Information Retrieval and Organisation

Dell Zhang

Birkbeck, University of London

IR Chapter 03

Dictionaries and Tolerant Retrieval

Dictionaries

- Dictionary: the data structure for storing the term vocabulary

Storing Dictionaries

- For each term, we need to store a couple of items:
- document frequency
- pointer to postings list
- Assume for the time being that
- we can store this information in a fixed-length entry
- we store these entries in an array

Storing Dictionaries

term	document frequency	pointer to postings list
a 656,265 aachen 65	\longrightarrow	
\ldots	\ldots	\longrightarrow
zulu	221	\longrightarrow

space needed: 20 bytes 4 bytes 4 bytes

- How do we look up an element in this array at query time?
- Remember: these dictionaries can be huge, scanning is not an option

Data Structures

- Two main classes of data structures: hash tables and trees
- Some IR systems use hash tables, some use trees.
- Criteria for when to use hash tables vs trees:
- Is there a fixed number of terms or will it keep growing?
- What are the relative frequencies with which various keys will be accessed?
- How many terms are we likely to have?

Hash Tables

- Each vocabulary term is hashed into an integer.
- Try to avoid collisions
- At query time, do the following:
- hash query term
- resolve collisions
- locate entry in fixed-width array
- Pros:
- Lookup in a hash table is faster than in a tree.
- Cons:
- no prefix search (all terms starting with automat)
- need to rehash everything periodically if vocabulary keeps growing

Trees

- Trees solve the prefix problem (find all terms starting with automat).
- Simplest tree: binary tree.
- However, binary trees are problematic:
- Only balanced trees allow efficient retrieval
- Rebalancing binary trees is expensive
- Use B-trees (the index structure that you know from database lectures)

B-Tree

Taken from documentation for Oracle 10 g

Wildcard Queries

- mon*: find all docs containing any term beginning with mon
- Easy with B-tree dictionary
- retrieve all terms t in the range: mon $\leq t<$ moo
- *mon: find all docs containing any term ending with mon
- Maintain an additional tree for terms backwards, then
- retrieve all terms t in the range: nom $\leq t<$ non

Query Processing

- At this point, we have an enumeration of all terms in the dictionary that match the wildcard query.
- We still have to look up the postings for each enumerated term.
- e.g., consider the query: gen* AND universit*
- This may result in the execution of many Boolean AND queries.

Wildcards in Middle of Term

- Example: m*nchen
- We could look up $m *$ and *nchen in the B-tree and intersect the two term sets.
- Expensive (there are probably thousands and thousands of terms beginning with "m")
- Alternative: permuterm index
- Basic idea: Rotate every wildcard query, so that the * occurs at the end.

Permuterm Index

- For term hello: add hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, and \$hello to the B-tree where $\$$ is a special symbol

Permuterm Index

- Queries
- For X, look up $X \$$
- For X^{*}, look up \$ X^{*}
- For $* X$, look up X \$*
- For ${ }^{*} X^{*}$, look up X^{*}
- For $X^{*} Y$, look up $\mathrm{Y} \$ X^{*}$
- Example:
- For hel*o, look up o\$hel*
- It's really a tree and should be called permuterm tree
- But permuterm index is more common name.

Query Processing

- Once we modified the query (as shown on last slide), we can do a regular lookup on a B-tree
- This is much faster than looking up X^{*} and *Y and combining results (for query $\mathrm{X}^{*} \mathrm{Y}$)
- Permuterm index also handles leading wildcards: *X
- It has a disadvantage, though: quadruples the size of the dictionary compared to a regular B-tree (as every term is stored multiple times)

k-gram Index

- More space-efficient than permuterm index
- Enumerate all character k-grams (sequence of k characters) occurring in a term
- 2-grams are also called bigrams
- 3-grams are also called trigrams
- Example:
- from April is the cruelest month we get the bigrams:
\$a ap pr ri il $1 \$ \$ i$ is $s \$ \$ t$ th he e\$ \$c cr ru ue el le es st $t \$ \$ \mathrm{~m}$ mo on nt th h\$
- \$ is a special word boundary symbol.
- Maintain an inverted index from bigrams to the terms that contain the bigram

Postings List in a 3-gram Index

- Note that we now have two different types of inverted indexes
- The term-document inverted index for finding documents based on a query consisting of terms
- The k-gram index for finding terms based on a query consisting of k-grams

Processing Wildcard Queries

- Query mon* can now be run as: \$m AND mo AND on
- Gets us all terms with the prefix mon...
- ... but also many "false positives" like moon
- We must post-filter these terms against query
- Surviving terms are then looked up in the term-document inverted index.
- k-gram indexes are fast and space efficient (compared to permuterm indexes).

Processing Wildcard Queries

- We must potentially execute a large number of Boolean queries for each enumerated, filtered term (on the term-document index)
- Recall the query: gen* AND universit*
- Most straightforward semantics: Conjunction of disjunctions
- Very expensive
- Users hate to type
- If abbreviated queries like pyth* theo* for pythagoras' theorem are legal, users will use them...
-a lot

Spelling Correction

- Two principal uses
- Correcting documents being indexed
- Correcting user queries
- Two different methods
- Isolated Word Spelling Correction
- Check each word on its own for misspelling
- Will not catch typos resulting in correctly spelled words, e.g., an asteroid that fell form the sky
- Context-Sensitive Spelling Correction
- Look at surrounding words
- Can correct the form/from error above

Correcting Documents

- We're not interested in interactive spelling correction of documents (e.g., MS Word) in this class.
- In IR, we use document correction primarily for OCR'ed documents (i.e. documents digitized via Optical Character Recognition)
- The general philosophy in IR is: don't change the documents.

Correcting Queries

- First: isolated word spelling correction
- Fundamental premise 1: There is a list of "correct words" from which the correct spellings come.
- Fundamental premise 2: We have a way of computing the distance between a misspelled word and a correct word.
- Simple spelling correction algorithm: return the "correct" word that has the smallest distance to the misspelled word.
- Example: informaton \rightarrow information

Correcting Queries

- Can we use the term vocabulary of the inverted index as the list of correct words?
- It can be very biased
- It may be missing certain terms
- Alternatives:
- A standard dictionary
(Webster's, Encyclopædia Britannica, etc.)
- An industry-specific dictionary (for specialized IR systems)
- The term vocabulary of the collection, appropriately weighted

Computing Distance

- How can we compute the distance between words?
- We'll look at some alternatives:
- edit distance (Levenshtein distance)
- weighted edit distance
- k-gram overlap

Edit Distance

- The (minimum) edit distance between two strings s_{1} and s_{2} is the minimum number of basic operations to convert s_{1} to s_{2}.
- Levenshtein distance: the admissible basic operations are: insert, delete, and replace
- Levenshtein distance $\operatorname{dog} \rightarrow$ do: 1 (deletion)
- Levenshtein distance cat \rightarrow cart: 1 (insertion)
- Levenshtein distance cat \rightarrow cut: 1 (replacement)
- Levenshtein distance cat \rightarrow act: 2 (2 replacements or 1 insertion and 1 deletion)

Computing Distance

- Getting from cats to fast

	"'"	f	a	S	t
'"'	${ }^{\prime \prime \prime} \rightarrow{ }^{\prime \prime \prime}$	${ }^{\prime \prime \prime} \rightarrow \mathrm{f}$	${ }^{\prime \prime \prime} \rightarrow \mathrm{fa}$	${ }^{\prime \prime \prime}$ ' \rightarrow fas	${ }^{\prime \prime \prime}$ ' \rightarrow fast
C	$\mathrm{c} \rightarrow{ }^{\prime \prime \prime}$	$\mathrm{c} \rightarrow \mathrm{f}$	$\mathrm{c} \rightarrow \mathrm{fa}$	$c \rightarrow$ fas	$\mathrm{c} \rightarrow$ fast
a	ca \rightarrow "'"	ca \rightarrow f	$\mathrm{ca} \rightarrow \mathrm{fa}$	ca \rightarrow fas	ca \rightarrow fast
t	cat \rightarrow '"'	cat \rightarrow f	cat \rightarrow fa	cat \rightarrow fas	cat \rightarrow fast
S	cats \rightarrow '"'	cats $\rightarrow \mathrm{f}$	cats \rightarrow fa	cats \rightarrow fas	cats \rightarrow fast

- Each cell will contain the (cheapest) cost of getting from the string on the left-hand side to the string on the right-hand side

Computing Distance

- We know the costs for the uppermost row and the leftmost column:
- we have to get from ""' to fast by inserting characters
- we have to get from cats to ""' by deleting characters

	$" " \prime$	f	a	s	t
$" \prime \prime$	0	1	2	3	4
c	1				
a	2				
t	3				
s	4				

Computing Distance

- For other cells, take the minimum of costs
- Coming from (a):
- add 1 to cost in (a) - insertion
- Coming from (b):
- add 1 to cost in (b) - deletion
- Coming from (c):
- if characters in row and column are equal, copy cost from (c)
- otherwise, add 1 to cost in (c) - replacement

Resulting Matrix

- Computing the costs for all cells results in the following matrix:

	$\prime \prime \prime$	f	a	s	t
${ }^{\prime \prime \prime} \prime$	0	1	2	3	4
c	1	1	2	3	4
a	2	2	1	2	3
t	3	3	2	2	2
s	4	4	3	2	3

- So the Levenshtein distance is 3

Algorithm

```
EditDistance \(\left(s_{1}, s_{2}\right)\)
    1 int \(m[i, j]=0\)
    2 for \(i \leftarrow 1\) to \(\left|s_{1}\right|\)
    3 do \(m[i, 0]=i\)
    4 for \(j \leftarrow 1\) to \(\left|s_{2}\right|\)
    5 do \(m[0, j]=j\)
    6 for \(i \leftarrow 1\) to \(\left|s_{1}\right|\)
    7 do for \(j \leftarrow 1\) to \(\left|s_{2}\right|\)
9
10
11 return \(m\left[\left|s_{1}\right|,\left|s_{2}\right|\right]\)
```


Weighted Edit Distance

- As Levenshtein distance, but weight of an operation depends on the characters involved.
- Meant to capture keyboard errors
- e.g., m more likely to be mistyped as n than as q.
- therefore, replacing m by n is a smaller edit distance than by q.
- We now require a weight matrix as input.
- Modify dynamic programming to handle weights.

Using Edit Distances

- Comparing query term q to all terms in the vocabulary is too expensive
- Solution: use heuristics to determine subset
- Only compare to terms beginning with the same letter (doesn't work for typos at beginning)
- Generate set of rotations for q and use a permuterm index (doesn't work well for replacements)
- For each rotation, omit a suffix of / characters before doing lookup in permuterm index
- Ensures that each term in query rotation shares a substring with retrieved terms
- The value of I could be fixed to a constant length (e.g. 2), or depend on the length of q

Using a k-gram Index

- Enumerate all k-grams in the query term
- Use the k-gram index to retrieve "correct" words that match query term k-grams
- Threshold by number of matching k-grams
- e.g., only vocabulary terms that differ by at most 3 k-grams

Example with 2-grams

- Suppose the misspelled word is "bordroom": \$b, bo, or, rd, dr, ro, oo, om, m\$

Example with 3-grams

- Suppose the correct word is "november": \$\$n, \$no, nov, ove, vem, emb, mbe, ber, er\$, r\$\$
- And the query term is "december": \$\$d, \$de, dec, ece, cem, emb, mbe, ber, er\$, r\$\$
- So 5 trigrams overlap (out of 10 in each term)
- Issue: Fixed number of k-grams that differ does not work for words of differing length.
- How can we turn this into a normalized measure of overlap?

Jaccard Coefficient

- A commonly used measure of two sets' overlap
- Let A and B be two sets
- Jaccard coefficient:

$$
\frac{|A \cap B|}{|A \cup B|}
$$

- A and B don't have to be the same size.
- Always assigns a number between 0 and 1 .
- Application to spelling correction: declare a match if the coefficient is, say, >0.8.

Context-Sensitive Correction

- Our example was:
"an asteroid that fell form the sky"
- How can we correct form here?
- One idea: hit-based spelling correction
- We'll return back to this idea when we talk about the probabilistic approach to spelling correction, in the second half of the module.

Context-Sensitive Correction

- Given query "flew form munich"
- Retrieve the correct terms close to each query term
- flea for flew
- from for form
- munch for munich
- Now try all possible resulting phrases as queries, with one word fixed at a time
- Try query "flea form munich"
- Try query "flew from munich"
- Try query "flew form munch"
- The correct query "flew from munich" should have the most hits.

Context-Sensitive Correction

- The hit-based algorithm we just outlined is not very efficient.
- Suppose we have 7 alternatives for flew, 19 for form and 3 for munich
- Then we have to test $7 \times 19 \times 3$ different variants
- More efficient alternative: look at the collection of queries, not documents
- This assumes that we log queries

General Issues

- User interface
- Automatic or suggested correction
- "Did you mean" only works for one suggestion.
- What about multiple possible corrections?
- Tradeoff: simple vs powerful UI
- Cost
- Spelling correction is potentially expensive.
- Avoid running on every query?
- Maybe just on queries that match few documents.

Phonetic Matching

- Soundex is the basis for finding phonetic (as opposed to orthographic) alternatives.
- e.g., Chebyshev / Tchebyscheff
- Algorithm:
- Turn every token to be indexed into a 4-character reduced form
- Do the same with query terms
- Build and search an index on the reduced forms

Soundex Algorithm

1. Retain the first letter of the term.
2. Change all occurrences of the following letters to 0 (zero):

- A, E, I, O, U, H, W, Y

3. Change letters to digits as follows:

- $B, F, P, V \Rightarrow 1$
- C, G, J, K, Q, S, X, Z $\Rightarrow 2$
- $\mathrm{D}, \mathrm{T} \Rightarrow 3$
- $\mathrm{L} \Rightarrow 4$
- $\mathrm{M}, \mathrm{N} \Rightarrow 5$
- $\mathrm{R} \Rightarrow 6$

4. Repeatedly remove one out of each pair of consecutive identical digits
5. Remove all 0 s from the resulting string; pad the resulting string with trailing 0s, and return the first four positions, which will consist of a letter followed by three digits

Soundex Algorithm

- Example

	difficulty	difference
steps 1 and 2	d0ff0c0lt0	d0ff0r0nc0
step 3	d011020430	d011060520
step 4	d01020430	d 01060520
step 5	d124	d 165

- Vowels are viewed as being interchangeable
- Consonants with similar sounds (e.g. D and T) are put in equivalence classes
- Works fairly well for European languages

Summary

- How to organize a dictionary of an inverted index
- How to do imprecise searches on this dictionary handling
- wildcards
- spelling mistakes

