Information Retrieval and Organisation

Chapter 14 Vector Space Classification

Dell Zhang Birkbeck, University of London

Recall: Vector Space Model

• Docs \rightarrow Vectors (Points)

- Each doc can now be viewed as a vector with one component for each term (TFxIDF weights).
- Usually normalized to unit length.
- So we have a high-dimensional vector space
 - Terms are axes
 - May have 10,000+ dimensions, or even 100,000+
 - even with stemming
 - Docs live in this space
- How can we do classification in this space?

Classification based on VSM

- As before, the training set is a set of documents, each labeled with its class (e.g., topic)
- In vector space classification, this set corresponds to a labeled set of points (or, equivalently, vectors) in the vector space
 - Premise 1: Documents in the same class form a contiguous region of space
 - Premise 2: Documents from different classes don't overlap (much)
- We define surfaces to delineate classes in the space

k Nearest Neighbors (kNN)

- Given a test doc *d* and the training data
 - identify the set S_k of the k nearest neighbors of d,
 i.e., the k training docs most similar to d.
 - for each class $c_j \in C$
 - compute $N(S_k, c_j)$ the number of S_k members that belong to class c_j
 - estimate $\Pr[c_j|d]$ as $N(S_k,c_j)/k$
 - classify d to the majority class of S_k memebers.

$$c(d) = \underset{c_j \in C}{\operatorname{argmax}} \operatorname{Pr}[c_j \mid d] = \underset{c_j \in C}{\operatorname{argmax}} N(S_k, c_j)$$

*k*NN – Example

*k*NN – Example

*k*NN – Example

kNN Algorithm

Train- $\kappa NN(\mathbb{C}, \mathbb{D})$

- 1 $\mathbb{D}' \leftarrow \operatorname{Preprocess}(\mathbb{D})$
- 2 $k \leftarrow \text{Select-k}(\mathbb{C}, \mathbb{D}')$
- 3 return \mathbb{D}' , k

Аррly-к $NN(\mathbb{C}, \mathbb{D}', k, d)$

- 1 $S_k \leftarrow \text{ComputeNearestNeighbors}(\mathbb{D}', k, d)$
- 2 for each $c_j \in \mathbb{C}$
- 3 **do** $p_j \leftarrow |S_k \cap c_j|/k$
- 4 **return** $\arg \max_{j} p_{j}$

Parameter k

■ *k* = 1

- Using only the nearest neighbor to determine classification is often error-prone due to:
 - Atypical training documents
 - Noise (i.e. error) in the class labels
- *k* = *N*
 - Every test doc would be classified into the largest class in spite of its content.
 - Degenerate to classification using *priori* probabilities $P(c_i)$

Parameter k

- $\bullet \quad 1 < k < N$
 - More robust with a moderate value of k
 - The value of k is typically odd to avoid ties
 - 3 and 5 are most common

kNN – Online Demo

http://www.comp.lancs.ac.uk/~kristof/research/notes/near b/cluster.html

The 5 Nearest Neighbor Algorithm

Similarity Metric

- kNN depends on a similarity/distance metric
 - For text, cosine similarity of TFxIDF weighted vectors is usually most effective.

kNN Works

Effectiveness

- More training documents lead to better accuracy, though lower speed
- kNN is close to optimal
 - Asymptotically, the error rate of 1NN classification is less than twice the error rate of the Bayes optimal classifier.

kNN Works

Efficiency

- Lazy Learning or Memory-based Learning or Case-based Learning
 - No training (except for data preprocessing etc.)
 - More expensive testing
- Scales well with the number of classes
 - Don't need to train n classifiers for n classes

kNN Works

Efficiency

- kNN with Inverted Index
 - Naively finding the kNN of a test doc d requires a scan through all training docs.
 - But this is actually same as finding the top k retrieval results using d as a (long) query to the collection of training docs.
 - Therefore the standard inverted index method for VSM retrieval could be used to accelerate this process.

kNN vs. NB

- *k*NN has *high variance* and *low bias*
 - Decision boundary can be arbitrary
- NB has low variance and high bias
 - Decision boundary has to be linear (hyperplane)

Variance ≈ Capacity

Bias/Variance Tradeoff

Bias/Variance in Dart-Throwing

Bias/Variance Tradeoff

- Consider asking a botanist: Is an object a tree?
 - Too much variance, low bias
 - A botanist who just memorizes
 - Says "no" to any new object (e.g., different # of leaves)
 - Not enough variance, high bias
 - A botanist who is very lazy
 - Says "yes" as long as the object is green
 - You want the middle ground
 - Choose the correct model capacity!

Which Classifier Shall I Use?

- Is there a learning method that is optimal for all text classification problems?
 - No, because there is a tradeoff between bias and variance.
- Factors to take into account:
 - How much training data is available?
 - How simple/complex is the problem?
 - e.g., linear vs. nonlinear decision boundary
 - How noisy is the problem? How stable is the problem over time?
 - It would better to use a simple and robust classifier for a noisy or unstable problem.

More Than Two Classes

- Any-of classification
 - Classes are independent of each other
 - A document can belong to 0, 1, or >1 classes
 - Decomposes into *n* binary problems
 - Quite common for documents
- One-of classification
 - Classes are mutually exclusive
 - A document belongs to exactly one class
 - For example, hand-written digit recognition

Any-of Classification

- One-vs-Rest Ensemble
 - Build a binary classifier between each class and its complementary set (docs from all other classes).
- Given test doc, evaluate it for membership in each class
- Apply decision criterion of classifiers independently

One-of Classification

- One-vs-Rest Ensemble
 - Build a binary classifier between each class and its complementary set (docs from all other classes).
- Given test doc, evaluate it for membership in each class.
- Assign document to the class with:
 - maximum score
 - maximum confidence
 - maximum probability

Any-of vs. One-of

Tools

