
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London

IR Chapter 05

Index Compression

Why Compression?

I Using less disk space
(saves money)

I Caching: keep more stuff in memory
(increases speed)

I Transferring data from disk to memory faster
(again, increases speed)
I It would be faster to “read compressed data and

decompress” than “read uncompressed data”
I Premise: decompression algorithms are fast
I This is true of the decompression algorithms that

we will use

Why Compression in IR?
I For dictionary,

I Main motivation: make it small enough to keep in
main memory

I For postings file,
I Main motivation: reduce disk space needed;

decrease time needed to read from disk
I Large search engines keep significant part of

postings in memory

I We will devise various compression schemes

Lossy vs Lossless Compression

I Lossless compression: preserve all information
I Lossy compression: discard some information

I Several of the preprocessing steps can be viewed as
lossy compression

I eliminating numbers
I casefolding
I stop words
I stemming

I What can we gain with lossy compression?

Preprocessing for Reuters

I Lossy compression can be problematic, e.g.
phrase queries

I We will focus on lossless compression for the
remainder of this chapter

Analysing the Term Vocabulary

I Given a collection size (the number of tokens)
T , can we estimate the vocabulary size M?

I Yes, we can using Heaps’ law:

M = kT b

I k and b are two parameters, typically in the range
of: 30 ≤ k ≤ 100 and b ≈ 0.5

I For Reuters-RCV1, k = 44 and b = 0.49, which
predicts 38,323 (actual number is 38,365)

Heaps’ Law for Reuters-RCV1

Heaps’ Law
I Implications of Heaps’ Law:

I dictionary size keeps growing with more documents
(no maximum will be reached)

I dictionary sizes will be quite large for large
collections

I Has been shown empirically for large collections

I Dictionary compression is important for
efficiency

Dictionary Compression
I The dictionary is small compared to the

postings file, but
I we want to keep (most of) it in memory
I there is competition with other applications for

memory
I small memory sizes for cell phones or onboard

computers
I we want fast startup time

I So compressing the dictionary is useful

Dictionary as Fixed-Width Array

term document
frequency

pointer to
postings list

a 656,265 −→
aachen 65 −→
.
zulu 221 −→

space needed: 20 bytes 4 bytes 4 bytes

I Space for Reuters:
(20+4+4)*400,000 = 11.2 MB

Dictionary as Fixed-Width Array
I This is a bad idea

I Most of the bytes in the term column are wasted
I 20 bytes are allotted for a term of length 1

I We can’t handle very long words, e.g.,
“hydrochlorofluorocarbons”

I The average length of a term in English:
8 characters
I How can we use on average 8 characters per term?

Dictionary as a String

I Concatenate all terms into one big string (and
use pointers in dictionary)

I Use binary search to find term

Dictionary as a String
I While this saves space, it is not very scalable

I Once we run out of memory, we have to store
(parts of) the dictionary on disk

I Switching between main-memory and disk
representation is awkward in this scheme

I We are going to look at prefix B-trees and
some optimizations for them
I NOTE: we deviate a bit from the textbook here

Prefix B-trees

I Only the leaves of the trees contain actual
terms (+ frequency and postings pointer)

I Terms use variable space on page (every term
preceded by length)

I Inner nodes use reference keys to separate
pages, not actual terms

Prefix B-trees

I Compared to dictionary as a string, we replace
the term pointers with inner nodes

I This will use slightly more memory, but allows
for a much faster search

I B-trees are very good for disk-based indexing
(if we run out of main memory)

I We can cache the most frequently used parts
of the tree in main memory

Front Coding

I Many entries on a page share the same prefix
I We can exploit this by using front coding:

I 1st number indicates how many letters to re-use
from the beginning of previous word

I 2nd number states how many letter to add to this
I This is followed by the actual letters

word front coding
automata 0,8,automata
automate 7,1,e
automatic 7,2,ic
automation 8,2,on
automotive 5,5,otive
bat 0,3,bat

Postings Compression
I The postings file is much larger than the

dictionary
I factor of at least 10

I Key desideratum: store each posting
compactly.
I A posting for our purposes is a docID.
I For Reuters (800,000 documents), we would use

32 bits per docID when using 4-byte integers.
I Alternatively, we can use log2 800,000 ≈ 20 bits

per docID.
I Our goal: use a lot less than 20 bits per docID.

Key Idea: Store Gaps
I Each postings list is ordered in the increasing

order of docID
I information, 8: 〈 3, 8, 12, 19, 22, 23, 26, 33 〉;

I It suffices to store gaps
I information, 8: 〈 3, 5, 4, 7, 3, 1, 3, 7 〉;

I The gaps for frequent terms are small.
I That means, we can encode small gaps with fewer

than 20 bits.

Gap Encoding
encoding postings list

the docIDs . . . 283042 283043 283044 . . .
gaps 1 1 . . .

computer docIDs . . . 283047 283154 283159 . . .
gaps 107 5 . . .

arachnocentric docIDs 252000 500100
gaps 252000 248100

I For rare terms, such as arachnocentric, gaps
can be quite large
I We still need 20 bits to encode them

I Solution: use variable length encoding
I Few bits for small gaps
I Many bits for large gaps

Variable Byte (VB) Code

I Used by many commercial/research systems

I Good low-tech blend of variable-length coding
and sensitivity to alignment matches
(bit-level codes, see later).
I Dedicate 1 bit (high bit) to be a continuation bit c .
I If the gap G fits within 7 bits, binary-encode it in

the 7 available bits and set c = 1.
I Else: set c = 0, encode high-order 7 bits and then

use one or more additional bytes to encode the
lower order bits using the same algorithm.

VB Code Example

docIDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001

I Instead of bytes, we can also use a different
“unit of alignment”
I 32 bits (words), 16 bits, 4 bits (nibbles) etc.

I Variable byte alignment wastes space if you
have many small gaps
I nibbles do better on those

Bit-Level Encoding
I You can get even more compression with

bit-level code
I These use variable length bit codes
I Have to be prefix-free, i.e. no valid codeword is

allowed to be the prefix of another (like phone
numbers)

I We are going to look at Unary Code and
Gamma Code (or γ-Code)

Unary Code
I Represent n as n 1s with a final 0

I Unary code for 3 is
1110

I Unary code for 40 is
110

I Only good for highly skewed data, i.e., very
many very short gaps

I It is very inefficient for large numbers

Gamma Code (γ-Code)
I How many bits do we need to store a gap?

I 1=1 (1 bit), 2=10 (2 bits), 3=11 (2 bits),
5=101 (3 bits), 13=1101 (4 bits), . . .

I The number of bits to store n: 1 + log2bnc
I We don’t have any gaps of 0, therefore 1 is the

smallest number we have to encode
I This means that we always have a leading 1
I We can chop off the leading 1, and measure the

length of the remaining bit-string: log2bnc
I We call the remaining bitstring the offset
I Example: 13 is 1101,

chop off leading 1 → 101:
length = 3, offset = 101

Gamma Code
I Gamma Code encodes

I the length in unary code
I the offset in the usual binary code

I So, for our example:
I 13 has a gamma code of 1110101:

1110 for the length, 101 for the offset

More Code Examples

number unary code length offset γ code
0 0
1 10 0 0
2 110 10 0 10,0
3 1110 10 1 10,1
4 11110 110 00 110,00
9 1111111110 1110 001 1110,001
13 1110 101 1110,101
24 11110 1000 11110,1000
511 111111110 11111111 111111110,11111111
1025 11111111110 0000000001 11111111110,0000000001

Comparison
I So, which code is better?

I Here is a comparison for some typical document
collections:

method bits per gap
Bible GNUBib Comact TREC

Unary 262 909 487 1918
Gamma 6.51 5.68 4.48 6.63

I More details (+ another code, Delta Code) in:
I I.H. Witten, A. Moffat und T.C. Bell,

“Managing Gigabytes”, Morgan Kaufmann, 1999

Comparison

I Machines have word boundaries: 8, 16, 32 bits
I Compressing and manipulating at individual

bit-granularity
I yields better compression
I can slow down query processing

I Variable byte alignment is potentially more
efficient to process
I Regardless of efficiency, variable byte is

conceptually simpler at little additional space cost

Summary
I We can now create an index for highly efficient

Boolean retrieval that is very space efficient
I Only 10-15% of the total size of the text in the

collection

I However, we have ignored positional and
frequency information
I For this reason, space savings are less in reality
I But similar techniques can be used to compress

positional information

