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Abstract. It is a common practice among Web 2.0 services to allow
users to rate items on their sites. In this paper, we first point out the
flaws of the popular methods for user-rating based ranking of items,
and then argue that two well-known Information Retrieval (IR) tech-
niques, namely the Probability Ranking Principle and Statistical Lan-
guage Modelling, provide simple but effective solutions to this problem.
Furthermore, we examine the existing and proposed methods in an ax-
iomatic framework, and prove that only the score functions given by the
Dirichlet Prior smoothing method as well as its special cases can satisfy
both of the two axioms borrowed from economics.

1 Introduction

Suppose that you are building a Web 2.0 service which allows users to rate items
(such as commercial-products, photos, videos, songs, news-reports, and answers-
to-questions) on your site, you probably want to sort items according to their
user-ratings so that stuff “liked” by users would be ranked higher than those
“disliked”. How should you do that? What is the best way to count such thumb-
ups and thumb-downs? Although this problem — user-rating based ranking of
items — looks easy and occurs in numerous applications, the right solution to
it is actually not very obvious.

In this paper, we first point out the flaws of the popular methods for user-
rating based ranking of items (see Section 3), and then argue that two well-known
Information Retrieval (IR) techniques, namely the Probability Ranking Princi-
ple [1] and Statistical Language Modelling [2, 3], provide simple but effective



solutions to this problem (see Section 4). Furthermore, we examine the existing
and proposed methods in an axiomatic framework, and prove that only the score
functions given by the Dirichlet Prior smoothing [3] method as well as its special
cases can satisfy both of the two axioms borrowed from economics, namely the
Law of Increasing Total Utility and the Law of Diminishing Marginal Utility [4]
(see Section 5).

2 Problem

Let’s focus on binary rating systems first and then generalise to graded rating
systems later. Given an item i, let n↑(i) denote the number of thumb-ups and
n↓(i) denote the number of thumb-downs. In the rest of this paper, we shall
omit the index i to simplify the notation when it is clear from the context that
we are talking about an item i in general. To sort the relevant items based on
user-ratings, a score function s(n↑, n↓) ∈ R would need to be calculated for each
of them.

3 Popular Methods

There are currently three popular methods widely used in practice for this prob-
lem, each of which has some flaws.

3.1 Difference

The first method is to use the difference between the number of thumb-ups and
the number of thumb-downs as the score function, i.e.,

s(n↑, n↓) = n↑ − n↓ . (1)

For example, Urban Dictionary, a web-based dictionary of slang words and
phrases, is said to be using this method, as shown in Figure 1.

Assume that item i has 200 thumb-ups and 100 thumb-downs, while item j
has 1,200 thumb-ups and 1,000 thumb-downs, this method would rank item i
(whose score is 100) lower than item j (whose score is 200). However, this does
not sound plausible, because item i has twice thumb-ups than thumb-downs,
while item j has only slightly more thumb-ups than thumb-downs.

3.2 Proportion

The second method is to use the proportion of thumb-ups in all user-ratings as
the score function, i.e.,

s(n↑, n↓) =
n↑

n↑ + n↓
. (2)

For example, Amazon, the largest online retailer company in the United States,
is said to be using this method, as shown in Figure 2.



Fig. 1. An example of Urban Dictionary’s ranking methods for user rated items,
adapted from Evan Miller’s online article5.

Fig. 2. An example of Amazon’s ranking methods for user rated items, adapted from
Evan Miller’s online article5

Assume that item i has 200 thumb-ups and 1 thumb-down, while item j has
2 thumb-ups and 0 thumb-down, this method would rank item i (whose score is
0.995) lower than item j (whose score is 1.000). However, this does not sound
plausible, because although both item i and item j have almost none thumb-
down, item i has hundreds of thumb-ups, while item j has only a couple of
thumb-ups.

3.3 Wilson Interval

The third method was advocated by Evan Miller’s online article5 on this topic
to avoid the flaws of the above two simple methods. The idea is to treat the
existing set of user-ratings as a statistical sampling of a hypothetical set of user-
ratings from all users, and then use the lower bound of Wilson score confidence

5 http://www.evanmiller.org/how-not-to-sort-by-average-rating.html



interval [5] for the proportion of thumb-ups as the score function, i.e.,

s(n↑, n↓) =

p̂+
z21−α/2

2n −

√
z2
1−α/2
n

[
p̂(1− p̂) +

z2
1−α/2
4n

]
1 +

z2
1−α/2
n

, (3)

where n = n↑ + n↓ is the total number of user-ratings, p̂ = n↑/n is the observed
proportion of thumb-ups, and z1−α/2 is the (1 − α/2) quantile of the standard
normal distribution. With the default parameter value α = 0.10, the above score
function estimates what the “real” proportion of thumb-ups at least is at 95%
chance, therefore it balances the proportion of thumb-ups with the uncertainty
due to a small number of observations. This method is considered as the current
state of the art and thus adopted by many sites. For example, Reddit, a famous
social news site, has mentioned in its official blog post6 that this method is used
for their ranking of comments, as shown in Figure 3.

Nevertheless, this method is not well justified either.

– First, the above formula cannot be applied to calculate scores for the items
that have not received any user-rating yet: the prevailing implementation
assigns score 0 to such items, which is wrong since this implies that “no
user-rating yet” is roughly same as “zero thumb-up vs. one billion thumb-
downs”.

– Second, as the lower bound is biased towards one side only, it always under-
estimates the “real” proportion of thumb-ups.

– Third, it is not clear how tight the lower bound is, i.e., how far it deviates
away from the “real” proportion of thumb-ups.

– Fourth, the difference between the lower bound and the “real” proportion of
thumb-ups are inconsistent for items with different number of user-ratings.

Assume that item i has 1 thumb-up and 2 thumb-downs, while item j has 100
thumb-ups and 200 thumb-downs, this method would rank item i (whose score
is 0.386) lower than item j (whose score is 0.575). However, this does not sound
plausible, because while we are not really sure whether item i is good or bad, we
have a lot of evidence that item j is bad, so we should rank item i higher than
item j. For another example, using this method, we have s(500, 501) > s(5, 1),
i.e., an item with 500 thumb-ups and 501 thumb-downs would be ranked higher
than an item with 5 thumb-ups and one thumb-down, which does not make much
sense.

4 Proposed Approach

In this paper, we propose to address the problem of user-rating based ranking
of items by formulating it as an extremely simple Information Retrieval (IR)
system: each user-rating — thumb-up or thumb-down — is considered as a term;

6 http://blog.reddit.com/2009/10/reddits-new-comment-sorting-system.html



Fig. 3. An example of Reddit’s ranking methods for user rated items, extracted from
Reddit’s blog post6.

each item is considered as a document that consists of a number of those two
terms. Since users would like to find good items from the collection, the ranking
of the items could be regarded as searching the collection with a virtual query
of one term — thumb-up (q =↑). The better ratings an item has received from
users, the more relevant it is to the query thumb-up.

According to the Probability Ranking Principle [1], we should rank docu-
ments by their probabilities of being relevant to the query, in our case, Pr[R =
1|i, ↑]. This has been strictly proved to be the optimal retrieval strategy, in the
sense that it minimises the expected loss (a.k.a. the Bayes risk) under 1/0 loss
(i.e., you lose a point for either returning a non-relevant document or failing to
return a relevant document) [6].

Making use of the Statistical Language Modelling [2, 3] technique for re-
trieval, we treat each item i as a bag of user-ratings and construct a unigram
model M(i) for it, then the probability of an item being good (i.e., relevant to
the query thumb-up) Pr[R = 1|i, ↑] can be calculated as the probability of the
query being generated from its corresponding unigram model: Pr[↑ |M(i)].

So the problem becomes how we can accurately estimate the probability
Pr[↑ |M(i)] for each item i. Given only a small number of observed user-ratings,
the maximum likelihood estimator using the proportion of thumb-ups (i.e., the
second method mentioned in Section 3) does not work due to the limitation of its
frequentist view of probabilities, which is a well-known fact in the Information
Retrieval community. For example, if item i has got 1 thumb-up and 0 thumb-
down, the maximum likelihood estimator gives Pr[↑ |M(i)] = 1/(1 + 0) = 1 and
Pr[↓ |M(i)] = 0/(1 + 0) = 0, which is apparently unreasonable — no thumb-
downs so far does not mean that it is not possible to receive thumb-downs in
the future, especially when we have seen one user-rating only. The solution is to
smooth the maximum likelihood estimator so that we do not assign zero proba-
bility to unseen terms (user-ratings) and improve the accuracy of the estimated
language model in general [7, 8, 3].



4.1 Additive Smoothing

Laplace Smoothing One of the simplest way to assign nonzero probabilities
to unseen terms is Laplace smoothing (a.k.a. Laplace’s rule of succession), which
assumes that every item “by default” has 1 thumb-up and 1 thumb-down (known
as pseudo-counts):

s(n↑, n↓) = Pr[↑ |M ] =
n↑ + 1

(n↑ + 1) + (n↓ + 1)
. (4)

If item i has received 2 thumb-ups and 0 thumb-down from users, it would
have 1+2=3 thumb-ups and 1+0=1 thumb-downs in total, so Pr[↑ |M(i)] =
3/(3 + 1) = 0.75. If item j has got 100 thumb-ups and 1 thumb-down, it would
have 100+1=101 thumb-ups and 1+1=2 thumb-downs in total, so Pr[↑ |M(j)] =
101/(101+2) = 0.98. Thus we see that item j would be ranked higher than item
i, which is indeed desirable.

Lidstone Smoothing Although Laplace smoothing avoids most flaws of those
popular methods (such as getting zero probability for unseen user-ratings), it
probably puts too much weight on the pseudo-counts. A better choice is its
more generalised form, Lidstone smoothing, which assumes that every item “by
default” has ε thumb-ups and ε thumb-downs:

s(n↑, n↓) = Pr[↑ |M ] =
n↑ + ε

(n↑ + ε) + (n↓ + ε)
, (5)

where ε > 0 is a parameter. Previous research studies have shown that the
performance of Lidstone Smoothing with 0 < ε < 1 is usually superior to ε = 1
(i.e., Laplace Smoothing) [9].

4.2 Interpolation Smoothing

The above additive smoothing methods give all unseen user-ratings the same
probability, which is not desirable if the user-ratings are generally imbalanced.
A more reasonable smoothing strategy is to give different unseen user-ratings
potentially different probabilities. This can be achieved by interpolating the
maximum likelihood estimator of the item language model with a background
language model Mb. Such a background language model can be specified a priori
based on the domain knowledge. For example, in on-line shopping, users tend to
be risk-averse so thumb-up should probably be given a lower probability than
thumb-down in the background language model. More often, we may want to
estimate the background language model based on the entire item catalogue.
Suppose that there are totally N items in the catalogue. Let p↑ and p↓ denote
the thumb-up probability and the thumb-down probability respectively in the
background language model. Obviously p↓ = 1−p↑, so the background language



model is determined as long as p↑ is known. There are two possible ways to
estimate p↑ based on all the items 1, 2 . . . , N :

p↑ = Pr[↑ |Mb] =

∑N
i=1 n↑(i)∑N

i=1(n↑(i) + n↓(i))
, (6)

p↑ = Pr[↑ |Mb] =
1

N

N∑
i=1

n↑(i)

n↑(i) + n↓(i)
. (7)

Their difference is that in the former equation each user-rating contributes
equally while in the latter equation each item contributes equally to the back-
ground language model. Which way is a better choice depends on which of these
two assumptions is more sensible for the application domain.

Absolute Discounting Smoothing The idea of this smoothing method is to
lower the probability of seen user-ratings by subtracting a constant from their
counts, and then interpolate it with the background language model:

s(n↑, n↓) = Pr[↑ |M ] =
max(n↑ − δ, 0)

n↑ + n↓
+ σp↑ , (8)

where δ ∈ [0, 1] is the discount constant parameter, and σ = 1 − (max(n↑ −
δ, 0) + max(n↓ − δ, 0))/n so that all probabilities sum up to one.

Jelinek-Mercer Smoothing The idea of this smoothing method is to interpo-
late the maximum likelihood estimator of each document language model with
the background language model using a fixed coefficient to control the amount
of smoothing:

s(n↑, n↓) = Pr[↑ |M ] = (1− λ)
n↑

n↑ + n↓
+ λp↑ , (9)

where λ ∈ [0, 1] is the fixed coefficient parameter.

Dirichlet Prior Smoothing The idea of this smoothing method is to move
from frequentist inference to Bayesian inference where probabilities are measures
of uncertainty about an event. Before we see any user-rating for item i, we should
have a prior belief about the probability for it to get thumb-ups which is given by
p↑ from the background languagde model. After we see a user-rating for item i,
we should revise or update our belief accordingly, i.e., increase Pr[↑ |M ] when we
see a thumb-up and decrease it otherwise. How much adjustment is appropriate
depends on the probability distributions. Since there are only two random events
(thumb-up or thumb-down), the natural choice is to model their occurrences as
a binomial distribution for which the conjugate prior is a beta distribution. The
beta distribution is the special case of the Dirichlet distribution with only two



parameters. In order to keep the terminology consistent with the Information
Retrieval literature, we call this Bayesian smoothing method Dirichlet Prior
smoothing [3]. Such a prior essentially assumes that every item “by default” has
µp↑ thumb-ups and µp↓ = µ(1− p↑) thumb-downs:

s(n↑, n↓) = Pr[↑ |M ] =
n↑ + µp↑

n↑ + n↓ + µ
, (10)

where µ > 0 is a parameter that determines the influence of our prior. Conse-
quently, when we pool these pseudo-counts with the actual counts of user-ratings
observed in the data, we would effectively interpolate the maximum-likelihood es-
timator of each item language model M(i) with the background language model
Mb using a dynamic coefficient that changes according to the number of user-
ratings received so far: with more and more user-ratings available, the probabil-
ities estimated using Drichlet Prior smoothing would be closer and closer to the
maximum-likelihood estimator based on the observed data only.

4.3 Other Smoothing Techniques

There are many other smoothing techniques in Statistical Language Modelling,
such as Good-Turing smoothing [7], but they do not seem to be suitable for our
task because we only have two distinct “terms”: thumb-ups and thumb-downs.

4.4 Generalisations

The proposed approach to ranking of items based on binary ratings (thumb-ups
and thumb-downs) can be generalised to graded rating systems straightforwardly
by taking each graded rating as multiple thumb-ups and thump-downs. Thus the
“query” is still just one thumb-up, and each “document” (item) is still just a
bag of thumb-ups and thumb-downs. For example, a 3-star rating in the 5-star
scale system can simply be regarded as 3 thumb-ups and 5-3=2 thumb-downs.
However, the semantic distance between 2-stars and 3-stars may be different
from that between 3-stars and 4-stars. It is possible to take this into account by
learning a real number of semantic thumb-ups for each graded rating from the
user clickthrough data etc.

Furthermore, our approach can also be easily extended to take the ageing of
user-ratings into account without affecting the computational efficiency through
Time-Sensitive Language Modelling [10] techniques.

5 Axiomatic Examination

Which of the above mentioned ranking method, existing or proposed, is the
best? To answer this question, we propose to examine their score functions in an
axiomatic framework. The axioms that we use here are two fundamental princi-
ples in economics developed by Carl Menger [4] which nowadays are accepted as
“irrefutably true” and widely used to interpret numerous economic phenomena.



Definition 1. Given a score function s for user-rating based ranking of items,
the marginal utility u of an additional thumb-up or thumb-down is the amount
of difference that it can make to the score:

∆
(s)
↑ (n↑, n↓) = s(n↑ + 1, n↓)− s(n↑, n↓) ,

∆
(s)
↓ (n↑, n↓) = s(n↑, n↓)− s(n↑, n↓ + 1) ,

where n↑ and n↓ are the current numbers of thumb-ups and thumb-downs respec-
tively.

Axiom 1. The Law of Increasing Total Utility
For any pair of non-negative integer numbers of thumb-ups and thumb-downs
n↑, n↓ ∈ Z∗, a reasonable score function s must satisfy the following rules:

∆
(s)
↑ (n↑, n↓) > 0 ,

∆
(s)
↓ (n↑, n↓) > 0 ,

which imply that each additional thumb-up or thumb-down should always make
the score higher or lower correspondingly.

Axiom 2. The Law of Diminishing Marginal Utility
For any pair of non-negative integer numbers of thumb-ups and thumb-downs
n↑, n↓ ∈ Z∗, a reasonable score function s must satisfy the following rules:

∆
(s)
↑ (n↑, n↓) > ∆

(s)
↑ (n↑ + 1, n↓) ,

∆
(s)
↓ (n↑, n↓) > ∆

(s)
↓ (n↑, n↓ + 1) ,

which imply that the difference made by each additional thumb-up or thumb-
down to the score should decrease as the number of thumb-ups or thumb-downs
increases.

The above two axioms reflect our intuition about what a reasonable score
function should be like.

Proposition 1. The Difference method satisfies Axiom 1 but violates Axiom 2.

Proposition 2. The Proportion method violates both Axiom 1 and Axiom 2.

Proposition 3. The Absolute Discounting smoothing method violates both Ax-
iom 1 and Axiom 2.

Proposition 4. The Jelinek-Mercer smoothing method violates both Axiom 1
and Axiom 2.

It is relatively easy to show that the above propositions are true, by checking
the score functions at the boundary condition n↓ = 0, so their proofs are omitted.



Proposition 5. The Wilson Interval method violates both Axiom 1 and Ax-
iom 2.

Proof. This can be shown by checking the score function (3) with n↑ = 1.
It violates the Law of Increasing Total Utility, because along with the increase

of n↓ the total score is not monotonically decreasing, as shown in Figure 4(a).
It violates the Law of Diminishing Marginal Utility, because along with the

increase of n↓ the marginal utility is not decreasing but increasing, as shown in
Figure 4(b). ut
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Fig. 4. The Wilson interval s(n↑, n↓) with n↑ = 1.

Theorem 1. The Dirichlet Prior smoothing method satisfies both Axiom 1 and
Axiom 2.

Proof. The score function (10) obeys the Law of Increasing Total Utility because

∆
(s)
↑ (n↑, n↓)

= s(n↑ + 1, n↓)− s(n↑, n↓)

=
n↑ + 1 + µp↑

n↑ + 1 + n↓ + µ
− n↑ + µp↑
n↑ + n↓ + µ

=
n↓ + µ(1− p↑)

(n↑ + n↓ + µ)(n↑ + n↓ + µ+ 1)
> 0 ;

∆
(s)
↓ (n↑, n↓)

= s(n↑, n↓)− s(n↑, n↓ + 1)

=
n↑ + µp↑

n↑ + n↓ + µ
− n↑ + µp↑
n↑ + n↓ + 1 + µ

=
n↑ + µp↑

(n↑ + n↓ + µ)(n↑ + n↓ + µ+ 1)
> 0 .



The score function (10) obeys the Law of Diminishing Marginal Utility, because

∆
(s)
↑ (n↑, n↓)−∆(s)

↑ (n↑ + 1, n↓)

=
n↓ + µ(1− p↑)

(n↑ + n↓ + µ)(n↑ + n↓ + µ+ 1)
− n↓ + µ(1− p↑)

(n↑ + 1 + n↓ + µ)(n↑ + 1 + n↓ + µ+ 1)

=
n↓ + µ(1− p↑)
n↑ + n↓ + µ+ 1

(
1

n↑ + n↓ + µ
− 1

n↑ + n↓ + µ+ 2

)
> 0 ;

∆
(s)
↓ (n↑, n↓)−∆(s)

↓ (n↑, n↓ + 1)

=
n↑ + µp↑

(n↑ + n↓ + µ)(n↑ + n↓ + µ+ 1)
− n↑ + µp↑

(n↑ + n↓ + 1 + µ)(n↑ + n↓ + 1 + µ+ 1)

=
n↑ + µp↑

n↑ + n↓ + µ+ 1

(
1

n↑ + n↓ + µ
− 1

n↑ + n↓ + µ+ 2

)
> 0 .

ut

Corollary 1. The Laplace smoothing method satisfies both Axiom 1 and Ax-
iom 2.

Proof. It is because the Laplace smoothing method (4) is a special case of the
Dirichlet Prior Smoothing method (10) with µ = 2 and p↑ = 1/2. ut

Corollary 2. The Lidstone smoothing method satisfies both Axiom 1 and Ax-
iom 2.

Proof. It is because the Lidstone smoothing method (5) is a special case of the
Dirichlet Prior Smoothing method (10) with µ = 2ε and p↑ = 1/2. ut

The axiomatic examination results about the existing and proposed ranking
methods are summarised in Table 1. It is clear that only the score functions given
by the Dirichlet Prior smoothing method as well as its special cases (Laplace
smoothing and Lidstone smoothing) can satisfy both axioms borrowed from
economics. Therefore the Dirichlet Prior smoothing method is our recommended
solution for user-rating based ranking of items.

6 Conclusions

The main contribution of this paper is to show how the Information Retrieval
techniques — Probability Ranking Principle and Statistical Language Modelling
(with Dirichlet Prior smoothing) — can provide a well justified solution to the
problem of user-rating based ranking of items in Web 2.0 applications.

The axiomatic approach to Information Retrieval has been studied by Bruza
and Huibers [11], Fang and Zhai [12], and a few other researchers. To our knowl-
edge, this paper is the first work that formulates user-rating based ranking of
items as an Information Retrieval problem and examines the ranking methods
for this problem from an axiomatic perspective.



Increasing Diminishing
Total Utility Marginal Utility

Difference Y N

Proportion N N

Wilson Interval N N

Laplace smoothing Y Y

Lidstone smoothing Y Y

Absolute Discounting smoothing N N

Jelinek-Mercer smoothing N N

Dirichlet Prior smoothing Y Y

Table 1. The axiomatic examination results.
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