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Duplicate Documents

 The Web is full of duplicated content

 Exact duplicates (exact match)

 Not so common

 Easy to eliminate using hash/fingerprint etc.

 Near-duplicates (approximate match)

 Many, many cases, e.g., last modified date the 

only difference between two copies of a page

 Difficult to eliminate



Near-Duplicate Detection

 It is necessary to eliminate near-duplicates 

 For the user, it’s annoying to get a search result 

with near-identical documents

 Marginal relevance is zero: even a highly relevant 

document becomes non-relevant if it appears 

below a (near-)duplicate

 How would you do that?



Near-Duplicate Detection

 Compute similarity between documents

 We want “syntactic” (as opposed to semantic) 

similarity. That is to say, we do not consider 

documents near-duplicates if they have the same 

content but express it with different words.

 Detect near duplicates using a similarity 

threshold θ

 For example, the documents with similarity 

> θ=80% are deemed to be near-duplicates

 Not really transitive, though sometimes regarded 

as transitive for convenience



Feature Representation

 Represent each document as a set of 

shingles (word k-grams)

“a rose is a rose is a rose”  4-grams

a_rose_is_a

rose_is_a_rose

is_a_rose_is

a_rose_is_a

{ a_rose_is_a, rose_is_a_rose, is_a_rose_is }

 Each distinct shingle s can be mapped to an m-bit 

fingerprint (e.g., m=64)

 From now on, s refers to the shingle’s fingerprint



Similarity Measure

 Define the syntactic similarity of two documents 

as the Jaccard coefficient of their shingle sets

 = size_of_intersection / size_of_union

 Note: very sensitive to syntactic dissimilarity

For example, 

D1: “Jack London travelled to Oakland”

D2: “Jack London travelled to the city of Oakland”

D3: “Jack travelled from Oakland to London”

Based on shingles of size 2 (2-grams or bigrams), 

J(D1, D2) = 3/8 = 0.375

J(D1, D3) = 0



Computing Similarity

 The number of shingles per document is large

 Computing the exact set intersection of shingles 

between a pair of documents is expensive

 So we approximate using a sketch --- a cleverly 

chosen subset of shingles from a document

 The sketch of a document is just a vector of n

(say n=200) numbers, which is much easier to 

deal with than the large set of shingles



Computing Similarity

Doc A
Shingle set A Sketch A

Doc B
Shingle set B Sketch B

Jaccard

coefficient

The Jaccard coefficient of two documents can be 

estimated by the proportion of matching elements 

in the corresponding pair of sketch vectors



Document Sketch

 For i = 0…n-1

 Let pi be a random permutation of all the 2m

possible fingerprints

 For each document D, its sketch is 

constructed by setting

sketchD[i] = min s in D{ pi (s) }



Document Sketch

Start with (64-bit) s

Permute on the 

number line with pi

Pick the min value

Doc1

264

264

264

264



MinHash

Check for 200 random permutations: p1, p2,… p200

Doc1

264

264

264

264

Doc2

264

264

264

264

Are these equal?

min1 min2



MinHash

 Each random permutation pi is a test whether 

Doc1 and Doc2 are near-duplicates. 

 Every time we see min1 = min2 we are more 

confident that they are near-duplicates

 The probability of “matching” permutations where 

min1 = min2 actually gives a good estimation for 

the Jaccard coefficient of Doc1 and Doc2



MinHash

 Why? 

 Let us view each set of shingles as a column of a 

matrix A:

 one row for each element in the universe of 

2m possible shingles.  

 The element aij = 1 indicates the presence of 

shingle i in set j.



MinHash

 Key Observation

 There are just four types of rows

Sj1     Sj2

C11 1    1

C10 1    0

C01 0    1 

C00 0    0
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MinHash

 For example
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Sj1     Sj2

0    1

1    0

1    1 

0    0

1    1

0    1



MinHash

 Consider scanning columns j1, j2 in increasing 

row index, until the first non-zero entry is found in 

either column (i.e., “01” or “10” or “11”)

 As pi is a random permutation, the chance that 

this smallest row has a 1 in both columns

(i.e. “ 11”) is exactly 

C11 / (C01+C10+C11)

 In other words, the probability that min1 = min2 is 

actually the same as the Jaccard coefficient



MinHash

 This probability estimation from one random 

permutation is obviously unreliable on its own ---

it is always either 0 or 1

 However, it will be fairly accurate when we 

average over a large number (like n=200) of 

random permutations.

 Thus, to compute the Jaccard coefficient 

between two documents, we only need to count 

the number of “matching” permutations for them 

and divide it by n=200



MinHash

 Implementation

 We use a hash functions as an efficient way of 

doing permutation pi = hi : {0…2m-1} → {0…2m-1}

 Scan all shingles sk in the union of two sets in 

arbitrary order

 For each hash function hi and documents D1, D2, . . 

.: keep a slot for minimum value found so far

 If hi (sk ) is lower than the minimum found so far: 

update the slot



Final Notes

 What we have described is how to detect near-

duplicates for a single pair of two documents

 In “real life” we’ll have to concurrently look at 

many pairs

 See text book for details

 This family of algorithms for finding similar items 

is called Locality-Sensitive Hashing (LSH)
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