
Online edition (c)
2009 Cambridge UP

7.1 Efficient scoring and ranking 141

document scores from processing the previous query term. If these changes
are minimal, we may omit accumulation from the remaining query terms, or
alternatively process shorter prefixes of their postings lists.

These ideas form a common generalization of the methods introduced in
Sections 7.1.2–7.1.4. We may also implement a version of static ordering in
which each postings list is ordered by an additive combination of static and
query-dependent scores. We would again lose the consistency of ordering
across postings, thereby having to process query terms one at time accumu-
lating scores for all documents as we go along. Depending on the particular
scoring function, the postings list for a document may be ordered by other
quantities than term frequency; under this more general setting, this idea is
known as impact ordering.

7.1.6 Cluster pruning

In cluster pruning we have a preprocessing step during which we cluster the
document vectors. Then at query time, we consider only documents in a
small number of clusters as candidates for which we compute cosine scores.
Specifically, the preprocessing step is as follows:

1. Pick
√

N documents at random from the collection. Call these leaders.

2. For each document that is not a leader, we compute its nearest leader.

We refer to documents that are not leaders as followers. Intuitively, in the par-

tition of the followers induced by the use of
√

N randomly chosen leaders,

the expected number of followers for each leader is ≈ N/
√

N =
√

N. Next,
query processing proceeds as follows:

1. Given a query q, find the leader L that is closest to q. This entails comput-

ing cosine similarities from q to each of the
√

N leaders.

2. The candidate set A consists of L together with its followers. We compute
the cosine scores for all documents in this candidate set.

The use of randomly chosen leaders for clustering is fast and likely to re-
flect the distribution of the document vectors in the vector space: a region
of the vector space that is dense in documents is likely to produce multi-
ple leaders and thus a finer partition into sub-regions. This illustrated in
Figure 7.3.

Variations of cluster pruning introduce additional parameters b1 and b2,
both of which are positive integers. In the pre-processing step we attach
each follower to its b1 closest leaders, rather than a single closest leader. At
query time we consider the b2 leaders closest to the query q. Clearly, the basic
scheme above corresponds to the case b1 = b2 = 1. Further, increasing b1 or

dell
Rectangle



Online edition (c)
2009 Cambridge UP

142 7 Computing scores in a complete search system

◮ Figure 7.3 Cluster pruning.

b2 increases the likelihood of finding K documents that are more likely to be
in the set of true top-scoring K documents, at the expense of more compu-
tation. We reiterate this approach when describing clustering in Chapter 16
(page 354).

? Exercise 7.1

We suggested above (Figure 7.2) that the postings for static quality ordering be in
decreasing order of g(d). Why do we use the decreasing rather than the increasing
order?

Exercise 7.2

When discussing champion lists, we simply used the r documents with the largest tf
values to create the champion list for t. But when considering global champion lists,
we used idf as well, identifying documents with the largest values of g(d) + tf-idft,d.
Why do we differentiate between these two cases?

Exercise 7.3

If we were to only have one-term queries, explain why the use of global champion
lists with r = K suffices for identifying the K highest scoring documents. What is a
simple modification to this idea if we were to only have s-term queries for any fixed
integer s > 1?

Exercise 7.4

Explain how the common global ordering by g(d) values in all high and low lists
helps make the score computation efficient.

dell
Rectangle


	Computing scores in a complete search system
	Efficient scoring and ranking
	Inexact top K document retrieval
	Index elimination
	Champion lists
	Static quality scores and ordering
	Impact ordering
	Cluster pruning

	Components of an information retrieval system
	Tiered indexes
	Query-term proximity
	Designing parsing and scoring functions
	Putting it all together

	Vector space scoring and query operator interaction
	References and further reading




