
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London

IR Chapter 03

Dictionaries and
Tolerant Retrieval

Dictionaries

I Dictionary: the data structure for storing the
term vocabulary

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Storing Dictionaries
I For each term, we need to store a couple of

items:
I document frequency
I pointer to postings list
I . . .

I Assume for the time being that
I we can store this information in a fixed-length entry
I we store these entries in an array

Storing Dictionaries

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
.
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

I How do we look up an element in this array at
query time?

I Remember: these dictionaries can be huge,
scanning is not an option

Data Structures

I Two main classes of data structures:
hash tables and trees
I Some IR systems use hash tables, some use trees.

I Criteria for when to use hash tables vs trees:
I Is there a fixed number of terms or will it keep

growing?
I What are the relative frequencies with which

various keys will be accessed?
I How many terms are we likely to have?

Hash Tables

I Each vocabulary term is hashed into an integer.

I Try to avoid collisions
I At query time, do the following:

I hash query term
I resolve collisions
I locate entry in fixed-width array

I Pros:
I Lookup in a hash table is faster than in a tree.

I Cons:
I no prefix search (all terms starting with automat)
I need to rehash everything periodically if vocabulary

keeps growing

Trees

I Trees solve the prefix problem (find all terms
starting with automat).

I Simplest tree: binary tree.
I However, binary trees are problematic:

I Only balanced trees allow efficient retrieval
I Rebalancing binary trees is expensive

I Use B-trees (the index structure that you know
from database lectures)

B-Tree

Taken from documentation for Oracle 10g

Wildcard Queries
I mon*: find all docs containing any term

beginning with mon
I Easy with B-tree dictionary
I retrieve all terms t in the range: mon ≤ t < moo

I *mon: find all docs containing any term ending
with mon
I Maintain an additional tree for terms backwards,

then
I retrieve all terms t in the range: nom ≤ t < non

Query Processing

I At this point, we have an enumeration of all
terms in the dictionary that match the wildcard
query.

I We still have to look up the postings for each
enumerated term.
I e.g., consider the query: gen* AND universit*

I This may result in the execution of many
Boolean AND queries.

Wildcards in Middle of Term

I Example: m*nchen
I We could look up m* and *nchen in the B-tree

and intersect the two term sets.
I Expensive (there are probably thousands and

thousands of terms beginning with “m”)

I Alternative: permuterm index
I Basic idea: Rotate every wildcard query, so that

the * occurs at the end.

Permuterm Index

I For term hello: add
hello$, ello$h, llohe, lohel, o$hell, and $hello
to the B-tree where $ is a special symbol

Permuterm Index
I Queries

I For X, look up X$
I For X*, look up $X*
I For *X, look up X$*
I For *X*, look up X*
I For X*Y, look up Y$X*

I Example:
I For hel*o, look up o$hel*

I It’s really a tree and should be called
permuterm tree

I But permuterm index is more common name.

Query Processing

I Once we modified the query (as shown on last
slide), we can do a regular lookup on a B-tree

I This is much faster than looking up X* and *Y
and combining results (for query X*Y)

I Permuterm index also handles leading
wildcards: *X

I It has a disadvantage, though: quadruples the
size of the dictionary compared to a regular
B-tree (as every term is stored multiple times)

k-gram Index

I More space-efficient than permuterm index
I Enumerate all character k-grams (sequence of

k characters) occurring in a term
I 2-grams are also called bigrams
I 3-grams are also called trigrams

I Example:
I from April is the cruelest month

we get the bigrams:
$a ap pr ri il l$ $i is s$ $t th he e$ $c cr ru ue el le
es st t$ $m mo on nt th h$

I $ is a special word boundary symbol.

I Maintain an inverted index from bigrams to the
terms that contain the bigram

Postings List in a 3-gram Index

etr beetroot metric petrify retrieval- - - -

I Note that we now have two different types of
inverted indexes
I The term-document inverted index for finding

documents based on a query consisting of terms
I The k-gram index for finding terms based on a

query consisting of k-grams

Processing Wildcard Queries

I Query mon* can now be run as:
$m AND mo AND on

I Gets us all terms with the prefix mon . . .

I . . . but also many “false positives” like moon

I We must post-filter these terms against query

I Surviving terms are then looked up in the
term-document inverted index.

I k-gram indexes are fast and space efficient
(compared to permuterm indexes).

Processing Wildcard Queries
I We must potentially execute a large number of

Boolean queries for each enumerated, filtered
term (on the term-document index)
I Recall the query: gen* AND universit*
I Most straightforward semantics: Conjunction of

disjunctions
I Very expensive

I Users hate to type
I If abbreviated queries like pyth* theo* for

pythagoras’ theorem are legal, users will use
them . . .

I . . . a lot

Spelling Correction
I Two principal uses

I Correcting documents being indexed
I Correcting user queries

I Two different methods
I Isolated Word Spelling Correction

I Check each word on its own for misspelling
I Will not catch typos resulting in correctly spelled

words, e.g., an asteroid that fell form the sky
I Context-Sensitive Spelling Correction

I Look at surrounding words
I Can correct the form/from error above

Correcting Documents

I We’re not interested in interactive spelling
correction of documents (e.g., MS Word) in
this class.

I In IR, we use document correction primarily for
OCR’ed documents (i.e. documents digitized
via Optical Character Recognition)

I The general philosophy in IR is: don’t change
the documents.

Correcting Queries
I First: isolated word spelling correction

I Fundamental premise 1: There is a list of “correct
words” from which the correct spellings come.

I Fundamental premise 2: We have a way of
computing the distance between a misspelled word
and a correct word.

I Simple spelling correction algorithm:
return the “correct” word that has the smallest
distance to the misspelled word.
I Example: informaton → information

Correcting Queries
I Can we use the term vocabulary of the inverted

index as the list of correct words?
I It can be very biased
I It may be missing certain terms

I Alternatives:
I A standard dictionary

(Webster’s, Encyclopædia Britannica, etc.)
I An industry-specific dictionary

(for specialized IR systems)
I The term vocabulary of the collection,

appropriately weighted

Computing Distance

I How can we compute the distance between
words?

I We’ll look at some alternatives:
I edit distance (Levenshtein distance)
I weighted edit distance
I k-gram overlap

Edit Distance

I The (minimum) edit distance between two
strings s1 and s2 is the minimum number of
basic operations to convert s1 to s2.

I Levenshtein distance: the admissible basic
operations are: insert, delete, and replace
I Levenshtein distance dog→do: 1 (deletion)
I Levenshtein distance cat→cart: 1 (insertion)
I Levenshtein distance cat→cut: 1 (replacement)
I Levenshtein distance cat→act: 2

(2 replacements or 1 insertion and 1 deletion)

Computing Distance

I Getting from cats to fast

“” f a s t

“” “” → “” “” → f “” → fa “” → fas “” → fast
c c → “” c → f c → fa c → fas c → fast
a ca → “” ca → f ca → fa ca → fas ca → fast
t cat → “” cat → f cat → fa cat → fas cat → fast
s cats → “” cats → f cats → fa cats → fas cats → fast

I Each cell will contain
the (cheapest) cost of getting
from the string on the left-hand side
to the string on the right-hand side

Computing Distance

I We know the costs for
the uppermost row and the leftmost column:
I we have to get from “” to fast by inserting

characters
I we have to get from cats to “” by deleting

characters
“” f a s t

“” 0 1 2 3 4
c 1
a 2
t 3
s 4

Computing Distance

I For other cells, take the minimum of costs
I Coming from (a):

I add 1 to cost in (a) — insertion
I Coming from (b):

I add 1 to cost in (b) — deletion
I Coming from (c):

I if characters in row and column are equal,
copy cost from (c)

I otherwise,
add 1 to cost in (c) — replacement

Resulting Matrix

I Computing the costs for all cells results in the
following matrix:

“” f a s t

“” 0 1 2 3 4
c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 2 2
s 4 4 3 2 3

I So the Levenshtein distance is 3

Algorithm

Weighted Edit Distance

I As Levenshtein distance, but weight of an
operation depends on the characters involved.

I Meant to capture keyboard errors
I e.g., m more likely to be mistyped as n than as q.
I therefore, replacing m by n is a smaller edit

distance than by q.

I We now require a weight matrix as input.

I Modify dynamic programming to handle
weights.

Using Edit Distances

I Comparing query term q to all terms in the
vocabulary is too expensive

I Solution: use heuristics to determine subset
I Only compare to terms beginning with the same

letter (doesn’t work for typos at beginning)
I Generate set of rotations for q and use a

permuterm index (doesn’t work well for
replacements)

I For each rotation, omit a suffix of l characters
before doing lookup in permuterm index

I Ensures that each term in query rotation shares a
substring with retrieved terms

I The value of l could be fixed to a constant length
(e.g. 2), or depend on the length of q

Using a k-gram Index

I Enumerate all k-grams in the query term

I Use the k-gram index to retrieve “correct”
words that match query term k-grams

I Threshold by number of matching k-grams
I e.g., only vocabulary terms that differ by at most 3

k-grams

Example with 2-grams

I Suppose the misspelled word is “bordroom”:
$b, bo, or, rd, dr, ro, oo, om, m$

bo aboard about boardroom border

or border lord morbid sordid

rd aboard ardent boardroom border- - - -

- - - -

- - - -

Example with 3-grams

I Suppose the correct word is “november”:
$$n, $no, nov, ove, vem, emb, mbe, ber, er$, r$$

I And the query term is “december”:
$$d, $de, dec, ece, cem, emb, mbe, ber, er$, r$$

I So 5 trigrams overlap (out of 10 in each term)

I Issue: Fixed number of k-grams that differ
does not work for words of differing length.

I How can we turn this into a normalized
measure of overlap?

Jaccard Coefficient

I A commonly used measure of two sets’ overlap

I Let A and B be two sets

I Jaccard coefficient:

|A ∩ B |
|A ∪ B |

I A and B don’t have to be the same size.
I Always assigns a number between 0 and 1.

I Application to spelling correction: declare a
match if the coefficient is, say, > 0.8.

Context-Sensitive Correction

I Our example was:
“an asteroid that fell form the sky”

I How can we correct form here?
I One idea: hit-based spelling correction

I We’ll return back to this idea when we talk about
the probabilistic approach to spelling correction, in
the second half of the module.

Context-Sensitive Correction

I Given query “flew form munich”
I Retrieve the correct terms close to each query

term
I flea for flew
I from for form
I munch for munich

I Now try all possible resulting phrases as
queries, with one word fixed at a time
I Try query “flea form munich”
I Try query “flew from munich”
I Try query “flew form munch”

I The correct query “flew from munich”
should have the most hits.

Context-Sensitive Correction
I The hit-based algorithm we just outlined is not

very efficient.
I Suppose we have 7 alternatives for flew, 19 for

form and 3 for munich
I Then we have to test 7× 19× 3 different variants

I More efficient alternative: look at the
collection of queries, not documents
I This assumes that we log queries

General Issues
I User interface

I Automatic or suggested correction
I “Did you mean” only works for one suggestion.
I What about multiple possible corrections?

I Tradeoff: simple vs powerful UI

I Cost
I Spelling correction is potentially expensive.
I Avoid running on every query?
I Maybe just on queries that match few documents.

Phonetic Matching
I Soundex is the basis for finding phonetic (as

opposed to orthographic) alternatives.
I e.g., Chebyshev / Tchebyscheff

I Algorithm:
I Turn every token to be indexed into a 4-character

reduced form
I Do the same with query terms
I Build and search an index on the reduced forms

Soundex Algorithm
1. Retain the first letter of the term.

2. Change all occurrences of the following letters to 0 (zero):
I A, E, I, O, U, H, W, Y

3. Change letters to digits as follows:
I B, F, P, V ⇒ 1
I C, G, J, K, Q, S, X, Z ⇒ 2
I D,T ⇒ 3
I L ⇒ 4
I M, N ⇒ 5
I R ⇒ 6

4. Repeatedly remove one out of each pair of consecutive identical
digits

5. Remove all 0s from the resulting string; pad the resulting string
with trailing 0s, and return the first four positions, which will
consist of a letter followed by three digits

Soundex Algorithm

I Example

difficulty difference
steps 1 and 2 d0ff0c0lt0 d0ff0r0nc0
step 3 d011020430 d011060520
step 4 d01020430 d01060520
step 5 d124 d165

I Vowels are viewed as being interchangeable

I Consonants with similar sounds (e.g. D and T)
are put in equivalence classes

I Works fairly well for European languages

Summary

I How to organize a dictionary of an inverted
index

I How to do imprecise searches on this dictionary
handling
I wildcards
I spelling mistakes

