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Why Probabilities in IR?
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In IR systems, matching between each document and query is 

attempted in a semantically imprecise space of index terms.

Probabilities provide a principled foundation for uncertain reasoning.

Can we use probabilities to quantify our uncertainties?
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Why Probabilities in IR?

 Problems with vector space model

 Ad-hoc term weighting schemes

 Ad-hoc basis vectors

 Ad-hoc similarity measurement

 We need something more principled!



Probability theory is nothing but 

common sense reduced to calculation.

--- Pierre-Simon Laplace



The Bean Machine

 Wikipedia
 http://en.wikipedia.org/wiki/Bean_machine

 Demonstration:
 http://www.youtube.com/watch?v=9xUBhhM4vbM

 Simulation:
 http://www.ms.uky.edu/~mai/java/stat/GaltonMachine.html

http://en.wikipedia.org/wiki/Bean_machine
http://www.youtube.com/watch?v=9xUBhhM4vbM
http://www.ms.uky.edu/~mai/java/stat/GaltonMachine.html


Probability

 P(A) means probability that A is true

 P(baby is a boy)  0.5 (% of total that are boys)

 P(baby is named John)  0.001 (% of total named 

John)
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Odds

 The odds of an event A:

 O(baby is a boy) = 0.5 / 0.5 = 1

 O(baby is named John) = 0.001 / 0.999 = 1/999
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Joint Probability
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 P(A,B) means probability that A and B are both 

true

 P(baby is named John, baby is a boy)



Conditional Probability

 P(A|B) means probability that A is true when we 

already know B is true

 P(baby is named John | baby is a boy)  0.002

 P(baby is a boy | baby is named John)  1
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Basic Rules of Probability

 Chain Rule:

 P(named John, boy)

= P(named John | boy)  P(boy)

= 0.002 * 0.5 = 0.001
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Basic Rules of Probability

 Partition Rule:

 P(boy)

=P(named John, boy) + P(not named John, boy)

= 0.001 + 0.499 = 0.5
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Independence

 P(A,B) = P(A)P(B): A and B are independent

 P(blue eyes, boy) = P(blue eyes)  P(boy)
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Conditional Independence

 P(A,B|C) = P(A|C)P(B|C): A and B are 

conditionally independent given C

 P(named John, blue eyes | boy)

= P(named John | boy)  P(blue eyes | boy)
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Bayes’ Rule

 P(A|B) = P(B|A) P(A) / P(B)

 P(named John | boy)

= P(boy | named John)  P(named John) / P(boy)
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Bayes’ Rule

posterior probability

prior probabilitylikelihood



Example: British Weather

 You are about to set off into town to do some 

shopping. 

 You will only be out for an hour or so, but rain 

has been forecasted, so what are you going to 

do? 

 You know the forecasts are pretty good-around 

80% accurate, in fact. 

 So the chances that you will need an umbrella 

are 80%, right?



Example: British Weather

 Wrong, they're actually more like 30%.

 On the hourly timescales relevant to shopping 

trips, Britain's base-rate of rain is about 10%. 

That is, there is only a 1 in 10 chance of rain 

falling in any particular hour, and thus a 9 in 10 

chance of rain not falling. And this has a 

significant impact on how much trust we can put 

in even an 80% reliable forecast. 



Example: British Weather

Robert Matthews, How right can you be?, New Scientist, 08 March 1997.

 Contingency Table

http://www.newscientist.com/article/mg15320724.000-how-right-can-you-be.html


Example: British Weather

 In the language of probabilities

 we can estimate P(rain-falls | forecast-of-rain)

 by using Bayes’ rule to combine the knowledge of 

P(rain-falls) and P(forecast-of-rain | rain-falls)!



Example: Monty Hall Problem

 YouTube videos on this problem 

 Cartoon

 “21”

 Numb3rs

 Wikipedia article on this problem

http://www.youtube.com/results?aq=f&search_query=Monty+Hall+Problem&search_type=&gl=US
http://www.youtube.com/watch?v=mhlc7peGlGg
http://www.youtube.com/watch?v=cXqDIFUB7YU
http://www.youtube.com/watch?v=P9WFKmLK0dc
http://en.wikipedia.org/wiki/Monty_Hall_problem




Example: Discriminatory Drugs

 What is the probability that Drug I will treat a man 

successfully?

 Is the success of Drug I independent from 

gender?



Example: Discriminatory Drugs

 Which drug is more effective for women?

 Which drug is more effective for men?

 Which drug is more effective overall?

 Simpson's Paradox

“There are three kinds of lies: lies, damned lies, and statistics.”



Example: Biased Coins

 Consider you have three coins

 C1, C2, C3

 Alex picked up one of the coins and flipped it 6
times.

 You didn’t see which coin he picked out, but you 
observed the results of flipping coins

 THTHTT

 How to guess which coin Alex chose?



Example: Biased Coins

 You experimented with the three coins, say 6 

times

 C1: HHHTHH

 C2: TTHTHH

 C3: THTTTH

 Given the observation

 O: THTHTT

 Which coin do you think Alex chose?



Example: Biased Coins

 A principled approach

 Compare the posterior probability P(Ci|O)

 It is not obvious how the posterior probability

P(Ci|O) can be computed directly

 It is easy to compute the prior probability P(Ci) and 

the likelihood P(O|Ci).

 Build a model for each coin

 C1: HHHTHH  bias P(H|C1) = 5/6

 C2: TTHTHH  bias P(H|C2) = 1/2

 C3: THTTTH  bias P(H|C3) = 1/3



Example: Biased Coins

 Prior probability

 P(C1) = P(C2) = P(C3) = 1/3

 Likelihood

 P(O|C1) =  P(THTHTT|C1) 

= P(T|C1)P(H|C1)P(T|C1)P(H|C1)P(T|C1)P(T|C1)

= P(H|C1)
2P(T|C1)

4 = (5/6) 2*(1/6) 4  0.0005

 P(O|C2)  0.0156 

 P(O|C3)  0.0219

 Posterior probability 

 Which coin has the largest posterior probability 

P(Ci|O)?



Example: Biased Coins

C1: bias = 5/6 C2: bias = 1/2 C3: bias = 1/3

O: THTHTT

? ? ?

Observations (O)

Conclusion (Ci)

P(Ci|O)



C1: bias = 5/6 C2: bias = 1/2 C3: bias = 1/3

O: THTHTT

? ? ?

Observations (O)

Conclusion (Ci)

P(Ci|O)

Example: Biased Coins

Bayes’ rule helps us convert the computation of 

P(Ci|O) to the computation of P(O|Ci) and P(Ci).

P(Ci|O)

 P(O|Ci)P(Ci)



Probability Ranking Principle

 The document ranking method is the core of an 

IR system

 We have a collection of documents. The user 

issues a query. A list of documents needs to be 

returned. 

 In what order do we present documents to the 

user? We want the “best” document to be first, 

second best second, etc….



Probability Ranking Principle

“If a reference retrieval system's response to each 
request is a ranking of the documents in the collection 
in order of decreasing probability of relevance to 
the user who submitted the request, where the 
probabilities are estimated as accurately as possible on 
the basis of whatever data have been made available to 
the system for this purpose, the overall effectiveness 
of the system to its user will be the best that is 
obtainable on the basis of those data.”

van Rijsbergen (1979:113-114)



Probability Ranking Principle

 Theorem. The PRP is optimal, in the sense that 

it minimizes the expected loss (also known as the 

Bayes risk) under 1/0 loss.

 Provable if all probabilities are known correctly.



Appraisal

 Probabilistic methods are one of the oldest but 

also one of the currently hottest topics in IR.

 Traditionally: neat ideas, but they’ve never won on 

performance.

 It may be different now. For example, the Okapi 

BM25 term weighting formulas have been very 

successful, especially in TREC evaluations.



Okapi BM25

The parameters k1, b should ideally be tuned on a validation set.

The good values in practice are 1.2 ≤ k1 ≤ 2; b = 0.75.

Retrieval Status Value

IDF(t)
The document 

length of d

The average document 

length for the collection
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