
Online edition (c)
2009 Cambridge UP

19.6 Near-duplicates and shingling 437

2. Picking from the top 100 results of E1 induces a bias from the ranking
algorithm of E1. Picking from all the results of E1 makes the experiment
slower. This is particularly so because most web search engines put up
defenses against excessive robotic querying.

3. During the checking phase, a number of additional biases are introduced:
for instance, E2 may not handle 8-word conjunctive queries properly.

4. Either E1 or E2 may refuse to respond to the test queries, treating them as
robotic spam rather than as bona fide queries.

5. There could be operational problems like connection time-outs.

A sequence of research has built on this basic paradigm to eliminate some
of these issues; there is no perfect solution yet, but the level of sophistica-
tion in statistics for understanding the biases is increasing. The main idea
is to address biases by estimating, for each document, the magnitude of the
bias. From this, standard statistical sampling methods can generate unbi-
ased samples. In the checking phase, the newer work moves away from
conjunctive queries to phrase and other queries that appear to be better-
behaved. Finally, newer experiments use other sampling methods besides
random queries. The best known of these is document random walk sampling,
in which a document is chosen by a random walk on a virtual graph de-
rived from documents. In this graph, nodes are documents; two documents
are connected by an edge if they share two or more words in common. The
graph is never instantiated; rather, a random walk on it can be performed by
moving from a document d to another by picking a pair of keywords in d,
running a query on a search engine and picking a random document from
the results. Details may be found in the references in Section 19.7.

? Exercise 19.7

Two web search engines A and B each generate a large number of pages uniformly at
random from their indexes. 30% of A’s pages are present in B’s index, while 50% of
B’s pages are present in A’s index. What is the number of pages in A’s index relative
to B’s?

19.6 Near-duplicates and shingling

One aspect we have ignored in the discussion of index size in Section 19.5 is
duplication: the Web contains multiple copies of the same content. By some
estimates, as many as 40% of the pages on the Web are duplicates of other
pages. Many of these are legitimate copies; for instance, certain information
repositories are mirrored simply to provide redundancy and access reliabil-
ity. Search engines try to avoid indexing multiple copies of the same content,
to keep down storage and processing overheads.

dell
Rectangle

Online edition (c)
2009 Cambridge UP

438 19 Web search basics

The simplest approach to detecting duplicates is to compute, for each web
page, a fingerprint that is a succinct (say 64-bit) digest of the characters on that
page. Then, whenever the fingerprints of two web pages are equal, we test
whether the pages themselves are equal and if so declare one of them to be a
duplicate copy of the other. This simplistic approach fails to capture a crucial
and widespread phenomenon on the Web: near duplication. In many cases,
the contents of one web page are identical to those of another except for a
few characters – say, a notation showing the date and time at which the page
was last modified. Even in such cases, we want to be able to declare the two
pages to be close enough that we only index one copy. Short of exhaustively
comparing all pairs of web pages, an infeasible task at the scale of billions of
pages, how can we detect and filter out such near duplicates?

We now describe a solution to the problem of detecting near-duplicate web
pages. The answer lies in a technique known as shingling. Given a positiveSHINGLING

integer k and a sequence of terms in a document d, define the k-shingles of
d to be the set of all consecutive sequences of k terms in d. As an example,
consider the following text: a rose is a rose is a rose. The 4-shingles for this text
(k = 4 is a typical value used in the detection of near-duplicate web pages)
are a rose is a, rose is a rose and is a rose is. The first two of these shingles
each occur twice in the text. Intuitively, two documents are near duplicates if
the sets of shingles generated from them are nearly the same. We now make
this intuition precise, then develop a method for efficiently computing and
comparing the sets of shingles for all web pages.

Let S(dj) denote the set of shingles of document dj. Recall the Jaccard
coefficient from page 61, which measures the degree of overlap between
the sets S(d1) and S(d2) as |S(d1) ∩ S(d2)|/|S(d1) ∪ S(d2)|; denote this by
J(S(d1), S(d2)). Our test for near duplication between d1 and d2 is to com-
pute this Jaccard coefficient; if it exceeds a preset threshold (say, 0.9), we
declare them near duplicates and eliminate one from indexing. However,
this does not appear to have simplified matters: we still have to compute
Jaccard coefficients pairwise.

To avoid this, we use a form of hashing. First, we map every shingle into
a hash value over a large space, say 64 bits. For j = 1, 2, let H(dj) be the
corresponding set of 64-bit hash values derived from S(dj). We now invoke
the following trick to detect document pairs whose sets H() have large Jac-
card overlaps. Let π be a random permutation from the 64-bit integers to the
64-bit integers. Denote by Π(dj) the set of permuted hash values in H(dj);
thus for each h ∈ H(dj), there is a corresponding value π(h) ∈ Π(dj).

Let xπ
j be the smallest integer in Π(dj). Then

Theorem 19.1.

J(S(d1), S(d2)) = P(xπ
1 = xπ

2).

Online edition (c)
2009 Cambridge UP

19.6 Near-duplicates and shingling 439

-

-

-

-

-

-

-

-

0

0

0

0

0

0

0

0

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

264 − 1

Document 1 Document 2

H(d1) H(d2)
u

1
u

1
u

2
u

2
u

3
u

3
u

4
u

4

H(d1) and Π(d1) H(d2) and Π(d2)
u uu uu uu u3 31 14 42 2

3 31 14 42 2

3 3

Π(d1) Π(d2)

xπ
1 xπ

2

◮ Figure 19.8 Illustration of shingle sketches. We see two documents going through
four stages of shingle sketch computation. In the first step (top row), we apply a 64-bit
hash to each shingle from each document to obtain H(d1) and H(d2) (circles). Next,
we apply a random permutation Π to permute H(d1) and H(d2), obtaining Π(d1)
and Π(d2) (squares). The third row shows only Π(d1) and Π(d2), while the bottom
row shows the minimum values xπ

1 and xπ
2 for each document.

Proof. We give the proof in a slightly more general setting: consider a family
of sets whose elements are drawn from a common universe. View the sets
as columns of a matrix A, with one row for each element in the universe.
The element aij = 1 if element i is present in the set Sj that the jth column
represents.

Let Π be a random permutation of the rows of A; denote by Π(Sj) the
column that results from applying Π to the jth column. Finally, let xπ

j be the

index of the first row in which the column Π(Sj) has a 1. We then prove that
for any two columns j1, j2,

P(xπ
j1

= xπ
j2
) = J(Sj1 , Sj2).

If we can prove this, the theorem follows.
Consider two columns j1, j2 as shown in Figure 19.9. The ordered pairs of

entries of Sj1 and Sj2 partition the rows into four types: those with 0’s in both
of these columns, those with a 0 in Sj1 and a 1 in Sj2 , those with a 1 in Sj1
and a 0 in Sj2 , and finally those with 1’s in both of these columns. Indeed,
the first four rows of Figure 19.9 exemplify all of these four types of rows.

Online edition (c)
2009 Cambridge UP

440 19 Web search basics

Sj1 Sj2
0 1
1 0
1 1
0 0
1 1
0 1

◮ Figure 19.9 Two sets Sj1 and Sj2 ; their Jaccard coefficient is 2/5.

Denote by C00 the number of rows with 0’s in both columns, C01 the second,
C10 the third and C11 the fourth. Then,

J(Sj1 , Sj2) =
C11

C01 + C10 + C11
.(19.2)

To complete the proof by showing that the right-hand side of Equation (19.2)
equals P(xπ

j1
= xπ

j2
), consider scanning columns j1, j2 in increasing row in-

dex until the first non-zero entry is found in either column. Because Π is a
random permutation, the probability that this smallest row has a 1 in both
columns is exactly the right-hand side of Equation (19.2).

Thus, our test for the Jaccard coefficient of the shingle sets is probabilis-
tic: we compare the computed values xπ

i from different documents. If a pair
coincides, we have candidate near duplicates. Repeat the process indepen-
dently for 200 random permutations π (a choice suggested in the literature).
Call the set of the 200 resulting values of xπ

i the sketch ψ(di) of di. We can
then estimate the Jaccard coefficient for any pair of documents di, dj to be
|ψi ∩ ψj|/200; if this exceeds a preset threshold, we declare that di and dj are
similar.

How can we quickly compute |ψi ∩ ψj|/200 for all pairs i, j? Indeed, how
do we represent all pairs of documents that are similar, without incurring
a blowup that is quadratic in the number of documents? First, we use fin-
gerprints to remove all but one copy of identical documents. We may also
remove common HTML tags and integers from the shingle computation, to
eliminate shingles that occur very commonly in documents without telling
us anything about duplication. Next we use a union-find algorithm to create
clusters that contain documents that are similar. To do this, we must accom-
plish a crucial step: going from the set of sketches to the set of pairs i, j such
that di and dj are similar.

To this end, we compute the number of shingles in common for any pair of
documents whose sketches have any members in common. We begin with
the list < xπ

i , di > sorted by xπ
i pairs. For each xπ

i , we can now generate

Online edition (c)
2009 Cambridge UP

19.7 References and further reading 441

all pairs i, j for which xπ
i is present in both their sketches. From these we

can compute, for each pair i, j with non-zero sketch overlap, a count of the
number of xπ

i values they have in common. By applying a preset threshold,
we know which pairs i, j have heavily overlapping sketches. For instance, if
the threshold were 80%, we would need the count to be at least 160 for any
i, j. As we identify such pairs, we run the union-find to group documents
into near-duplicate “syntactic clusters”. This is essentially a variant of the
single-link clustering algorithm introduced in Section 17.2 (page 382).

One final trick cuts down the space needed in the computation of |ψi ∩
ψj|/200 for pairs i, j, which in principle could still demand space quadratic
in the number of documents. To remove from consideration those pairs i, j
whose sketches have few shingles in common, we preprocess the sketch for
each document as follows: sort the xπ

i in the sketch, then shingle this sorted
sequence to generate a set of super-shingles for each document. If two docu-
ments have a super-shingle in common, we proceed to compute the precise
value of |ψi ∩ ψj|/200. This again is a heuristic but can be highly effective
in cutting down the number of i, j pairs for which we accumulate the sketch
overlap counts.

? Exercise 19.8

Web search engines A and B each crawl a random subset of the same size of the Web.
Some of the pages crawled are duplicates – exact textual copies of each other at dif-
ferent URLs. Assume that duplicates are distributed uniformly amongst the pages
crawled by A and B. Further, assume that a duplicate is a page that has exactly two
copies – no pages have more than two copies. A indexes pages without duplicate
elimination whereas B indexes only one copy of each duplicate page. The two ran-
dom subsets have the same size before duplicate elimination. If, 45% of A’s indexed
URLs are present in B’s index, while 50% of B’s indexed URLs are present in A’s
index, what fraction of the Web consists of pages that do not have a duplicate?

Exercise 19.9

Instead of using the process depicted in Figure 19.8, consider instead the following
process for estimating the Jaccard coefficient of the overlap between two sets S1 and
S2. We pick a random subset of the elements of the universe from which S1 and S2
are drawn; this corresponds to picking a random subset of the rows of the matrix A in
the proof. We exhaustively compute the Jaccard coefficient of these random subsets.
Why is this estimate an unbiased estimator of the Jaccard coefficient for S1 and S2?

Exercise 19.10

Explain why this estimator would be very difficult to use in practice.

19.7 References and further reading

Bush (1945) foreshadowed the Web when he described an information man-
agement system that he called memex. Berners-Lee et al. (1992) describes
one of the earliest incarnations of the Web. Kumar et al. (2000) and Broder

dell
Rectangle

dell
Rectangle

	Web search basics
	Background and history
	Web characteristics
	The web graph
	Spam

	Advertising as the economic model
	The search user experience
	User query needs

	Index size and estimation
	Near-duplicates and shingling
	References and further reading

