
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London



IR Chapter 01

Boolean Retrieval



Example IR Problem
I Let’s look at a simple IR problem

I Suppose you own a copy of Shakespeare’s
Collected Works

I You are interested in finding out which plays
contain the words Brutus AND Caesar AND NOT

Calpurnia

I Possible solutions:
I Start reading . . .
I Use string-matching algorithm (e.g. grep) scanning

files
I For simple queries on small to modest collections

(Shakespeare’s Collected Works contain not quite
a million words) this is OK.



Limits of Scanning
I For many purposes, you need more:

I Process large collections containing billions or
trillions of words quickly

I Allow for more flexible matching operations, e.g.
Romans NEAR countrymen

I Rank answers according to importance (when a
large number of documents is returned)

I Let’s look at the performance problem first:
I Solution: do preprocessing



Term-Document Incidence Matrix

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

I Entry is 1 if term occurs.
I Example: Calpurnia occurs in Julius Caesar.

I Entry is 0 if term doesn’t occur.
I Example: Calpurnia does not occur in The

Tempest.



Incidence Vectors

I So we have a 0/1 vector for each term.
I To answer the query Brutus AND Caesar AND

NOT Calpurnia:
I Take the vectors for Brutus, Caesar, and

Calpurnia
I Complement the vector of Calpurnia
I Do a (bitwise) AND on the three vectors
I 110100 AND 110111 AND 101111 = 100100



Indexing Large Collections

I Consider N = 106 documents, each with about
1000 tokens

I On average 6 bytes per token, including spaces
and punctuation ⇒ the size of document
collection is about 6 GB

I Assume there are M = 500,000 distinct terms
in the collection



Building Incidence Matrix
I M = 500,000× 106 = half a trillion 0s and 1s.

I We would use about 60GB to index 6GB of text,
which is clearly very inefficient.

I But, wait a minute, the matrix has no more
than one billion 1s.
I The matrix is extremely sparse, i.e. 99.8% is filled

with 0s.

I What is a better representations?
I We only record the 1s.



Inverted Index
For each term t, we store a list of IDs of all
documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings



Index Construction

I Collect the documents to be indexed:
Friends, Romans, countrymen. So let it be with Caesar . . .

I Tokenize the text, turning each document into
a list of tokens:
Friends Romans countrymen So . . .

I Do linguistic preprocessing, producing a list of
normalized tokens, which are the indexing
terms:
friend roman countryman so . . .

I Index the documents that each term occurs in
by creating an inverted index, consisting of a
dictionary and postings.



Index Construction
I Later on in this module, we’ll talk about

optimizing inverted indexes:
I Index construction: how can we create inverted

indexes for large collections?
I How much space do we need for dictionary and

index?
I Index compression: how can we efficiently store

and process indexes for large collections?
I Ranked retrieval: what does the inverted index

look like when we want the “best” answer?



Processing Boolean Queries
I Consider the conjunctive query:

I Brutus AND Calpurnia

I To find all matching documents using inverted
index:

1. Locate Brutus in the dictionary
2. Retrieve its postings list from the postings file
3. Locate Calpurnia in the dictionary
4. Retrieve its postings list from the postings file
5. Intersect the two postings lists
6. Return intersection to user



Intersecting Postings Lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

I Can be done in linear time if postings lists are
sorted



Intersecting Postings Lists



Mapping Operators to Lists
I The Boolean operators AND, OR, and NOT are

evaluated as follows:
I term1 AND term2: intersection of the lists for

term1 and term2
I term1 OR term2: union of the lists for term1 and

term2
I NOT term1: complement of the list for term1



Query Optimization

I What is the best order for query processing?

I Consider a query that is an AND of n terms,
n > 2

I For each of the terms, get its postings list,
then AND them together

I Example query:
I Brutus AND Calpurnia AND Caesar

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31



Query Optimization
I Simple and effective optimization:

I Process in the order of increasing frequency
I Start with the shortest postings list, then keep

cutting further
I In this example, first Caesar, then Calpurnia,

then Brutus



Optimized Intersection Algorithm



Commercial Boolean IR: Westlaw

I Largest commercial legal search service in
terms of the number of paying subscribers
(www.westlaw.com)

I Over half a million subscribers performing
millions of searches a day over tens of terabytes
of text data

I The service was started in 1975.

I In 2005, Boolean search (called “Terms and
Connectors” by Westlaw) was still the default,
and used by a large percentage of users . . .

I . . . although ranked retrieval has been available
since 1992.



Westlaw Example Queries
I Information need: Information on the legal

theories involved in preventing the disclosure of
trade secrets by employees formerly employed
by a competing company
I “trade secret” /s disclos! /s prevent /s employe!

I Information need: Requirements for disabled
people to be able to access a workplace
I disab! /p access! /s work-site work-place

(employment /3 place)

I Information need: Cases about a host’s
responsibility for drunk guests
I host! /p (responsib! liab!) /p (intoxicat! drunk!)

/p guest



Westlaw Example Queries

I /s = within same sentence

I /p = within same paragraph

I /n = within n words

I Space is disjunction, not conjunction (This was
the default in search pre-Google.)

I & is AND

I ! is a trailing wildcard query



Summary
I The Boolean retrieval model can answer any

query that is a Boolean expression.
I Boolean queries are queries that use AND, OR and

NOT to join query terms.
I Views each document as a set of terms.
I It is precise: document matches condition or not.

I Primary commercial retrieval tool for 3 decades
I Many professional searchers (e.g., lawyers) still

like Boolean queries
I You know exactly what you are getting.

I When are Boolean queries the best way of
searching?
I It depends on: information need, searcher,

document collection, . . .


