 2c.  Curve (1) (continuous line)
corresponds to the case of an input spike arriving at input I  at time t  = 0ms and curve (2) (dotted1 1
line) corresponds to the case of an input spike arriving at input I  at time t  = 50ms.2 2

As pointed out in section 2.1, the temporal responses are modelled in the TNLI as time dependent
currents flowing into the soma represented by a capacitor C in parallel with a leak R.  The
potential V of the capacitor evolves according to eqn. 2 (or eqn. 7).  For this particular simulation
of the TNLI, the potential of the soma is not reset after each output spike so that only the leak
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Figure 2: (a), (b) Postsynaptic temporal response functions for: (a) input I , with a long duration and an initial1

postsynaptic delay; (b) input I , with a short duration and no postsynaptic delay.  (c) Postsynaptic temporal response2

functions chosen for motion detection: Curve (1) (continuous line) corresponding to an input spike arriving at time
t  = 0ms at input I  and curve (2) (dotted line) corresponding to an input spike arriving at time t  = 50ms at input I .1 1 2 2

(d) Burst of spikes produced by the TNLI neuron for the configuration shown in Fig. 2c.

R can cause a decay of the accumulated charge.  Therefore, once the threshold has been reached,
the neuron fires in bursts of spikes with frequency limited only by the refractory time.  Such a
burst is shown in Fig. 2d for the output configuration exemplified in Fig. 2c.

The parameters are chosen as follows: C = 6 × 10 F, R = 166M� (� = RC = 10ms), maximum-11

amplitude of the temporal response function : 0.085nA (this ensures that a single temporal
response cannot generate an output, but allows two temporal responses with the correct timings
to do so), t  = 5ms. The memory contents � , � , � , �  of the two 1-pRAMs used at theR 01 11 02 12

inputs are set to �  = 0 and �  = 1. In this case, the 1-pRAMs fire for every arriving spike.  The0i 1i
0-pRAMs are not used here.

With the above described temporal response functions and parameters, the motion detector
becomes perfectly direction selective, responding only when I  is stimulated first. There is no1
response when a spike arrives at I  first. The selectivity to the velocity of the motion depends on2
the choice of the temporal response function induced by the first arriving spike (Fig. 2a).  With
a temporal response as in Fig. 2a,  the neuron responds to a rather broad range of velocities. This
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Figure 3:  Velocity selectivity of the TNLI neuron used as a motion detector.  The velocity is proportional to 1/(t  -1

t ).  The curves show the selectivity of the motion: (a) when the first arriving spike induces the temporal response2

function of Fig. 2a and (b) when an identical short temporal response, as in Fig. 2b, for both inputs is chosen.  Curve
(a) is very similar to the curve measured experimentally in the motion-sensitive H1 neuron of the visual system of
the fly.

is shown in Fig. 3, curve (a), where the velocity is proportional to 1/(t - t ).  With an identical2 1
short temporal response for both inputs (as in Fig. 2b), the neuron becomes much more selective
for a certain velocity.  This is demonstrated in Fig. 3, curve (b), which shows the velocity
selectivity of the neuron when an identical short response (as the one in Fig. 2b) for both inputs
is used.

We may note that the broad velocity selectivity curve of Fig. 3, curve (a), is very similar to the
curve measured experimentally in the neuron H1 in the visual system of the fly by Franceschini,
(see Fig. 17 in Franceschini, 1985 or Fig. 13 in Franceschini et al.,1989).  A low-level processing

vision system for a robot, inspired by the visual system of the fly, was successfully demonstrated
by Franceschini (Franceschini et al., 1991; 1992), which uses the principle of facilitatory control.
We believe therefore that our temporal neuron has also potential applications in artificial vision
and could probably readily be incorporated in the system of Franceschini et al. (1991; 1992).  It
has to be pointed out that despite the relative simplicity of the computations underlying the
different control systems in the fly visual system and indeed in the TNLI, these systems are fast,
reliable and robust against noisy signals.

4.  Hebbian-based learning rule for training the postsynaptic delays in the TNLI
From section 3.1 on the motion sensitive neurons in the visual system of the compound eye of
the fly, there is no learning going on in the correlation type EMDs.  Similarly, in the application
of the TNLI as a motion and velocity detector system, no learning was applied to the system.
Recent experimental evidence from neurons in the neocortex (Markram et al., 1997) suggests that
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(9a)

synaptic modification depends on the relative timing of a pair of pre- and postsynaptic action
potentials and that changes in EPSPs are induced by coincidence of postsynaptic action potentials
with unitary EPSPs.  Several attempts have been made since then to emulate these results by
extending and generalising the Hebbian learning rule (Hebb, 1949) and basing it on spike timing
rather that firing rates (Kempter et al., 1999; Song et al., 2000; Kistler & van Hemmen, 2000;
Senn et al., 2001a; Kitajima & Hara, 2000; Fusi et al., 2000).  For our case, the aim was not to
reproduce the results by Markram et al. (1997), but to have a simple learning rule for the TNLI,
which would modify the postsynaptic current responses accordingly so that any arbitrary repeated
temporal pattern would later preferentially be detected and recognised.  In other words, we were
aiming for a learning rule for artificial systems, which would not necessarily be a good rule in
biological systems.  We incorporated therefore in the TNLI a simple Hebbian-based learning rule
(Christodoulou et al., 1995) aiming to achieve coincidence detection for the PSR currents.

The TNLI fires a spike only if the membrane potential is above the threshold and the neuron is
not in the refractory period.  It is therefore more convenient to base the training on the membrane
potential rather than on the final output (i.e., the occurrence of a spike).  In addition, in order to
avoid multi-parameter training it is better to choose one of the parameters of the postsynaptic
currents to train on.  The rule aims at detecting the overlap between two postsynaptic response
currents formed by any pair of spikes;  if an overlap exists, the rule will increase this overlap by
modifying the postsynaptic delays according to the relative difference between the maximum
membrane potential at time t, V (t) and the maximum membrane potential at time t-1,out_max
V (t-1), where t refers to a particular learning trial when a temporal pattern of spikes isout_max
presented to the neuron (that is why V  is used rather than the singular value of theout_max
membrane potential at any point in time).  The learning is based on the difference between the
maximum membrane potential values from two consecutive trials (t and t-1), rather than the
overlap between two postsynaptic responses (t ), since: (i) V  is directly proportional toc(mn) out_max
the degree of overlap (a greater t  leads to a higher V ) and (ii) V   is directly relatedc(mn) out_max out_max
to the neuron's output, as pointed out above.  In order for the temporal pattern to be detected, the
TNLI neuron should fire at any point in time when the pattern passes in front of the neuron's
inputs.  In other words, the maximum membrane potential should go above the threshold
potential in order to enable the desired detection.  If different neurons are trained to respond to
patterns with different temporal configuration then a dynamic pattern recognition system can be
formed.

Whenever two postsynaptic response currents produced by any two spikes of a temporal pattern
overlap and the maximum membrane potential produced is below the threshold, then we can
modify the relative contribution of the two postsynaptic currents at the given point of reference
by modifying the postsynaptic delays to increase the PSR overlap time and consequently increase
the membrane potential.  For simplicity and for avoiding multi-parameter training, we train only
on the postsynaptic delays (t ) of each input and we keep the area under the PSRs constant.d
Using a simple Hebbian-based learning for any two spikes coming at inputs m and n with the first
spike arriving at input m followed by a spike at input n with certain delay T , we have, if and
overlap exists (i.e., t  > 0):c(mn)
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(9b)

(10a)

(10b)

and

where t (t) and t (t) are the values of the postsynaptic delays at inputs m and n respectivelyd(m) d(n)
at time t (where time t refers to a particular learning trial when the temporal pattern of the two
spikes is presented to the neuron).  The terms �t (t) and �t (t) denote the adjustment appliedd(m) d(n)
to the postsynaptic delays at inputs m and n respectively at trial t, and are given by:

and

where � and �� denote the learning rates with � >> ��, � and �� are positive constants with �
>> ��, since the adjustment applied to the postsynaptic delay at input n (�t (t)) should alwaysd(n)
be extremely small; a large adjustment, might cause the postsynaptic delay at input n to become
negative, which is wrong, since this will be equivalent to altering the arrival time of the original
spike at input n, by essentially moving it backwards.  The terms in (t) and in (t) are the inputm n
frequencies of the spikes arriving at inputs m and n respectively at a particular trial t (number of
spikes per input line divided by the duration of the trial).  The second factor of the eqns. 10a and
10b is introduced so as to impose a limit in the exponential growth or reduction and subsequent
saturation of the postsynaptic delay (t ), which would be produced if the first term is used on itsd
own (Kohonen, 1988).

In other words, if there is an overlap between the postsynaptic current responses (i.e., t  > 0),c(mn)
then this overlap time is increased by increasing the postsynaptic delay of the spike arriving first
at input m (eqn. 9a) and decreasing the postsynaptic delay of the spike arriving second at input
n (eqn. 9b).  If there is no overlap between the postsynaptic response currents (i.e., t  = 0), thenc(mn)
no learning is performed.

4.1  Arbitrary single temporal pattern detection and recognition with the TNLI
For testing the above learning rule the TNLI was trained to detect and recognise a temporal
pattern consisting of three spikes separated by a certain delay, each arriving at a different input
(Christodoulou et al., 1995).  For this task only excitatory postsynaptic responses were used.
Three inputs only were utilised (I  - I ) and the parameters chosen for the postsynaptic current0 2
responses (see Fig. 1) are:
(PSR) :  d  = 5ms, t  = 10ms, h  = 60pA, d  = 20ms,0 r(0) p(0) (0) f(0) 
(PSR) :  d  = 5ms, t  = 10ms, h = 60pA, d = 15ms and 1 r(1) p(1) (1) f(0) 
(PSR) :  d  = 5ms, t  = 10ms, h = 60pA, d = 10ms.2 r(2) p(2) (2) f(2) 

The values chosen for the postsynaptic peak current of each postsynaptic response ensure that
one or two responses together cannot generate an output, but allow all three responses with the
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Figure 4:  Postsynaptic delay modification and error adjustment during training. Learning rates: � = 0.3 and �� =
0.009.  The final values of the delays are:  t  = 98ms, t  = 46ms and t  = 41ms.d(0) d(1) d(2)

correct timings to do so. The three spikes were separated by a delay of T  = 30ms (as shown ind
Fig. 5).  The postsynaptic delay times which are the trainable parameters, were initially chosen
to be:  t  = 20ms, t  = 10ms and t  = 5 ms.  The rest of the TNLI parameters are: t  = 5ms,d(0) d(1) d(2) R
C  = 60pF, R  = 166M� (� = RC = 10ms) and V  = 15mV.  The simulation time step is 1ms andth
the pattern is presented to the neuron every 500ms (length of each trial), giving the same input
frequency values in(t) for all three inputs of 1/500ms = 2Hz.  For these simulations, the potential
of the capacitor was not reset.  The input spikes were unaffected by the 1-pRAM action since the
pRAM memory contents were set to `1' for an input spike and `0' for no spike and thus they fired
for each input spike.

The learning rates chosen are � = 0.3 and �� = 0.009 and the constants: � = 0.008 and �� =
0.004.  Fig. 4 shows how the postsynaptic delays for the three input spikes are modified during
training and the variation of the difference between the threshold potential (V ) and theth
maximum membrane potential expressed  as: error = V  - V .  The final values of the delaysth max
which enable the neuron to detect the pattern in the example of Fig. 4 are:   t  = 98ms, t  =d(0) d(1)
46ms and t  = 41ms.  In this example (where more than two spikes represent a temporald(2)
pattern), for the optimal detection of the pattern, the PSRs should be shifted to the right; the
second term of eqn. 10b is greater for t  than the first term resulting in a negative adjustmentd(2)
which becomes positive when substituted in eqn. 9b, causing t  to increase.  For delay td(2) d(1)
which undergoes a positive and a negative adjustment since it refers to the PSR in the middle
(i.e., (PSR) , produced after the 2nd arriving spike), the positive adjustment is simply greater than1
the negative adjustment.  That is why in the example all the postsynaptic delays are increased.
The learning used is governed by eqns. 9 (i.e., based on the difference between V  betweenout_max
two trials), but the error is utilised here for demonstration purposes since it gives a measure of
the length of the training; the neuron fires and in other words detects the pattern, when the error
becomes negative.  As it can be seen from the example of Fig. 4, the neuron learns to detect the
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Figure 5:  Variation of the membrane potential before (V ) and after training (V ) for the two sets of learningm_initial m_final
rates, low: � = 0.3 and �� = 0.009 and high:� = 0.5 and  �� = 0.08.  When the membrane potential exceeds the
threshold, the neuron fires and the temporal pattern is detected.  The arrows indicate the time of arrival of each of
the three spikes.

pattern after the seventh iteration.  Certainly, the number of iterations required for the neuron to
learn to detect a temporal pattern, depends on the learning rates. A simulation with higher
learning rates of � = 0.5 and �� = 0.08 demonstrated that the detection of the temporal pattern
could be achieved at the fourth iteration.  Fig. 5 shows the variation of the membrane potential
before and after training for low and high learning rates.  It also indicates the time of arrival of
each of the three spikes.  As it can be seen, training increases the membrane potential with its
maximum going above the threshold, enabling therefore the neuron to detect the temporal pattern
presented.

5.  Role of Stochastic Synapses (1-pRAMs) in the TNLI
Stochastic synapses can either generate EPSPs spontaneously or cause presynaptic spikes to fail
to produce EPSPs.  The first event is usually very infrequent, while transmission failures can
occur with high probability.  Both properties are mimicked by the 1-pRAMs used in the TNLI
model.  In the case of input spike trains with regularly spaced spikes, a stochastic synapse will
cause the effective loss of some spikes and the appearance of spikes not part of the input spike
train.  Both effects result in EPSPs more irregularly spaced than the arriving spikes, thus
increasing the effective Coefficient of Variation (C ) (standard deviation/Mean InterspikeV
Interval) (see Fig. 6).  The stochastic transmission probability �  increases the C  by decreasing1 V
the frequency of the regular spike train; the spontaneous probability �  increases the C  by0 V
increasing the frequency of the input spike train and adds more noise causing the neuron to
become more sensitive to small signals.  In the case of bursting inputs, stochastic synapses will
reduce the number of spikes in each burst and cause the appearance of spikes in inter-burst
intervals.  This decreases the effective C  of the input spike train (see Fig. 6).  In both casesV
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Figure 6:  Effect of 1-pRAMs for different configurations of the spontaneous (� ) and stochastic (� ) probabilities0 1
on Poisson (C  � 1), bursting (C  » 1) and regular (C  = 0) input spike trains.  For all configurations the simulationV V V
was left to run for 10000ms.  The full thin line (theory) shows the theoretical curve for a random spike train with
discrete time steps given by:   (see Bugmann et al., 1997). 

stochastic synapses tend to bring the values of C  closer to those of Poisson spike trains.  WhenV
the inputs are already Poisson, stochastic synapses only alter the mean firing rate, generally
reducing it, but they have a C  staying on the theoretical C  vs �t  (Mean Interspike Interval)V V M
curve (see Fig. 6). 

Therefore the main role of stochastic synapses in the TNLI is to alter accordingly the variability
of any spike train coming in, with proper adjustment of the probabilities of the 1-pRAMs.  This
adjustment can be achieved by employing local (synaptic) reinforcement learning (Clarkson et
al., 1992), whereby the reward/penalty signal will be based on the 0-pRAM probability value
(input frequency) and also the C  of the effective input spike train (i.e., the one after the 1-V
pRAMs).

6.  Controlling the Variability of the Neuron's Firing using the TNLI
The control of the variability of firing in neurons and the determinants of this variability have
attracted a huge interest after Softky & Koch (1993) demonstrated that the classical notion of a
realistic neuron, i.e., being of a leaky integrator type, failed in reproducing the high variability
they observed in cortical cells at high firing rates.  Using the TNLI we examined the effect of
inhibition on the firing variability (Christodoulou & Bugmann, 2000) in order to see whether it
can be controlled.  For the simulations we used random spike trains of controlled mean frequency
(f ) at the TNLI inputs, with f  = p/�t, where p is the 0-pRAM probability value.  These randomj j
spike trains were unaffected by the 1-pRAM action in the current simulations.  The 1-pRAMs
were set to transmit perfectly each input spike since the inputs were already Poisson (see Section
5).  f  was the same for both excitatory and inhibitory inputs.  Results were taken with 100j
excitatory PSR generators and 0, 40, 80 and 95 inhibitory ones (denoting the number of
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Figure 7:  Coefficient of Variation (C ) vs Mean Interspike Interval (�t ) showing the firing variability obtainedV M
with the TNLI neuron at different levels of inhibition. The C  values with 80% inhibition are the closest to the onesV
observed experimentally.  Simulation details:  time step = 1ms;  t  (refractory period) = 2ms; V  = 15mV; timeR th 

constant = 10ms (R = 166M�, C = 60pF); parameter values used for the postsynaptic current responses (Fig. 1): td
= 5ms,  d  = d  = 5ms,  t  = 10ms,  h = 5pA.  For simplicity, the inhibitory currents have an equal but oppositer f p
magnitude to the excitatory ones (-5pA).  Full somatic reset was applied to the TNLI.

excitatory and inhibitory synaptic inputs).  Fig. 7 shows the Coefficient of Variation (C ) as aV
function of �t , while the number of inhibitory inputs was increased.  The full line shows theM
theoretical curve for a random spike train with discrete time steps (see caption of Fig. 6).  If the
simulated firing ISIs are Poissonian, then their C  vs �t  curve should follow this theoreticalV M
curve.  The C  values obtained with 100 excitatory inputs and 80 inhibitory inputs (100ex/80inh,V
Fig. 7) are very similar to those observed in cortical neurons (see Fig. 9 in Softky & Koch, 1993).
By looking also at the ISI histogram distributions for mean ISI �t  of 15ms (Fig. 8) for theM
different inhibition levels, we can see that with 80% inhibition when C  = 0.870, the distributionV
follows a Poisson tail (exponential decay).  The small initial hump at the beginning of the
distribution is due to the presence of clusters of spikes at short intervals. This tendency to
produce short clusters of spikes, is also revealed in the autocorrelogram of the firing ISIs
(Christodoulou & Bugmann, 2001).  Therefore, we can deduce that with 80% inhibition on
concurrent excitation, near Poisson-type firing spike trains can be produced at high firing rates
as observed in cortical neurons (Softky & Koch, 1993).  The use of stochastic inputs also affects
the high firing, near Poisson-type variability produced. Thus the TNLI can be used to control the
firing  variability of neurons.

7.  Controlling the Gain of the Neuron using the TNLI
In this section we examine whether the inhibition mechanism in the TNLI can be used to control
the gain of the neuron (Christodoulou et al., 2000).  In the TNLI we only incorporate
hyperpolarising inhibition with negative current pulses of controlled shape (IPSCs, Fig. 1), and
not shunting inhibition.  Such responses are produced by certain PSR generators which are
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Figure 8:  Interspike Interval histogram distributions for �t  = 15ms for different inhibition levels.  T indicates theM
total time the system was left to operate.  Rest of the parameter details as in Fig. 7.

(11)

(12)

assigned to be inhibitory ones.  The number of inhibitory PSR generators which corresponds to
inhibitory inputs is thus variable.  In order to demonstrate the effects of inhibition, we vary this
number and observe the change in the relationship between the Mean Input Current in neuron i
( ) and the output frequency of the TNLI.   in the TNLI neuron i is given by:

where f  is the mean input spike frequency which in our simulations is the same for each inputj
j and is given by the number of input spikes during time T (total time that the system is left to
operate).  N is the total number of input lines (or pRAMs).  PSR  is the time integral of theij

*

postsynaptic current (PSR ) produced by a single spike arriving on input line j i.e.,ij

Results were taken with 100 excitatory PSR generators and 0, 20, 40, 60, 80, 95 and 100
inhibitory ones (denoting the number of excitatory and inhibitory synaptic inputs).  At the TNLI
inputs, random spike trains of controlled mean frequency (f ) were utilised (as in Section 6).j
While the number of inhibitory inputs was increased, we had to increase f , in order to obtain thej
same .  As indicated in Section 5, the frequency of the incoming spikes could have also been
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Figure 9:  Transfer functions (TF) of the TNLI (Mean Input Current vs firing rate) with different levels of inhibition
(see legends/text).  TFs saturate at an output frequency of approx. 500Hz (which is equal to 1/t ). The simulationR
details are the same as the ones of Fig. 7.  The total time that the system is left to operate is 10sec.  No somatic reset
was applied to the TNLI.

increased intrinsically with the 1-pRAMs by increasing the spontaneous probability � .  The0
output characteristic for the first six configurations above is shown in Fig. 9, where we also
plotted the output frequency values of the balanced case of 100ex/100inh, in which case  �
0.  In addition, Fig. 9 shows a plot of the excitatory component of  ( ) with the output
firing frequency for the case of 100 excitatory and 40 inhibitory inputs.  As it can be observed
(Fig. 9) the TNLI gives a relatively steep sigmoidal nonlinear transfer function (esp. for low
inhibition).  This is due to the fact that for these simulations the somatic membrane potential is
not reset after each spike (Bugmann et al., 1997).  The sigmoidal transfer function has a smooth
and differentiable behaviour (positive derivative), which enables learning to be achieved using
standard methods (Rumelhart et al., 1986).  This behaviour seems to be similar to that of the
formal neuron (McCulloch & Pitts, 1943), which has a sigmoid transfer function given by:  y =
1/[1 + exp(-�A )], where � is a constant that determines the slope of the sigmoid and A  is giveni i
by:  where x  is the jth input to the neuron i and w  is the connection weight form neuronj ij
j to neuron i.  A  is equivalent to  in the TNLI (eqn. 11).  Fig. 9 demonstrates that thei
introduction of the inhibition has the same effect as decreasing the value of � in the sigmoid
whereas in formal neurons inhibition only affects A .   is also modified when inhibition isi
introduced; the plot of  (excitatory component of ) with the output firing frequency for
the case of 100 excitatory and 40 inhibitory inputs, shows that the sigmoid (and the threshold)
is shifted horizontally toward higher  values which denotes that higher  is needed to
obtain the same firing rate.

As it can be seen from Fig. 9 the slope of the sigmoid transfer function decreases as the strength
of the introduced inhibition is increased.  By looking at two snapshots of the membrane  potential
for  = 80pA and  = 130pA (vertical lines on Fig. 9), for the cases of 100ex/0inh,
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Figure 10: (a), (b) Membrane Potential without and with inhibition for the cases 100ex/0inh, 100ex/80inh and
100ex/95inh) with the same Mean Input Current ( ):  (a)   = 80pA, (b)   = 130pA.  Higher input frequencies
are required to obtain the same for the cases with inhibition.  This results in a higher excitatory component of
Mean Input Current which shifts the mean fluctuation level of the Membrane Potential above 0mV.  (c), (d)
Histogram distributions of the Membrane Potential without inhibition and for three cases with inhibition
(100ex/0inh, 100ex/40inh, 100ex/80inh and 100ex/95inh) with the same Mean Input Current ( ):  (c)   =
80pA, (d)   = 130pA.

100ex/80inh and 100ex/95inh (shown in Fig. 10a, b from 0ms to 1000ms),  it can be observed
that inhibition increases frequency of the fluctuations of the membrane potential.  It has to be
noted that the increased fluctuations do not change the mean saturation level of the membrane
potential.  This is because of the higher excitatory input current which had to be induced when
the number of inhibitory inputs was increased, in order to obtain the same mean input current 
(see Fig. 9).  In addition, the amplitude of the membrane potential fluctuations increases with
inhibition as it can be seen from Fig. 10c, d,  which show that the histogram distributions of the
membrane potential widen with inhibition indicating that the membrane potential hits more times
lower and higher amplitudes.  Therefore, in the case of low  (e.g., 80pA, Fig. 10a), where the
mean saturation level of the membrane potential is below the threshold, the membrane potential
of the 100ex/80inh and the 100ex/95inh cases is able to exceed the threshold more frequently
than in the 100ex/0inh case due to the greater amplitude fluctuations and thus give a higher
output frequency.  However, in the case of high  (e.g., 130pA, Fig. 10b) the mean saturation
level of the membrane potential is above the threshold and so in the 100ex/80inh and the
100ex/95inh cases, due to the high amplitude fluctuations again, the membrane potential is able
to go below the threshold more frequently than in the 100ex/0inh case and thus give a lower
output frequency.  This explains the reduced slope of the sigmoidal characteristic curves of Fig.
9 in the presence of inhibition.  Alternatively, this can be also explained intuitively as follows:
the total PSR at any given time is the sum of the excitatory and inhibitory PSRs occurring within
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a certain window.  Thus the distribution of the total PSR will be the difference between the two
binomial distributions (ignoring the ramped edges of the PSR).  Adding more inhibition, requires
more excitation to achieve the same mean.  However, the variance of the distribution widens (as
shown in Fig. 10c, d).  When subtracting two independent distributions, the means subtract while
the variances add.  This point has previously been mentioned by Amit & Brunel (1997) (where
they showed that spontaneous activity becomes self-stabilising in the presence of inhibition), but
it has not been specifically proved by simulations as it is done here.

The other important point that can be deduced from Fig. 9 is that the decrease of the slope of the
sigmoid output characteristic, which denotes the gain of the transfer function, seems to be
proportional to the number of inhibitory inputs present.  The gain is best reduced when the
number of inhibitory inputs becomes nearly the same as the number of excitatory inputs
(100ex/95inh case).  Therefore, inhibition can be considered as another means of controlling the
gain of the transfer function of the neuron.  It has recently been demonstrated experimentally
(Silberberg et al., 2000) that when the mean input current changes, it takes time for the firing rate
to increase due to the integration time; when the variance of the input (the membrane potential
in our case) increases however, the output firing rate reacts instantaneously.  This indicates that
our gain control mechanism, where we increase the variance of the membrane potential by
increasing the input rate of inhibitory and excitatory postsynaptic currents, is an effective
mechanism that real neurons can use.  Other mechanisms of controlling the gain include:  (i) total
membrane conductance regulation via synaptic activity on descending pathways (Nelson, 1994)
and (ii) partial somatic reset (Bugmann et al., 1997).  The gain control mechanism by inhibition,
is not shown or implied in the work of Amit and Brunel (1997).

When there is a balance of excitation and inhibition the mean input current is zero (see Fig. 9)
and the neuron is firing due to the fluctuations.  In this case, by looking at the relationship of the
input frequency (f ) and the firing rate of the neuron (not shown), we can deduce that in the casej
of balanced excitation and inhibition (where the neuron is explicitly firing due to the
fluctuations), the firing rate can be controlled by the level of the mean input frequency.

8.  Discussion
The TNLI spiking neuron model presented in this paper is an intermediate model between the
fully biophysical multi-compartmental ones and formal neurons, which is simple enough to allow
fast computations, while it maintains the observed stochastic and spatio-temporal characteristics
of biological neural cells.  The TNLI incorporates the important single neuron characteristics
desirable in a model (see Section 1) namely: intrinsic stochasticity, nonlinearity and temporal
sensitivity.  The main differences of the TNLI from other models are:  (i) the addition of the PSR
generators which can add a variable time delay or change the shape of the postsynaptic currents,
which may represent some computation by the dendrite (due to dendritic geometry or synaptic
time delays),  (ii) the modelling of the temporal summation of the PSRs and (iii) the ability to
model stochastic synapses (represented by the 1-pRAMs).  As we demonstrated in Section 5, in
the case of bursting or regular input spike trains, the stochastic synapses tend to bring their
variability closer to a Poisson one,  while in the case of Poisson inputs, the variability stays the
same.    It has also been recently suggested (Senn et al., 2001b) that stochastic synapses might
be important in the biological learning mechanism.

In Section 3, we demonstrated how the temporal power of the TNLI could be exploited.  As it
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was shown, the TNLI was successfully used as a motion and velocity detector system.  The
similarity of the velocity selectivity curve obtained with the TNLI to the one obtained
experimentally in the H1 neuron of the visual system of the fly (Franceschini, 1985; Franceschini
et al., 1989) indicated that the TNLI has potential applications in artificial vision and could be
incorporated in the vision system of the robot by Franceschini (Franceschini et al., 1991; 1992),
which was inspired by the visual system of the fly.  The H1 neuron of the fly has also been
modelled in analogue VLSI (Very Large Scale Integration) producing a neuromorphic motion
sensor (Harrison & Koch, 1999) that simplified motor control by correcting to straight-line
motion an imperfect motor path.  Another interesting neuromorphic motion chip is the one used
in the Koala robot (Indiveri & Douglas, 2000) which is modelled on the fly's wide-field direction
selective cells.  It remains to be seen how the digital realisation of the TNLI would compare with
these analogue hardware models.  It would also be interesting to explore the possibility of
incorporating within a neuromorphic chip design the dendritic propagation delays which enabled
the TNLI to model the velocity selectivity curve of the H1 cell.  This technique complies with
the latest findings that postsynaptic dendritic computation plays a significant role in the
generation of directional selectivity by retinal ganglion cells (Taylor et al., 2000).

We have also demonstrated that a Hebbian-based learning rule can be used to train the
postsynaptic delays of the TNLI neuron so that a temporal pattern can be detected and
recognised, indicating the potential of the TNLI in dynamic time-dependent problems .  The main
target of the training is to achieve coincidence detection of the postsynaptic response currents so
that the membrane potential is increased at a level above the threshold and enable thus the neuron
to fire.  The exact timing of the arriving spikes inducing postsynaptic responses is important in
modifying the postsynaptic delays by using the learning rule to achieve coincidence detection,
making thus the neuron sensitive to spike synchronisation.  This approach, despite its simplicity,
has similarities with the main idea of the experimental results by Markram et al. (1997).  The
achievement of coincidence detection was also the main aim in the training technique used in the
biology-inspired pulse processing (BPN) neuron (Napp-Zinn, et al., 1996) which included delay
adaptation, when applied for recognition and temporal tracking of discrete impulse patterns.
These authors concluded that delay adaptation appeared to be a more effective mechanism for
such applications, than weight adaptation.  In addition, the use of Hebbian-type learning based
on coincidence detection, was also suggested by Hopfield (Hopfield, 1994; 1995; 1996; Hopfield
& Hertz, 1995) for the organised time delays which he uses to best represent time in his action
potential model, which is an integrate-and-fire neuron model.  Learning based on coincidence
detection has also been studied by Gerstner et al. (1996; 1997).

In its present formulation, the learning rule has a result of producing spikes with long latencies,
because it increases the latencies of EPSCs for achieving their overlap.  For an effective
integration of an animal with its environment, small latencies are more desirable.  It must be
noted that the learning process is a silent one, with spikes being produced only when the proper
combination of synaptic delays has been achieved.  Hence, once spikes are being produced, other
mechanisms can come into play, such as spike backpropagation (Stuart & Sakmann, 1994;
Frégnac, 1999; Larkum et al., 1999).  It remains to be seen if these mechanisms could have the
effect of reducing the latencies in subsequent learning epochs.

In Section 6, we demonstrated that the TNLI can be used to control the firing variability of
neurons.  This was achieved with concurrent excitation and inhibition (with inhibition being at
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a level of 80% of excitation) and with random input spikes.  The mechanism by which inhibition
increases the firing variability is by introducing more short intervals in the firing pattern,
resulting in near Poisson-type variability.  The effect of concurrent inhibition and excitation was
also examined by Feng & Brown (1998, 1999) who showed that the C  is an increasing functionV
of the length of the distribution of the input inter-arrival times and the degree of balance between
excitation and inhibition (r).  They also showed that there is a range of values of r that C  valuesV
between 0.5 and 1 can be achieved (which is considered to be the physiological range) and this
range excludes exact balancing between excitation and inhibition.  The results of Feng & Brown
do not answer to the problem posed by Softky & Koch (1993) for two reasons: (i) as they do not
show a C  vs Mean ISI curves, it is not clear whether the C  values they obtained hold also forV V
high firing rates and (ii) they only used the C  statistic for assessing high variability which on itsV
own is not a reliable indicator, since C  values � [0.5, 1] are not equivalent with PoissonV
statistics.  The effect of inhibition was also examined by Shadlen & Newsome (1994), who used
a random walk model and by exact balancing of concurrent excitation and inhibition on a single
cell, they produced highly irregular firing (compared to our results which suggest that only 80%
inhibition to concurrent excitation is needed for producing highly irregular firing). The results
of Shadlen & Newsome (1994) were disputed though by König et al. (1996) who questioned the
biological realism of their assumptions, namely that there is an exact balance between excitatory
and inhibitory inputs and the high rate of input signals.  The assumption of how balanced
excitation and inhibition is brought about naturally in model networks has also been studied by
Amit & Brunel (1997) and Van Vreeswijk & Sompolinsky (1996; 1998).  Shadlen & Newsome
(1998) reiterate their previous findings by reinforcing both of their questionable assumptions with
experimental evidence.  It has to be noted that the above authors model both excitatory and
inhibitory inputs as simple time series, which is different from the way we model them in the
TNLI.  This method of controlling the firing variability of a single neuron can be added to the
two other methods previously reported namely: partial somatic reset (Bugmann et al., 1997) and
the use of temporally correlated inputs (Stevens & Zador, 1998).

In Section 7, we showed that the introduction of inhibition, not only reduces the mean input
current for the same mean input frequency (shifting the transfer function), but it also decreases
the slope of the transfer function (gain) of the neuron.  The effect on the slope is due to increasing
(i) the frequency of the fluctuations and (ii) the amplitude of the fluctuations of the membrane
potential (at a given level of mean input current) around its mean saturation value.  This goes
beyond the assumption underlying the formal neuron used in Artificial Neural Networks where
it is assumed that positive and negative inputs add linearly and then pass through a fixed
sigmoidal transfer function, whereas in the TNLI the sigmoidal transfer function is modified by
the signals passing through it.  In other words, with inhibition, weak signals need less
amplification to produce the same level of output frequency but strong signals need more
amplification.  In addition, it has been shown that inhibition can be used for controlling the gain
of the transfer function of the neuron, with the gain being a decreasing function of the number
of inhibitory inputs.  Finally, in the case of balanced excitation and inhibition, when the neuron
is totally driven by membrane potential fluctuations, the firing rate can be controlled by the level
of the mean input frequency.  Most of the authors who have examined the balance between
excitation and inhibition (Shadlen & Newsome, 1994; 1998; Feng & Brown 1998; Tsodyks &
Sejnowski, 1995; Van Vreeswiijk & Sompolinsky, 1996; 1998), have not explored how the firing
rate can be controlled in such a case, apart from Nelson (1994) who uses a slightly different
method.  In particular, Nelson's (1994) method uses activity levels (i.e., input frequencies) of
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inhibitory and excitatory inputs, which are descending inputs from higher brain centres that
regulate the cell's membrane conductance and the ascending sensory input is not controlled
directly.  Such a mechanism appears highly plausible in the electrosensory system of an electric
fish.  Nelson (1994) showed that the adjustment of the input frequencies induces a change in the
membrane conductance which leads to gain regulation.

In summary we conclude through the applications shown as examples in this paper, that the TNLI
despite its simplicity can be used in both (i) dynamic applications like motion detection and
temporal pattern recognition in general, based on postsynaptic delay training and (ii) in
applications in Computational Neuroscience where it can give us insight on certain phenomena
that are not easily revealed by experimental studies as well as capturing in artificial systems the
dynamics of biological neural mechanisms.
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