
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London



IR Chapter 02

The Term Vocabulary
and Postings Lists



Constructing Inverted Indexes
I The major steps in constructing an inverted

index were:
I Collect the documents to be indexed
I Tokenize the text
I Do linguistic preprocessing of tokens
I Index the documents that each term occurs in

I How do we define and process the vocabulary
of terms of a collection?



Obtaining Character Sequences
I Before we can even start worrying about terms,

we need to deal with format and language of
each document.
I What format is it in? pdf, word, excel, html etc.
I What language is it in?
I What character set is in use?

I Each of these is a classification problem, which
we will study later in this module

I For the moment assume that we know how to
do this



Document Units

I So far we have assumed that documents are
fixed units for the purposes of indexing

I Common approach: take each file in a folder as
a document

I But that is not always the case:
I Mbox e-mail format stores separate e-mails in one

file
I Archives such as zip, tar, or jar files contain many

files
I HTML may split up documents over many pages



Document Units
I For very long documents, the issue of indexing

granularity arises
I E.g. when indexing a collection of books, we could

treat each book/chapter/paragraph as a document
I If units get too small, we are likely to miss

important information, as terms are distributed
over different mini-documents

I If units get too large, we tend to get spurious
matches

I For making the right choice, a person deploying
the system has to know the document
collection, the users’ information needs, and
usage patterns.



Tokenization

I Tokenization is the task of chopping a
character sequence into pieces, called tokens

I At the same time, certain characters might be
eliminated (e.g. punctuation).

I Here’s an example:



Tokenization

I Major question: what are the correct tokens to
emit?

I Example on the previous slide looked fairly
trivial:
I Chop on whitespace
I Throw away punctuation characters

I But this is only a starting point



Tokenization
I There are tricky cases (even in English)

I Example: Mr. O’Neill thinks that the boys’ stories
about Chile’s capital aren’t amusing.

I Certain expressions shouldn’t be split up:
I C++, M*A*S*H, dell@dcs.bbk.ac.uk

I Splitting up hyphens:
I co-education, Hewlett-Packard,

hold-him-back-and-drag-him-away manoeuvre

I Splitting whitespace is not always clear:
I York University, New York University

I Numbers are problematic:
I 127.0.0.1, 15/01/2013



Problems with other languages

I Things get even more difficult in other
languages

I Examples for missing whitespace:
I Inuit:

tusaatsiarunnanngittualuujunga
I German:

Seitenfehlerunterbrechungsbehandlungsroutine
I Chinese:



Problems with other languages
I Example from Japanese:

I 4 different “alphabets”: Chinese characters,
hiragana, katakana, latin (Western characters)

I No spaces (as in Chinese).
I End user can express query entirely in hiragana



Problems with other languages

I Sometimes you have to change direction while
scanning text:

I Although, bidirectionality is not a problem if
text is encoded in Unicode



Conclusion on Tokenization

I Trying to tackle all these problems is beyond
the scope of this module (overlap with
linguistics)

I We’ll come back to some of the problems (for
the English language) later in this course
I Classification and categorization can help in solving

some of these issues

I However, you should be aware of these
problems



Normalization

I After document tokenization, do we just match
query tokens to document token lists?

I Unfortunately, it’s not as easy as this
I There are cases where tokens are not quite the

same, but we still want to match them
I Example: U.S.A. should match USA (or even US)



Normalization

I Token normalization is about transforming
tokens into a standard form

I This allows matches to occur despite superficial
differences

I Usual way to normalize is to create equivalence
classes
I For instance, the tokens anti-discriminatory and

antidiscriminatory are both mapped onto the latter
token

I Searches for one term will retrieve documents that
contain either



Normalization
I Alternative to equivalence classes are explicit

rules (which may be asymmetric)
I window → window, windows
I windows → Windows, windows
I Windows (no expansion)

I Writing explicit rules is quite powerful (but also
quite costly to do)

I Some normalization may do more harm than
good
I Example: mapping C.A.T. to cat

I We will now look at some common techniques



Accents and Diacritics
I Have a fairly marginal status in English, so it’s

fairly safe to remove them
I cliché vs. cliche or näıve vs. naive

I May be different for other languages
I Spanish:

peña vs. pena
I German: substitution of letters (for umlauts)

Universität vs. Universitaet



Case Folding

I Reduce all letters to lower case
I Possible exceptions: capitalized words in

mid-sentence
I ETHICS vs. ethics
I Fed vs. fed

I It’s often best to lowercase everything since
users will use lowercase regardless of correct
capitalization.



Lemmatization
I Reduce inflectional/variant forms to base form

I Example: am, are, is → be
I Example: car, cars, car’s, cars’ → car
I Example: the boy’s cars are different colours →

the boy car be different colour

I Lemmatization implies doing “proper”
reduction to dictionary headword form (the
lemma).
I Inflectional morphology (cutting → cut) vs.

derivational morphology (destruction → destroy)



Stemming
I Stemming is defined as:

I Crude heuristic process that chops off the ends of
words

I Trying to achieve what “principled” lemmatization
attempts to do with a lot of linguistic knowledge

I Often inflectional and derivational
I Example for derivational:

automate, automatic, automation all reduce to
automat

I Language dependent
I Fortunately, it works quite well for English



Porter Algorithm
I Most common algorithm for stemming English

I Results suggest that it is at least as good as other
stemming options

I Conventions + 5 phases of reductions
I Phases are applied sequentially
I Each phase consists of a set of commands.

I Sample command: Delete the final ‘ement’ if
what remains is longer than 1 character
I replacement → replac
I cement → cement

I Sample convention: Of the rules in a
compound command, select the one that
applies to the longest suffix



A Few Rules
Rule Example
SSES → SS caresses → caress
IES → I ponies → poni
SS → SS caress → caress
S → cats → cat



Is Stemming Effective?
I In general, stemming increases effectiveness for

some queries, and decreases effectiveness for
others.
I Porter Stemmer equivalence class oper contains all

of operate operating operates operation operative
operatives operational.

I Queries where stemming hurts:
“operational AND research”,
“operating AND system”,
“operative AND dentistry”



What Else Can We Do?

I After normalization, we have a list of terms
that we can index

I However, there are some extremely common
words which are of little value in helping select
documents, e.g. “the”

I These words are called stop words

I Further examples: a, an, and, are, as, at, be,
by, for, from, has, he, in, is, it, its, of, on, that,
the, to, was, were, will, with



Stop Words

I We can eliminate stop words, i.e. we do not
index them and eliminate them from queries

I Advantage: we save storage space, the postings
lists of stop words tend to be very long

I Stop word elimination used to be standard in
older IR systems.

I But you need stop words for phrase queries,
e.g. “to be or not to be”

I Most web search engines index stop words.



Phrase Queries

I We want to answer a query such as “stanford
university” – as a phrase.

I Thus “The inventor Stanford Ovshinsky never
went to university” shouldn’t be a match.

I The concept of phrase query has proven easily
understood by users.

I About 10% of web queries are phrase queries.

I Consequence for inverted index: no longer
suffices to store docIDs in postings lists.

I Possible solutions?



Biword Index
I Index every consecutive pair of terms in the

text as a phrase.
I For example, Friends, Romans, Countrymen would

generate two biwords: “friends romans” and
“romans countrymen”

I Each of these biwords is now a vocabulary
term.

I Two-word phrases can now easily be answered.



Biword Index
I However, there’s a catch:

I A document containing
“. . . my friends, the Romans, have . . . while
Romans and countrymen . . . ”
would also be a match

I We need to do post-filtering of hits to identify
subset that actually contains the 3-word phrase

I Biword indexes are rarely used
I False positives, as noted above
I Index blowup, due to very large term vocabulary



Positional Index

I Positional indexes are a more efficient
alternative to biword indexes.

I Postings lists in a non-positional index:
each posting is a docID only

I Postings lists in a positional index:
each posting is a docID and a list of positions



Positional Index
I to1 be2 or3 not4 to5 be6

I to, 993427:
〈 1, 6: 〈 7, 18, 33, 72, 86, 231〉;

2, 5: 〈1, 17, 74, 222, 255〉;
4, 5: 〈8, 16, 190, 429, 433〉;
5, 2: 〈363, 367〉;
7, 3: 〈13, 23, 191〉; . . . 〉

I be, 178239:
〈 1, 2: 〈17, 25〉;

4, 5: 〈17, 191, 291, 430, 434〉;
5, 3: 〈14, 19, 101〉; . . . 〉



Proximity Search

I We just saw how to use a positional index for
phrase searches.

I We can also use it for proximity search.
I For example: employment /3 place
I Find all documents that contain employment and

place within 3 words of each other.
I “Employment agencies that place healthcare

workers are seeing growth” is a hit.
I “Employment agencies that help place healthcare

workers are seeing growth” is not a hit.



Summary

I Before starting with the indexing, we should do
some preprocessing of the documents

I We briefly sketched this preprocessing, as many
techniques are outside of the scope of this
module

I We will come back to some issues later


