Information Retrieval and Organisation

Suffix Trees

adapted from
http://www.math.tau.ac.il/~haimk/seminar02/suffixtrees.ppt

Dell Zhang

Birkbeck, University of London

Trie

- A tree representing a set of strings

Trie

- Assume no string is a prefix of another

1) Each edge is labeled by a letter.
2) No two edges outgoing from the same node are labeled the same.
3) Each string corresponds to a leaf.

Compressed Trie

- Compress unary nodes, label edges by strings

Suffix Tree

- Given a string s, a suffix tree of s is a compressed trie of all suffixes of s.
- To make these suffixes prefix-free we add a special character, say $\$$, at the end of s.

Suffix Tree

- For example, let $s=$ abab, a suffix tree of s is a compressed trie of all suffixes of abab\$.

Note that a suffix tree has $\mathrm{O}(n)$ nodes $n=|\mathbf{s}|$. Why?

Suffix Tree Construction

The trivial algorithm

Put the largest suffix in

Put the suffix bab\$ in

Put the suffix ab\$ in

Put the suffix b\$ in

Put the suffix \$ in

We will also label each leaf with the starting point of the corresponding suffix

Suffix Tree Construction

- The trivial algorithm takes $\mathrm{O}\left(n^{2}\right)$ time.
- It is possible to build a suffix tree in $\mathrm{O}(n)$ time using Ukkonen's algorithm.
- But, how come? Does it take O(n) space?
- To use only O(n) space, encode the edge-labels as (beginning-position, end-position).

Consider the string aaaaaabbbbbb\$

Consider the string aaaaaabbbbbb\$

Consider the string aaaaaabbbbbb\$

Suffix Tree Applications

- What Can We Do with It?
- Exact String Matching
- Exact Set Matching
- The Substring Problem for a Database of Patterns
- Longest Common Substring of Two Strings
- Recognising DNA Contamination
- Common Substring of More Than Two Strings

Exact String Matching

- Given text $T(|T|=n)$, pre-process it such that when a pattern $P(|P|=m)$ arrives you can quickly decide when it occurs in T.
- We may also want to find all occurrences of P in T.

Exact String Matching

- In pre-processing, we just build a suffix tree in $\mathrm{O}(n)$ time

Exact String Matching

- Given a pattern $P=\mathrm{ab}$ we traverse the tree according to the pattern.
- If we do not get stuck traversing the pattern then the pattern occurs in the text, otherwise it does not.
- Each leaf in the subtree below the node we reach corresponds to an occurrence.
- By traversing this subtree we get all k occurrences in $\mathrm{O}(n+k)$ time.

Exact String Matching

- How to match a pattern (query) against a database of strings (documents)?

Generalized Suffix Tree

- Given a set of strings S, the generalized suffix tree of S is a compressed trie of all suffixes of each $s \in S$.
- To make these suffixes prefix-free we add a special char, say $\$$, at the end of s.
- To associate each suffix with a unique string in S, add a different special char to each s.
- Each leaf node needs to be labelled by the document id together with the suffix position.

Generalized Suffix Tree

- For example, Let $s_{1}=a b a b$ and $s_{2}=a a b$, here is a generalized suffix tree for s_{1} and s_{2}.

Longest Common Substring

- Given two strings s_{1} and s_{2}, we build their generalized suffix tree.
- Every node with a leaf descendant from string s_{1} and a leaf descendant from string s_{2} represents a maximal common substring and vice versa.
- Find such node with largest "string depth".

Lowest Common Ancestor

- A lot more can be gained from the suffix tree, if we pre-process it so that we can answer LCA queries on it in constant time.

Lowest Common Ancestor

- Why? The LCA of two leaves represents the longest common prefix (LCP) of these 2 suffixes

Finding Maximal Palindromes

- A palindrome: cbaabc, caabaac, ...
- To find all palindromes in a string s (of length m), we build a generalized suffix tree for the string s and the reversed string s^{r}.
- The palindrome with centre between $i-1$ and i is the LCP of the suffix at position i of s and the suffix at position $m-i$ of s^{r}.

Finding Maximal Palindromes

- For example, consider the string cbaaba.
- Prepare a generalized suffix tree for $s=$ cbaaba\$ and $s^{r}=$ abaabc\#
- For every i find the LCA of the suffix i of s and the suffix $m-i$ of s^{r}.
- All palindromes can be identified in linear time.

Let $s=$ cbaaba $\$$ then $s^{r}=$ abaabc\#

Suffix Tree Drawbacks

- It is $\mathrm{O}(n)$ but the constant is quite big.
- It consume a lot of space.
- Notice that if we indeed want to traverse an edge in $\mathrm{O}(1)$ time then we need an array (of pointers) of size $|\Sigma|$ in each node, where Σ is the alphabet.

Suffix Array

- It is much simpler and easier to implement.
- Compared with suffix trees, we lose some functionality, but we save space.

Suffix Array

- For example, let s = abab
- Sort the suffixes lexicographically: ab, abab, b, bab
- The suffix array gives the indices of the suffixes in sorted order

Suffix Array Construction

- The trivial algorithm
- Quicksort
- The linear time algorithm
- Build a suffix tree in $\mathrm{O}(n)$ time first, and then traverse the tree in in-order, lexicographically picking edges outgoing from each node, and fill the suffix array.
- It can also be built in $\mathrm{O}(n)$ time directly.

Exact String Matching

- How do we search for a pattern P in the text T, using the suffix array of T ?
- If P occurs in T, then all its occurrences are consecutive in the suffix array.
- So we can do two binary searches on the suffix array: the first search locates the starting position of the interval, and the second one determines the end position.
- It takes $\mathrm{O}(m \log (n))$ time, as a single suffix comparison needs to compare up to m characters.

Exact String Matching

- It is also possible to do it in $\mathrm{O}(m+\log (n))$ with an additional array of LCP.
- Manber \& Myers (1990)
$T=$ mississippi
$P=$ issa

$L \longrightarrow$	10	i
	7	ippi
	4	issippi
	1	ississippi
	0	mississippi
$\mathbf{M} \longrightarrow$	9	pi
	8	ppi
	6	sippi
	3	sisippi
	5	ssippi
$\mathrm{R} \longrightarrow$	2	ssissippi

