NLP Coursework (2) [Reassessment]

Dell Zhang
Birkbeck, University of London

$$
2021 / 22
$$

Part 2 of the NLP coursework is worth 10 marks.
1.
(2 marks)
A software vendor claims that their IR system outputs the following result for a TREC query. Is there anything suspicious? Please list all the errors that you can find.

Ranking	Recall	Precision
1. d_{8}	20%	90%
2. d_{32}	60%	80%
3. d_{98}	80%	70%
4. d_{124}	60%	60%
5. d_{9}	80%	50%
6. d_{78}	80%	40%
7. d_{73}	80%	30%

2.

(4 marks)
Train two models, multinominal Naïve Bayes and binarized Naïve Bayes, both with Laplace smoothing, on the following document counts for key sentiment words, with positive or negative class assigned as noted.

doc	good	poor	great	class
d_{1}	0	1	2	pos
d_{2}	1	3	0	neg
d_{3}	1	5	2	neg
d_{4}	0	2	0	neg
d_{5}	3	0	3	pos
d_{6}	1	1	1	neg

Use both models to assign a class (pos or neg) to this sentence d_{7} :

```
Good cast, good acting, great music, but poor story.
```

Do these two models agree or disagree? Please show your calculations in detail for their learning and prediction.
3.

(2 marks)

Given the same training documents as in the previous question, build a Logistic Regression model for sentiment classification, using the term frequencies of those three sentiment words (good, poor, and great) as the three features (x_{1}, x_{2}, and x_{3}) respectively.

What is the final equation for the probability of a document being positive in the constructed model? How would it classify the test document d_{7} ?
Please write a Python program to solve this problem. You do not need to submit your code; only the final answers are required.
4.
(2 marks)
Given the following 3×4 term-document matrix C, perform Latent Semantic Indexing (LSI), aka Latent Semantic Analysis (LSA), using rank-2 truncated Singular Value Decomposition (SVD).

$$
C=\left[\begin{array}{llll}
5 & 5 & 0 & 1 \\
4 & 5 & 0 & 0 \\
1 & 0 & 5 & 4
\end{array}\right]
$$

What will be U_{2} the truncated SVD term matrix? What will be V_{2}^{T} the truncated SVD document matrix? What will be C_{2} the rank-2 approximation of the term-document matrix?

Please write a Python program to solve this problem. You do not need to submit your code; only the final answers are required.

