7.1.6

7.1 Efficient scoring and ranking 141

Cluster pruning

In cluster pruning we have a preprocessing step during which we cluster the
document vectors. Then at query time, we consider only documents in a
small number of clusters as candidates for which we compute cosine scores.
Specifically, the preprocessing step is as follows:

1. Pick v N documents at random from the collection. Call these leaders.
2. For each document that is not a leader, we compute its nearest leader.

We refer to documents that are not leaders as followers. Intuitively, in the par-
tition of the followers induced by the use of v/N randomly chosen leaders,

the expected number of followers for each leader is ~ N/ V/N = v/N. Next,
query processing proceeds as follows:

1. Given a query g, find the leader L that is closest to 4. This entails comput-
ing cosine similarities from g to each of the v/N leaders.

2. The candidate set A consists of L together with its followers. We compute
the cosine scores for all documents in this candidate set.

The use of randomly chosen leaders for clustering is fast and likely to re-
flect the distribution of the document vectors in the vector space: a region
of the vector space that is dense in documents is likely to produce multi-
ple leaders and thus a finer partition into sub-regions. This illustrated in
Figure 7.3.

Variations of cluster pruning introduce additional parameters by and by,
both of which are positive integers. In the pre-processing step we attach
each follower to its by closest leaders, rather than a single closest leader. At
query time we consider the b, leaders closest to the query g. Clearly, the basic
scheme above corresponds to the case by = by = 1. Further, increasing by or

Online edition (c) 2009 Cambridge UP


dell
Rectangle


142 7 Computing scores in a complete search system

— —
J—

L Frre

® .. .Querv
o

..
o .0

=3
L] ®

o me

o0
Bl Lecader @Follower

» Figure 7.3 Cluster pruning.

Online edition (c) 2009 Cambridge UP


dell
Rectangle


	Computing scores in a complete search system
	Efficient scoring and ranking
	Inexact top K document retrieval
	Index elimination
	Champion lists
	Static quality scores and ordering
	Impact ordering
	Cluster pruning

	Components of an information retrieval system
	Tiered indexes
	Query-term proximity
	Designing parsing and scoring functions
	Putting it all together

	Vector space scoring and query operator interaction
	References and further reading




