
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London



IR Chapter 04

Index Construction



Hardware

I In this chapter we will look at how to construct
an inverted index

I Many design decisions for indexing (and
information retrieval in general) are based on
hardware constraints

I We begin by reviewing hardware basics in this
lecture



Hardware Basics
I Access to data is much faster in memory than

on disk: roughly 10x.
I Disk seeks

I No data is transferred from disk while the disk
head is being positioned.

I Therefore, transferring one large chunk of data
from disk to memory is faster than transferring
many small chunks.

I Disk I/O is block-based
I Reading and writing of entire blocks (as opposed

to smaller chunks).
I Block sizes: 8KB to 256 KB

I Servers used in IR systems typically have
I several GB of main memory, sometimes tens of GB;
I a few orders of magnitude larger disk space.



Some Numbers

symbol statistic value
s average seek time 5 ms = 5× 10−3 s
b transfer time per byte 0.02 µs = 2× 10−8 s

processor’s clock rate 109 s−1

p lowlevel operation 0.01 µs = 10−8 s
(e.g. compare & swap a word)
size of main memory several GB
size of disk space 1 TB or more



Reuters RCV1 Collection

I Shakespeare’s Collected Works are not large
enough for demonstrating many of the points
in this lecture.

I As an example for applying scalable index
construction algorithms, we will use the
Reuters RCV1 collection that consists of
English newswire articles sent over the wire in
1995 and 1996.



Reuters RCV1 Collection



Reuters RCV1 Collection

I Corpus statistics

symbol statistic value
N documents 800,000
L avg. # word tokens per document 200
M terms (= word types) 400,000

avg. # bytes per word token (incl. spaces/punct.) 6
avg. # bytes per word token (without spaces/punct.) 4.5
avg. # bytes per term (= word type) 7.5

T non-positional postings 100,000,000



Index Construction
I Straightforward approach:

1. Make a pass through the collection assembling all
term-docID pairs

2. Sort pairs (using term as the dominant key, docID
as the secondary key)

3. Organize docIDs for each term into a postings list
(and compute statistics like term and document
frequencies)



Example



Example



Sort-based Index Construction

I As we build index, we parse docs one at a time.

I The final postings for any term are incomplete
until the end.

I At 10–12 bytes per postings entry, it demands
a lot of space for large collections.
I T = 100,000,000 in the case of RCV1
I Actually, we can probably do 100,000,000 in

memory, but typical collections are even larger than
RCV1.

I Thus, we need to store intermediate results on
disk.



Sort-based Index Construction

I To make index construction more efficient, we
represent terms as termIDs (instead of strings)

I Build mapping from terms to termIDs on the
fly (or do a two-pass approach, first compiling
the vocabulary)

I Sorting T = 100,000,000 records on disk using
standard in-memory algorithms is too slow —
too many disk seeks

I We need an external sorting algorithm that
minimizes the amount of random I/O



External Sorting

I Divide up the data into blocks that can fit in
main memory

I Sort each block in main memory

I Sort the data by merging two (or more) blocks
in separate steps



Merging Blocks



Replacement Selection

I It’s even possible to sort blocks that are larger
than main memory:

output main memory input
10 20 30 40 25 73 16 26 33 50 31

10 20 25 30 40 73 16 26 33 50 31
10 20 25 30 40 73 16 26 33 50 31

10 20 25 (16) 30 40 73 26 33 50 31
10 20 25 30 (16) (26) 40 73 33 50 31

10 20 25 30 40 (16) (26) (33) 73 50 31
10 20 25 30 40 73 (16) (26) (33) (50) 31

16 26 31 33 50



External Sorting and Inverted Indexes
I 12-byte (4+4+4) postings: (termID, docID,

document frequency)
I To simplify things a bit, we’re looking at

non-positional indexes
I Techniques can be extended to positional ones

I Must now sort T = 100,000,000 such 12-byte
postings by 〈termID,docID〉



External Sorting and Inverted Indexes
I Define a block to consist of 10,000,000 such

postings
I We can easily fit that many postings into memory.
I We will have 10 such blocks for RCV1.

I Basic idea of algorithm:
I Accumulate postings for each block, sort, write to

disk.
I Then merge the blocks into one long sorted order.



Merging Postings Blocks



Another Problem

I Our assumption was: we can keep the
dictionary in memory.

I We need the dictionary (which grows
dynamically) in order to implement a term to
termID mapping.
I Actually, we could work with 〈term,docID〉

postings instead of 〈termID,docID〉 postings . . .
I . . . but then intermediate files become very large.
I We would end up with a scalable, but very slow

index construction method.
I So we need to come up with another solution



Single-Pass In-Memory Indexing

I Abbreviation: SPIMI
I Key ideas

I (1) Generate separate dictionaries for each block:
no need to maintain term-termID mapping across
blocks.

I (2) Don’t sort immediately: accumulate postings in
postings lists as they occur.

I With these two ideas we can generate a
complete inverted index for each block.

I These separate indexes can then be merged
into one big index.



Single-Pass In-Memory Indexing
I Sketch of algorithm:

I Scan through all documents
I If the term occurs for the first time, add it to the

dictionary and allocate a new (short) postings list
I If the term already exists in the dictionary, append

docID at the end of its postings list.
I When there is no space left, double the allocated

space for postings list.

I When we run out of memory, sort dictionary, sort
postings lists, write them to disk, and then begin a
new block

I When we are through with scanning documents,
merge all blocks



Single-Pass In-Memory Indexing



Distributed Indexing
I For Web-scale indexing, we must use a

distributed computer cluster
I Individual machines are fault-prone: they can

unpredictably slow down or fail.
I How do we exploit such a pool of machines?

MapReduce.

I Now we have a new module Cloud Computing
to cover such topics.



Dynamic Indexing

I Up to now, we have assumed that collections
are static.

I However, they rarely are (especially for Web
search engines).

I Documents are inserted, deleted and modified.

I This means that the dictionary and the
postings lists have to be modified.

I Periodically reconstructing the entire index is
usually too expensive



Quick Fix

I Maintain “big” main index on disk

I New docs go into “small” auxiliary index in
memory

I Search across both, merge results

I Periodically, merge auxiliary index into one
main index

I Deletions:
I Invalidation bit-vector for deleted docs
I Filter docs returned by index using this invalidation

bit-vector: only return “valid” docs to user.



Issue with Auxiliary Indexes

I Frequent merges; poor performance during
merge

I Actually, merging of the auxiliary index into the
main index could be efficient if we keep a
separate file for each postings list
I But then we would need a lot of files (there can be

millions of postings lists in an IR system).
I Handling this number of files usually not efficient

I For the moment, let’s assume that we store
index in one big file

I Reality lies somewhere in between
I e.g., split very large postings lists, collect postings

lists of length 1 in one file



Costs of Merging
I Assume that we will process a total of T

postings and have an auxiliary index of size n
I i.e., there will be bT/nc merges

I Each posting will be handled at least once
(when merging it into the main index)
I i.e., costs for handling postings in the order of

T 2/n

I We can do better than that by doing
logarithmic merging

I Compromises between having one big main
index and millions of small ones



Logarithmic Merging

I Start with an in-memory auxiliary index Z0 of
size n

I When limit n is reached, an index I0 of size
20 × n is created on disk

I Next time Z0 is full, it is merged with I0 to
create an index Z1 of size 21 × n
I If I1 doesn’t exist yet, Z1 is stored as I1
I Otherwise, Z1 is merged with I1 to create Z2 of

size 22 × n (sizes double with each step)
I Continue with Z2 in the same way



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0 → I0



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

I0



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0 I0



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0 ∪ I0 → Z1 → I1



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

I1



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0 I1



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0 → I0 I1



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

I0 I1



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0 I0 I1



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z0 ∪ I0 → Z1 I1



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

Z1 ∪ I1 → Z2 → I2



First Few Steps . . .

n 20 × n 21 × n 22 × n 23 × n . . .

I2



First Few Steps (Overview)

n 20 × n 21 × n 22 × n 23 × n . . .

Z0

Z0 → I0
I0

Z0 I0
Z0 ∪ I0 → Z1 → I1

I1
Z0 I1

Z0 → I0 I1
I0 I1

Z0 I0 I1
Z0 ∪ I0 → Z1 I1

Z1 ∪ I1 → Z2 → I2
I2



Algorithm of Logarithmic Merging



Costs of Logarithmic Merging
I What do we gain from doing logarithmic

merging?
I We have log2(T/n) levels in indexing scheme
I Each posting is processed once on each level
I So, total costs are T log2(T/n)

Example for
n=1000



Disadvantages?
I Slow-down of query processing:

I we have to merge results from log2(T/n) indexes
(as opposed to just two)

I We still need to merge very large indexes
occasionally. However:
I this will happen less frequently
I the merged indexes will on average be smaller

I Having multiple indexes complicates
maintenance of collection-wide statistics

I Sometimes, rebuilding index from scratch can
be better
I depends on the frequency of updates



Summary
I Hardware puts constraints on index

construction
I Main memory is scarce
I We want to avoid random I/O on disk

I Additional challenges for distributed and
dynamic indexing


