
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London

IR Chapter 06

Scoring, Term
Weighting, and the
Vector Space Model

Problems with Boolean Queries
I Thus far, our queries have all been Boolean.

I Documents either match or don’t.

I Good
I for expert users with precise understanding of their

needs and the collection; and
I for software applications which can easily consume

1000s of results.

I Not good
I for the majority of users, as

(1) they are unable or unwilling to write Boolean
queries; and
(2) they don’t want to wade through 1000s of
results, which is is particularly true of web search.

Ranked Retrieval
I Boolean queries often result in either too few

(=0) or too many (1000s) results.
I Query 1: “standard user dlink 650”
→ 200,000 hits

I Query 2: “standard user dlink 650 no card found”
→ 0 hits

I It takes a lot of skill to come up with a query
that produces a manageable number of hits.

I With a ranked list of documents, it does not
matter how large the retrieved set is.

Scoring Documents

I We wish to return in order the documents most
likely to be useful to the searcher.

I How can we rank-order the documents in the
collection with respect to a query?

I We need a way of assigning a score to a
query/document pair.

I This score measures how well document and
query “match”.

Query-Document Matching Scores

I Let’s start with a simple approach

I Count how many of the query terms appear in
a document:

score(Q,D) = |Q ∩ D|

I It can be computed easily
I However, it is very biased towards large

documents
I Large documents have a greater chance of getting

a higher score (they just contain more terms)
I Bigger is not always better . . .

Jaccard Coefficient

I We need some way of normalizing the score

I Why not use Jaccard coefficient?

Jaccard(A,B) =
|A ∩ B |
|A ∪ B |

I A and B don’t have to be the same size.
I Always assigns a number between 0 and 1.

I Jaccard(A,B) = 1 if A = B
I Jaccard(A,B) = 0 if A ∩ B = 0

Jaccard Coefficient
I What’s wrong with Jaccard coefficient?

I Having a higher term frequency makes a document
more relevant

I How many occurrences does a term have in a
document?

I Rare terms are more informative than frequent
terms

I How often does a term occur in a document
collection?

I Jaccard coefficient doesn’t consider such
information.

I We need a more sophisticated way of
normalizing for length.

Binary Incidence Matrix
I Up to now, we used a binary incidence matrix

I Each document represented by binary vector
∈ {0, 1}|V |.

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

Term Frequency Matrix
I We will now use a matrix containing the term

frequencies:
I Each document represented by count vector ∈ N|V |

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 157 73 0 0 0 1
Brutus 4 157 0 2 0 0
Caesar 232 227 0 2 1 0
Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0
mercy 2 0 3 8 5 8
worser 2 0 1 1 1 5
. . .

Bag of Words Model
I For now, we do not consider the order of words

in a document.
I “John is quicker than Mary” and

“Mary is quicker than John”
are represented the same way.

I This is called a bag of words model.
I In a sense, this is a step back: The positional index

was able to distinguish these two documents.
I We will look at recovering positional information

later in this module.

Term Frequency TF

I The term frequency tft,d of term t
in document d is defined as:
the number of times that t occurs in d .

I We want to use tf when computing
query-document match scores.

I However, raw term frequency is often not what
we want.
I A document with 10 occurrences of the term is

more relevant than a document with 1 occurrence
of the term, but not 10 times more relevant.

I Relevance does not increase proportionally with
term frequency.

Term Frequency Weighting
I The effect of non-proportional increases can be

seen in other areas as well
I Economics: The law of diminishing returns

(e.g., sowing)
I Biology: Human senses operate logarithmically

(e.g., 10 times increase in sound volume is
perceived as being twice as loud)

I The term frequencies can be weighted in a
similar way

Log Frequency Weighting

I The log frequency weight of term t in d is
defined as follows

wt,d =

{
1 + log10 tft,d if tft,d > 0
0 otherwise

I 0 → 0, 1 → 1, 2 → 1.3, 10 → 2, 1000 → 4, etc.
I The score for a document-query pair: sum over

terms t in both q and d :
matching-score =

∑
t∈q∩d(1 + log tft,d)

I The score is 0 if none of the query terms is present
in the document.

Document Frequency

I A document containing a query term is more
likely to be relevant than a document that
doesn’t, but that’s not the whole story

I Rare terms are more informative than frequent
terms.
I For instance, a collection of documents on the

auto industry is likely to have the term auto in
almost every document:
a document containing the term auto is not very
relevant for a query containing the term auto

I Now, consider a term in the query that is rare in
the collection (e.g., arachnocentric):
a document containing this term is very likely to
be relevant.

Document Frequency

I We want to have high weights for rare terms;
and low weights (but still larger than 0) for
common terms.

I We will use document frequency to factor this
into computing the matching score.

I The higher the document frequency, the lower
the weight (and vice versa)

Inverse Document Frequency
I The document frequency dft of term t is the

number of documents that t occurs in (with N
documents in the collection).
I dft is an inverse measure of t’s informativeness.

I We define the idf weight of term t as follows
(note the logarithmic weighting):

idft = log10

N

dft

I idft is a measure of of t’s informativeness.

Effect on Ranking
I The idf affects the ranking of documents only

if the query has at least two terms.
I For example, in the query “arachnocentric

line”, idf weighting increases the relative weight
of ‘arachnocentric’ and decreases the relative
weight of ‘line’.

I The idf has no effect on ranking for one-term
queries.

TF-IDF Weighting

I The tf-idf weight of a term is the product of
its tf weight and its idf weight:

wt,d = (1 + log tft,d) · log
N

dft

I One of the best known weighting scheme in
information retrieval

I Note: the “-” in tf-idf is a hyphen, not a minus
sign!

I Alternative names: tf.idf, tfxidf

Weight Matrix
I We will now use a matrix containing the tf-idf

weights:
I Each document is now represented by a real-valued

vector of tf-idf weights ∈ R|V |.

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 5.25 3.18 0.0 0.0 0.0 0.35
Brutus 1.21 6.10 0.0 1.0 0.0 0.0
Caesar 8.59 2.54 0.0 1.51 0.25 0.0
Calpurnia 0.0 1.54 0.0 0.0 0.0 0.0
Cleopatra 2.85 0.0 0.0 0.0 0.0 0.0
mercy 1.51 0.0 1.90 0.12 5.25 0.88
worser 1.37 0.0 0.11 4.15 0.25 1.95
. . .

Documents as Vectors

I So we have a |V |-dimensional real-valued
vector space.

I Terms are axes of the space.
I Documents are points or vectors in this space.

I Very high-dimensional: tens of millions of
dimensions when you apply this to web search.

I Very sparse vector — most entries are zero.

Queries as Vectors

I Key idea 1: do the same for queries: represent
them as vectors in the space

I Key idea 2: rank documents according to their
proximity to the query (proximity = similarity)
I Recall: we’re doing this because we want to get

away from the you’re-either-in-or-out Boolean
model.

I Instead: rank more relevant documents higher than
less relevant documents

Formalizing Vector Space Similarity

I First cut: the distance between two points (i.e.,
the end points of the two vectors)

I Euclidean distance?
I Euclidean distance is a bad idea . . .
I . . . because Euclidean distance is large for vectors

of different lengths.

Why Distance is a Bad Idea

The Euclidean distance of ~q and ~d2 is large although the distribution of terms in the

query q and the distribution of terms in the document d2 are very similar

Use Angle Instead of Distance
I Rank the documents according to their angles

with the query
I Thought experiment: take a document d and

append it to itself, call this document d ′

I “Semantically” d and d ′ have the same content.
I The angle between the two documents is 0,

corresponding to maximal similarity.
I The Euclidean distance between the two

documents can be quite large.
I Thus, measuring the angle θ between the query

vector and a document vector is much better.

Illustration

From Angles to Cosines
I As all vector components are ≥ 0, all vectors

are in the same quadrant
I We only have angles between 0◦ and 90◦

I The cosine is a monotonically decreasing
function of the angle for the interval [0◦, 90◦]
I The larger the angle θ, the smaller the cosine of θ
I The smaller the angle θ, the larger the cosine of θ

From Angles to Cosines
I The following two notions are equivalent.

I Rank documents according to the angle between
query and document in increasing order

I Rank documents according to the cosine of the
angle(query,document) in decreasing order

I The cosine of an angle can be computed more
easily than the angle itself

Computing the Cosine

I The cosine between a vector ~x and a vector ~y
is computed as follows:

cos θ =
~x · ~y
|~x | · |~y |

where · is the dot product (or inner product) of

vectors ~x · ~y =
∑k

i=1 xiyi and |~x | =
√∑k

i=1 x
2
i

is the length of a vector.

Computing the Cosine

I So the matching-score of a document dj with
regard to a query q is

~q · ~dj
|~q| · |~dj |

I The vectors ~q and ~dj are made up of tf-idf weights
I The length is used for normalization purposes

(every matching-score is between 0 and 1)

Algorithm

I The array Length contains the lengths of each document (used for
normalization)

I We don’t need to divide by the query length (as this is just a constant factor)

Variants
I There are variants for tf-idf factors: a ranking

is called a tf-idf ranking, when the importance
of a document
I increases with the number of occurrences within a

document
I decreases with the number of occurrences of the

term in the collection

Variants

I The logarithmic one is most popular

I According to Zobel and Moffat, there is no big
difference in terms of quality for most tf-idf
heuristics

Variants

I We often use different weightings for queries
and documents.

I Notation: qqq.ddd
I Example: ltn.lnc

I query: logarithmic tf, idf, no normalization
I document: logarithmic tf, no df weighting, cosine

normalization
I bnn.ltc can be computed quite efficiently

I Only multiplication with 0 or 1 in line 6 of the
algorithm

Summary

I Represent the query as a weighted tf-idf vector

I Represent each document as a weighted tf-idf
vector

I Compute the cosine similarity between the
query vector and each document vector

I Rank documents with respect to the query

I Return the top k (e.g., k = 20) to the user

