IR (Chapter 19) Classwork Solution

Dell Zhang
Birkbeck, University of London

1. The two hash functions define the following permutations:
$h_{1}(0)=1, h_{1}(1)=3, h_{1}(2)=0, h_{1}(3)=2, h_{1}(4)=4$;
$h_{2}(0)=1, h_{2}(1)=4, h_{2}(2)=2, h_{2}(3)=0, h_{2}(4)=3$.

For any set S define $\min ^{h}(S)$ to be the minimal member of S with respect to h - that is, the member x of S with the minimum value of $h(x)$.

For $D_{1}:\{0,1,2\}$,
$\because h_{1}(2)<h_{1}(0)<h_{1}(1), \therefore \min ^{h_{1}}(\{0,1,2\})=2$;
$\because h_{2}(0)<h_{2}(2)<h_{2}(1), \therefore \min ^{h_{2}}(\{0,1,2\})=0$;
Therefore its sketch is $[2,0]$.
For $D_{2}:\{1,3,4\}$,
$\because h_{1}(3)<h_{1}(1)<h_{1}(4), \therefore \min ^{h_{1}}(\{1,3,4\})=3$;
$\because h_{2}(3)<h_{2}(4)<h_{2}(1), \therefore \min ^{h_{2}}(\{1,3,4\})=3$;
Therefore its sketch is [3, 3].
For $D_{3}:\{0,2,3\}$,
$\because h_{1}(2)<h_{1}(0)<h_{1}(3), \therefore \min ^{h_{1}}(\{0,2,3\})=2$;
$\because h_{2}(3)<h_{2}(0)<h_{2}(2), \therefore \min ^{h_{2}}(\{0,2,3\})=3$;
Therefore its sketch is [2, 3].

The pairwise Jaccard coefficients can be estimated as
$\hat{J}\left(D_{1}, D_{2}\right)=0 / 2=0.0 ;$
$\hat{J}\left(D_{2}, D_{3}\right)=1 / 2=0.5 ;$
$\hat{J}\left(D_{3}, D_{1}\right)=1 / 2=0.5$.

