
Information Retrieval
and Organisation

Dell Zhang

Birkbeck, University of London

IR Chapter 08

Evaluation in
Information Retrieval

Measures for an IR System
I How fast does it index

I Number of documents/bytes per hour

I How fast does it search
I Latency as a function of index size or queries per

second

I What is the cost per query?
I Given certain requirements, e.g., a 20-billion-page

index

Measures for an IR System
I All of the preceding criteria are measurable

I We can quantify speed / size / money

I However, the key measure for a search engine
is user happiness
I What is user happiness and how do we measure it?
I Factors include:

I Speed of response
I Size of index
I Uncluttered UI
I Most important: relevance

I Note that none of these is sufficient: blindingly
fast, but useless answers won’t make a user happy.

Measuring User Happiness

I Most common definition of user happiness:
relevance of returned documents

I How do we measure the quality of what is
returned by an IR system?

I There are two basic measures:
I Precision P : the fraction of retrieved documents

that are relevant
I Recall R : the fraction of relevant documents

that are retrieved

Precision and Recall
I Let us give a more formal definition
I Let A be the set of retrieved documents, D be

the set of relevant documents and DA the set
of relevant documents retrieved, then

P =
|DA|
|A|

and R =
|DA|
|D|

Alternative Definition

Relevant Non-relevant
Retrieved true positives (TP) false positives (FP)
Not-retrieved false negatives (FN) true negatives (TN)

P = TP/(TP + FP) and R = TP/(TP + FN)

Accuracy

I Why do we use complex measures like precision
and recall?

I Why not something simple like accuracy?
I Accuracy is the fraction of decisions

(relevant/nonrelevant) that are correct.
I In terms of the contingency table above,

accuracy = (TP + TN)/(TP + FP + FN + TN).

I There’s a problem with that . . .

Accuracy

I Simple trick to maximize accuracy in IR:
I always say ‘no’ and return nothing, then
I you get 99.99% accuracy on most queries (there is

a huge number of true negatives you get right)

I Searchers on the web (and in IR in general)
want to find something and have a certain
tolerance for junk.

Precision/Recall Trade-off

I You can increase recall by returning
more docs
I Recall is a non-decreasing function of the number

of docs retrieved
I A system that returns all docs has 100% recall!

I The converse is (usually) also true:
You can increase precision by returning
fewer docs
I A system that only returns documents that have a

very high score (usually) has a high precision

Precision/Recall Trade-off
I Depending on the application one or the other

may be more important:
I Typical web surfers

I would like every result on the first page to be
relevant (high precision)

I are not interested in looking at every document that
might be relevant (there might be millions)

I Various professional searchers such as paralegals
and intelligence analysts

I are usually very concerned with trying to get as high
recall as possible

I will tolerate fairly low precision to avoid missing
relevant results

A Single Measure

I For comparison reasons it’s easier to have a
single number

I We can use a combined measure

F =
1

α 1
P + (1− α) 1

R

=
(β2 + 1)PR

β2P + R

I β2 = (1− α)/α
I β is a parameters with which we express how

important precision and recall are to us —
β < 1: precision is more important;
β > 1: recall is more important.

F1 Measure

I The most frequently used F measure is the
balanced one with β = 1 (or α = 1

2),
commonly written as F1

I F1 is the harmonic mean of P and R :

1

F
=

1

2
(

1

P
+

1

R
)

I Why use the harmonic mean?
I The simple (arithmetic) mean is 50% for

“return-everything” IR system, which is too high
I Desideratum: punish really bad performance on

either precision or recall

Precision-Recall Curve

I Precision/recall are measures for unranked sets

I We can easily turn set measures into measures
of ranked lists.

I Just compute the set measure for each “prefix”:
the top 1, top 2, top 3, top 4, . . . results

I Doing this for precision and recall gives you a
precision-recall curve.

Precision-Recall Curve
I Example

I Assume following documents are relevant for the
query q: {d3, d5, d9, d25, d39, d44, d56, d71, d89, d123}

I IR system gives back this ranked list:

Ranking Recall Precision
1. d123 ← 10% 100%
2. d84 10% 50%
3. d56 ← 20% 67%
4. d6 20% 50%
5. d8 20% 40%
6. d9 ← 30% 50%
7. d511 30% 43%
8. d129 30% 38%
9. d187 30% 33%
10. d25 ← 40% 40%
11. d38 40% 36%
12. d48 40% 33%
13. d250 40% 31%
14. d113 40% 29%
15. d3 ← 50% 33%

Precision-Recall Curve

I As the recall is increasing monotonically, we
can plot the precision in relation to the recall:

11-Point Interpolated Average Precision

I Examining the entire precision-recall curve can
be very informative, but often we only want an
overview

I The traditional way of doing this is the
11-point interpolated average precision
I For each test query, the interpolated precision is

measured at the 11 recall levels of
0.0, 0.1, 0.2, . . . , 1.0

I We then average the precision at each level

11-Point Interpolated Average Precision
I Interpolation (in red): take the maximum of all

future points
I Rationale: the user is willing to look at more stuff

if both precision and recall get better

MAP

I If the set of relevant documents for a query
qj ∈ Q is {d1, . . . , dmj

} and Rjk is the set of
ranked retrieval results from the top result until
you get to document dk , then the Mean
Average Precision (MAP) is:

MAP(Q) =
1

|Q|

|Q|∑
j=1︸ ︷︷ ︸

Mean

1

mj

mj∑
k=1︸ ︷︷ ︸

Average

Precision(Rjk)

I No use of fixed recall levels. No interpolation.
I When no relevant doc is retrieved, the average

precision is taken to be 0.

Precision/Recall at k
I Prec@k : Precision on the top k retrieved docs.

I Appropriate for Web search engines: most users
scan only the first few (e.g., 10) links that are
presented.

I Rec@k : Recall on the top k retrieved docs.
I Appropriate for archival retrieval systems: what

fraction of total number of relevant docs did a user
find after scanning the first few (say 100) docs?

R-Precision
I Precision at Rel

I Rel is the size of a set of known-to-be relevant
documents (though perhaps incomplete).

I A perfect IR system could score 1 on this metric
for each query.

PRBEP
I Given a precision-recall curve, the

Precision/Recall Break-Even Point (PRBEP) is
the value at which the precision is equal to the
recall.
I It is obvious from the definition of precision/recall,

the equality is achieved for contingency tables with
TP + FP = TP + FN , i.e., when the number of
retrieved documents is the same as the number of
relevant documents.

I It is equivalent to R-Precision when there are
indeed Rel relevant documents in total.

Queries vs Information Needs
I Where do we get the queries with which to test

the system?
I We’ll talk about this in just a minute . . .

I We still haven’t defined when a document is
relevant.
I Who decides when a document is relevant and

relevant to what?
I “Relevance to a query” is very problematic.
I A user starts out with an information need, not a

query

Queries vs Information Needs
I Let’s look at an example:

I Information need i : You are looking for information
on whether drinking red wine is more effective at
reducing the risk of heart attacks than white wine.

I This is an information need, not a query.

I (Possible) query q: wine AND red AND white

AND heart AND attack
I Consider document d ′: “He then launched into the

heart of his speech and attacked the wine industry
lobby for downplaying the role of red and white
wine in drunk driving.”

I d ′ is relevant to the query q . . .
I d ′ is not relevant to the information need i .

Queries vs Information Needs

I User happiness can only be measured by
relevance to an information need, not by
relevance to queries.

I We’ve been a bit sloppy with our terminology:
I We talk about query/document relevance

judgements

even though we mean
I information-need/document relevance judgements

Benchmarks

I What we need is a benchmark
I A benchmark for IR systems consists of

I A collection of documents
I Documents must be representative of the documents

we expect to see in reality.
I A collection of information needs (which we will

often incorrectly refer to as queries)
I Information needs must be representative of the

information needs we expect to see in reality.
I And last but not least: human relevance

assessments
I We need to hire/pay “judges” or assessors to do this

(expensive, time-consuming).
I Judges must be representative of the users we expect

to see in reality.

Standard Relevance Benchmarks
I Cranfield

I Pioneering: first testbed allowing precise
quantitative measures of information retrieval
effectiveness

I Late 1950s, UK
I 1398 abstracts of aerodynamics journal articles, a

set of 225 queries, exhaustive relevance judgements
of all query-document-pairs

I Too small, too untypical for serious IR evaluation
today

Standard Relevance Benchmarks
I TREC

I TREC = Text Retrieval Conference (TREC)
I Organized by the U.S. National Institute of

Standards and Technology (NIST)
I TREC is actually a set of several different

relevance benchmarks.
I Best known: TREC Ad Hoc, used for first 8 TREC

evaluations between 1992 and 1999
I 1.89 million documents, mainly newswire articles,

450 information needs

TREC: Example Collection

TREC: Example Collection
I Data Sources:

I WSJ = Wall Street Journal
I AP = Associated Press
I ZIFF = Computer Selects, Ziff-Davis
I FR = Federal Register
I DOE = US DOE Publications
I SJMN = San Jose Mercury News
I PAT = US Patents
I FT = Financial Times
I CR = Congressional Record
I FBIS = Foreign Broadcast Information Service
I LAT = LA Times

TREC: Example Document

I Documents contain SGML markup tags

I Important fields like document number (<docno>) and text
(<text>) can be found in all documents

TREC: Example Information Need

I Information needs (topics) are defined in natural language

I These have to be translated into a query and then processed

TREC: Relevance

I No exhaustive relevance judgements: that
would be too expensive

I NIST assessors’ relevance judgements are
available only for the documents that were
among the top-K

I This means the top-K of systems entered in
the TREC evaluation for which the information
need was developed

Standard Relevance Benchmarks
I GOV2

I Another TREC/NIST collection
I 25 million web pages
I Largest collection that is easily available
I But still 3 orders of magnitude smaller than what

Google/Yahoo/MSN index

I NTCIR
I East Asian language and cross-language

information retrieval

I Cross Language Evaluation Forum (CLEF)
I This evaluation series has concentrated on

European languages and cross-language
information retrieval

Evaluation of Large IR Systems
I How do you measure recall on the web?

I Search engines often use precision at top-K , e.g.,
K = 10 . . .

I . . . or measures that reward you more for getting
rank 1 right than for getting rank 10 right

I Search engines also use non-relevance-based
measures.
I Example 1: clickthrough on first result

I Not very reliable if you look at a single clickthrough
I . . . but pretty reliable in the aggregate.

I Example 2: Ongoing studies of user behaviour in
the lab

A/B Testing
I Purpose: Test a single innovation

I Have most users use old system (pre-requisite: you
have a large search engine up and running)

I Divert a small proportion of traffic (e.g., 1%) to
the new system that includes the innovation

I Evaluate with an “automatic” measure like
clickthrough on first result

I Now we can directly see if the innovation does
improve user happiness.

I Probably the evaluation methodology that
large search engines trust most
I Variant: Give users the option to switch to new

algorithm/interface

Result Summaries
I How do we present results to the user?

I Most often: as a list – aka “10 blue links”

I How should each document in the list be
described?
I This description is crucial.
I User can identify good hits (= relevant hits) based

on description.
I No need to “click” on all documents sequentially

Result Summaries
I Doc description in result List

I Most commonly: doc title, url, some metadata . . . ,
and a summary

I How do we “compute” the summary? Two
basic kinds: (i) static (ii) dynamic.
I A static summary of a document is always the

same, regardless of the query that hit the
document

I Dynamic summaries are query-dependent. They
attempt to explain why the document was
retrieved for the query at hand.

Result Summaries
I Static Summaries

I Simplest form of summary takes e.g. the first two
sentences or 50 words of a document

I May also extract information from a particular
zone of the document or from metadata, e.g. title
and author

I Typically extracted and cached at indexing time, so
that it can be retrieved and presented quickly

I There are more sophisticated approaches using
natural language processing (NLP).

I Many of these are still subject to research and not
within the scope of this module.

Result Summaries
I Dynamic Summaries

I Dynamic summaries display one or more
“windows” on the document

I Usually windows contain query terms, and so are
often referred to as keyword-in-context or KWIC
snippets

I If the query is found as a phrase, occurrences of the
phrase in the document will be shown as the
summary

I If not, windows within the document that contain
multiple query terms will be selected

I These windows may just stretch some number of
words to the left and right of the query terms

I NLP can also be employed usefully: users prefer
snippets that read well because they contain
complete phrases

Result Summaries
I Dynamic Summaries

I They are liked by users: you can scan them to
decide if you want to click (e.g. Google provides
them). However, not easy to implement as they
cannot be precomputed.

I Reconstructing the context with only a positional
index is also difficult and time-consuming, but
generating snippets must be fast since many
snippets are typically generated for each query.

I Caching the whole documents is not feasible: it is
common to cache a fixed-size prefix

I For short documents, the whole document is cached
I For longer documents we assume that prefix will

contain some summary

Summary
I How to evaluate the retrieval quality of an IR

system:
I Discussing different measures for doing so
I Explaining how relevance of documents is

determined

I How to present summaries of the document
answer set to a user

