
Information Retrieval and Organisation

Chapter 19.6

Near-Duplicates and Shingling

Dell Zhang
Birkbeck, University of London

Duplicate Documents

 The Web is full of duplicated content

 Exact duplicates (exact match)

 Not so common

 Easy to eliminate using hash/fingerprint etc.

 Near-duplicates (approximate match)

 Many, many cases, e.g., last modified date the

only difference between two copies of a page

 Difficult to eliminate

Near-Duplicate Detection

 It is necessary to eliminate near-duplicates

 For the user, it’s annoying to get a search result

with near-identical documents

 Marginal relevance is zero: even a highly relevant

document becomes non-relevant if it appears

below a (near-)duplicate

 How would you do that?

Near-Duplicate Detection

 Compute similarity between documents

 We want “syntactic” (as opposed to semantic)

similarity. That is to say, we do not consider

documents near-duplicates if they have the same

content but express it with different words.

 Detect near duplicates using a similarity

threshold θ

 For example, the documents with similarity

> θ=80% are deemed to be near-duplicates

 Not really transitive, though sometimes regarded

as transitive for convenience

Feature Representation

 Represent each document as a set of

shingles (word k-grams)

“a rose is a rose is a rose” 4-grams

a_rose_is_a

rose_is_a_rose

is_a_rose_is

a_rose_is_a

{ a_rose_is_a, rose_is_a_rose, is_a_rose_is }

 Each distinct shingle s can be mapped to an m-bit

fingerprint (e.g., m=64)

 From now on, s refers to the shingle’s fingerprint

Similarity Measure

 Define the syntactic similarity of two documents

as the Jaccard coefficient of their shingle sets

 = size_of_intersection / size_of_union

 Note: very sensitive to syntactic dissimilarity

For example,

D1: “Jack London travelled to Oakland”

D2: “Jack London travelled to the city of Oakland”

D3: “Jack travelled from Oakland to London”

Based on shingles of size 2 (2-grams or bigrams),

J(D1, D2) = 3/8 = 0.375

J(D1, D3) = 0

Computing Similarity

 The number of shingles per document is large

 Computing the exact set intersection of shingles

between a pair of documents is expensive

 So we approximate using a sketch --- a cleverly

chosen subset of shingles from a document

 The sketch of a document is just a vector of n

(say n=200) numbers, which is much easier to

deal with than the large set of shingles

Computing Similarity

Doc A
Shingle set A Sketch A

Doc B
Shingle set B Sketch B

Jaccard

coefficient

The Jaccard coefficient of two documents can be

estimated by the proportion of matching elements

in the corresponding pair of sketch vectors

Document Sketch

 For i = 0…n-1

 Let pi be a random permutation of all the 2m

possible fingerprints

 For each document D, its sketch is

constructed by setting

sketchD[i] = min s in D{ pi (s) }

Document Sketch

Start with (64-bit) s

Permute on the

number line with pi

Pick the min value

Doc1

264

264

264

264

MinHash

Check for 200 random permutations: p1, p2,… p200

Doc1

264

264

264

264

Doc2

264

264

264

264

Are these equal?

min1 min2

MinHash

 Each random permutation pi is a test whether

Doc1 and Doc2 are near-duplicates.

 Every time we see min1 = min2 we are more

confident that they are near-duplicates

 The probability of “matching” permutations where

min1 = min2 actually gives a good estimation for

the Jaccard coefficient of Doc1 and Doc2

MinHash

 Why?

 Let us view each set of shingles as a column of a

matrix A:

 one row for each element in the universe of

2m possible shingles.

 The element aij = 1 indicates the presence of

shingle i in set j.

MinHash

 Key Observation

 There are just four types of rows

Sj1 Sj2

C11 1 1

C10 1 0

C01 0 1

C00 0 0
111001

11

21

21

21

SS

SS
)S,Jaccard(S

CCC

C

jj

jj

jj

MinHash

 For example

4.0
5

2

SS

SS
)S,Jaccard(S

21

21

21

jj

jj

jj

Sj1 Sj2

0 1

1 0

1 1

0 0

1 1

0 1

MinHash

 Consider scanning columns j1, j2 in increasing

row index, until the first non-zero entry is found in

either column (i.e., “01” or “10” or “11”)

 As pi is a random permutation, the chance that

this smallest row has a 1 in both columns

(i.e. “ 11”) is exactly

C11 / (C01+C10+C11)

 In other words, the probability that min1 = min2 is

actually the same as the Jaccard coefficient

MinHash

 This probability estimation from one random

permutation is obviously unreliable on its own ---

it is always either 0 or 1

 However, it will be fairly accurate when we

average over a large number (like n=200) of

random permutations.

 Thus, to compute the Jaccard coefficient

between two documents, we only need to count

the number of “matching” permutations for them

and divide it by n=200

MinHash

 Implementation

 We use a hash functions as an efficient way of

doing permutation pi = hi : {0…2m-1} → {0…2m-1}

 Scan all shingles sk in the union of two sets in

arbitrary order

 For each hash function hi and documents D1, D2, . .

.: keep a slot for minimum value found so far

 If hi (sk) is lower than the minimum found so far:

update the slot

Final Notes

 What we have described is how to detect near-

duplicates for a single pair of two documents

 In “real life” we’ll have to concurrently look at

many pairs

 See text book for details

 This family of algorithms for finding similar items

is called Locality-Sensitive Hashing (LSH)

19

