Information Retrieval and Organisation

Chapter 19.6
Near-Duplicates and Shingling

Dell Zhang
Birkbeck, University of London

Duplicate Documents

- The Web is full of duplicated content
- Exact duplicates (exact match)
- Not so common
- Easy to eliminate using hash/fingerprint etc.
- Near-duplicates (approximate match)
- Many, many cases, e.g., last modified date the only difference between two copies of a page
- Difficult to eliminate

Near-Duplicate Detection

- It is necessary to eliminate near-duplicates
- For the user, it's annoying to get a search result with near-identical documents
- Marginal relevance is zero: even a highly relevant document becomes non-relevant if it appears below a (near-)duplicate
- How would you do that?

Near-Duplicate Detection

- Compute similarity between documents
- We want "syntactic" (as opposed to semantic) similarity. That is to say, we do not consider documents near-duplicates if they have the same content but express it with different words.
- Detect near duplicates using a similarity threshold θ
- For example, the documents with similarity $>\theta=80 \%$ are deemed to be near-duplicates
- Not really transitive, though sometimes regarded as transitive for convenience

Feature Representation

- Represent each document as a set of shingles (word k-grams)
" a rose is a rose is a rose" $\rightarrow 4$-grams
a_rose_is_a
rose_is_a_rose
is_a_rose_is
a_rose_is_a
\{ a_rose_is_a, rose_is_a_rose, is_a_rose_is \}
- Each distinct shingle s can be mapped to an m-bit fingerprint (e.g., $m=64$)
- From now on, s refers to the shingle's fingerprint

Similarity Measure

- Define the syntactic similarity of two documents as the Jaccard coefficient of their shingle sets
- = size_of_intersection / size_of_union
- Note: very sensitive to syntactic dissimilarity

For example,
D_{1} : "Jack London travelled to Oakland"
D_{2} : "Jack London travelled to the city of Oakland"
D_{3} : "Jack travelled from Oakland to London"
Based on shingles of size 2 (2-grams or bigrams),
$J\left(D_{1}, D_{2}\right)=3 / 8=0.375$
$J\left(D_{1}, D_{3}\right)=0$

Computing Similarity

- The number of shingles per document is large
- Computing the exact set intersection of shingles between a pair of documents is expensive
- So we approximate using a sketch --- a cleverly chosen subset of shingles from a document
- The sketch of a document is just a vector of n (say $n=200$) numbers, which is much easier to deal with than the large set of shingles

Computing Similarity

The Jaccard coefficient of two documents can be estimated by the proportion of matching elements in the corresponding pair of sketch vectors

Document Sketch

- For $i=0 \ldots n-1$
- Let π_{i} be a random permutation of all the 2^{m} possible fingerprints
- For each document D, its sketch is constructed by setting $\operatorname{sketch}_{D}[i]=\min _{s \text { in } D}\left\{\pi_{i}(s)\right\}$

Document Sketch

Doc_{1}

2^{64}

Start with (64-bit) s
Permute on the number line with π_{i}

Pick the min value

MinHash

Check for 200 random permutations: $\pi_{1}, \pi_{2}, \ldots \pi_{200}$

MinHash

- Each random permutation π_{i} is a test whether Doc_{1} and Doc_{2} are near-duplicates.
- Every time we see $\min _{1}=\min _{2}$ we are more confident that they are near-duplicates
- The probability of "matching" permutations where $\min _{1}=\min _{2}$ actually gives a good estimation for the Jaccard coefficient of Doc ${ }_{1}$ and Doc_{2}

MinHash

- Why?
- Let us view each set of shingles as a column of a matrix A :
- one row for each element in the universe of 2^{m} possible shingles.
- The element $a_{i j}=1$ indicates the presence of shingle i in set j.

MinHash

- Key Observation
- There are just four types of rows
$\mathrm{S}_{j 1} \mathrm{~S}_{j 2}$
$\begin{array}{lll}C_{11} & 1 & 1 \\ C_{10} & 1 & 0 \\ C_{01} & 0 & 1 \\ C_{00} & 0 & 0\end{array}$
$\operatorname{Jaccard}\left(\mathrm{S}_{j 1}, \mathrm{~S}_{j 2}\right)=\frac{\left|\mathrm{S}_{j 1} \cap \mathrm{~S}_{j 2}\right|}{\left|\mathrm{S}_{j 1} \cup \mathrm{~S}_{j 2}\right|}=\frac{C_{11}}{C_{01}+C_{10}+C_{11}}$

MinHash

- For example

$$
\begin{array}{ll}
S_{j 1} & S_{j 2} \\
0 & 1 \\
1 & 0 \\
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 1
\end{array} \quad \operatorname{Jaccard}\left(S_{j 1}, S_{j 2}\right)=\frac{\left|S_{j 1} \cap S_{j 2}\right|}{\left|S_{j 1} \cup S_{j 2}\right|}=\frac{2}{5}=0.4
$$

MinHash

- Consider scanning columns $j 1, j 2$ in increasing row index, until the first non-zero entry is found in either column (i.e., " 01 " or " 10 " or " 11 ")
- As π_{i} is a random permutation, the chance that this smallest row has a 1 in both columns
(i.e. " 11 ") is exactly

$$
C_{11} /\left(C_{01}+C_{10}+C_{11}\right)
$$

- In other words, the probability that $\min _{1}=\min _{2}$ is actually the same as the Jaccard coefficient

MinHash

- This probability estimation from one random permutation is obviously unreliable on its own --it is always either 0 or 1
- However, it will be fairly accurate when we average over a large number (like $n=200$) of random permutations.
- Thus, to compute the Jaccard coefficient between two documents, we only need to count the number of "matching" permutations for them and divide it by $n=200$

MinHash

- Implementation
- We use a hash functions as an efficient way of doing permutation $\pi_{i}=h_{i}:\left\{0 \ldots 2^{m}-1\right\} \rightarrow\left\{0 \ldots 2^{m}-1\right\}$
- Scan all shingles s_{k} in the union of two sets in arbitrary order
- For each hash function h_{i} and documents D_{1}, D_{2}, \ldots
.: keep a slot for minimum value found so far
- If $h_{i}\left(s_{k}\right)$ is lower than the minimum found so far: update the slot

Final Notes

- What we have described is how to detect nearduplicates for a single pair of two documents
- In "real life" we'll have to concurrently look at many pairs
- See text book for details
- This family of algorithms for finding similar items is called Locality-Sensitive Hashing (LSH)

