
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London

IR Chapter 07

Computing Scores in
a Complete Search

System

Inexact Top-k Retrieval
I We now consider schemes which produce k

documents that are likely to be among the k
highest scoring documents
I We hope to dramatically lower the cost of

computing the top-k documents
I Obviously, we don’t want to alter the user’s

perceived relevance of the top-k results
significantly

I May not be such a bad thing as it sounds like
I Cosine similarity is also only a proxy for the user’s

perceived relevance

Inexact Top-k Retrieval

I We’ll now look at some ideas designed to
eliminate a large number of documents without
computing their cosine scores

I These heuristics follow a two-step scheme:
1. Find a set A of documents that are contenders,

where k < |A| � N
I A does not necessarily contain all the k top-scoring

documents for the query, but there should be a large
overlap

2. Return the k top-scoring documents in A

Index Elimination
I We could only consider the terms whose idf

exceeds a certain threshold
I Low idf means that terms are not very relevant
I These terms tend to have very long postings lists

I We could only consider the documents that
contain many (or all) query terms
I Only compute cosine values for these documents
I The danger is that we could end up with |A| < k

(we’ll come back to this in a moment)

Champion Lists

I Pre-compute, for each term t in the dictionary,
the set of the r documents with the highest
tf-values for t. We call this set of r documents
the champion list for term t (sometimes also
called fancy list or top docs).

I We create A by combining the champion lists
of all terms in query q.

I Determining the parameter r is crucial
I As r is determined when constructing the index, we

might not know k then
I So we might choose an r that is too small (ending

up with |A| < k again)

Static Quality Scores

I In many search engines, a query-independent
measure of quality is available

I The scores calculated based on such measures
are called static quality scores
I For example, the number of favourable reviews of

news stories

I The matching-score is computed by combining
the static quality g(d) of a document d with
other query-dependent scores
I A simple way to do this would be to add g(d) to

the cosine measure

I Such static quality scores can be used to build
champion lists based on g(d)

Impact Ordering
I The algorithm COSINESCORE in the last chapter

applied a document-at-a-time processing
I That means, for each d , tft,d pair we calculated

the cosine measure
I We have to accumulate the score for each

document while the algorithm is running

I This is very inefficient:
I We have to store scores for millions or even billions

of documents
I Most of those documents will never make it into

the top-k

Impact Ordering

I Naturally, we only want to compute cosine
measures for serious contenders (the set A)

I So we allocate space for computing |A| scores

I How do we make sure that we process the
most important documents first?

Impact Ordering

I Up to now we have implicitly assumed that
postings lists are ordered by docIDs

I However, if we add term frequencies (or other
scores such as g(d)) and want to do inexact
top-k retrieval, other orders might be better

I Let’s assume that we have postings lists with
term frequency values (each entry consists of
(docID, tf-value)
I e.g., information, 3: 〈(1, 3), (2, 1), (5, 2)〉;

I We could order the postings lists in decreasing
order of tf-values:
I e.g., information, 3: 〈(1, 3), (5, 2), (2, 1)〉;

Impact Ordering

I We access the postings lists of all the terms
contained in the query

I Then we process the items in the lists in
decreasing tf-value order
I Heuristic: documents in the top-k are likely to

occur early in these ordered lists

I We can also extend this scheme with idf-values,
i.e. multiply each tf-value with the idf-value of
the term before deciding on the order

I The first |A| documents encountered get their
total scores computed

Impact Ordering
I Here’s an example for three postings lists (and

simplified tf-idf-values):
I information, idf=1; 3: 〈 (1,3), (5,2), (2,1) 〉;
I line, idf=3; 2: 〈 (2,6), (1,2) 〉;
I computer, idf=2; 5: 〈 (3,7), (5,4), (2,3), (1,2),

(4,1) 〉;
I Start with document 2, term line

I (3 × 6 = 18; largest tf-idf value)

I Continue with document 3, term computer
I (2 × 7 = 14; second-larges tf-idf value)

I and so on . . .

Storing TF values
I Storing the tf-values for all documents will take

up considerable space
I The first problem we face is: how do we store the

tf-values efficiently?
I As it turns out, unary coding is quite good at this.

method bits per tf-value

Bible GNUBib Comact TREC

Unary 1.27 1.16 1.74 2.49

Gamma 1.38 1.23 1.88 2.13

Storing TF values
I However, when sorting by tf-values we have

problems with compressing docIDs (as gap
encoding relies on sorted docIDs)
I For example, the list
〈5 : (1, 2), (2, 2), (3, 5), (4, 1), (5, 2)〉
would be sorted like this
〈5 : (3, 5), (1, 2), (2, 2), (5, 2), (4, 1)〉

I Solution: organize items in “tf-blocks”
(tf, k : d1, . . . , dk),
where k is the number of documents for a
certain tf-value and the dis are sorted docIDs
I So for the above example, we would get:
〈5 : (5, 1 : 3), (2, 3 : 1, 2, 5), (1, 1 : 4)〉

I Needs slightly more memory than a docID-sorted
list, but still efficient

Cluster Pruning
I In cluster pruning, we have a preprocessing step

during which we cluster the document vectors
I Pick

√
N documents at random from the

collection, we call these leaders.
I For each document that is not a leader, we

compute its nearest leader.
I We refer to documents that are not leaders as

followers.
I The expected number of followers for each leader

is roughly N/
√
N =

√
N

I We’ll talk about more advanced text clustering
techniques later in the module

Cluster Pruning
I At query time, we only compute cosine

measures for a small number of documents
I Given a query q, find the leader L closest to q

(this entails computing cosine similarities from q to

each of the
√
N leaders)

I The candidate set A consists of L together with its
followers
(this entails computing cosine similarities from q to

each of the
√
N followers)

Cluster Pruning

Tiered Indexes

I Create several tiers of indexes, corresponding
to importance of indexing terms

I During query processing, start with the
highest-tier index

I If we get ≥ k hits: stop and return the results
to user

I If we get < k hits: repeat for the next index in
tier cascade

Tiered Indexes
I Example: two-tier system

I Tier 1: Index of all titles
I Tier 2: Index of the rest of documents
I As pages containing the search words in the title

are usually better hits than pages containing the
search words in the body of the text.

I Could be expanded to three-tier system
I Tier 1: Index of all titles
I Tier 2: Index of all abstracts
I Tier 3: Index of the rest of documents

Tiered Indexes

Putting It All Together

What Have We Covered So Far?
I Document preprocessing

I linguistic and otherwise

I Positional indexes

I Tiered indexes

I Spelling correction
I k-Gram indexes

I for wildcard queries and spelling correction

I Query processing

I Document scoring

I Term-at-a-time processing

What Is Yet To Come?
I Document cache

I e.g., for generating snippets (dynamic summaries)

I Zone indexes
I separate the indexes for different zones: the body

of the document, all highlighted text in the
document, anchor text, text in metadata fields, etc.

I Machine-learned ranking functions
I Proximity ranking

I e.g., rank documents in which the query terms
occur in the same local window higher than
documents in which the query terms occur far from
each other

I Query Parser
I see next slide

Query Parser
I IR systems often guess what the user intended

I The two-term query London tower (without
quotes) may be interpreted as the phrase query
“London tower” or even “Tower of London”.

I The query 100 Madison Avenue, New York may be
interpreted as a request for a map.

I How do we “parse” the query and translate it
into a formal specification containing phrase
operators, proximity operators, indexes to
search etc.?

Summary

I Different variants for computing scores

I How to compute scores efficiently (inexact
top-k retrieval)

I How a complete retrieval system looks like

