
Information Retrieval and Organisation

Suffix Trees

Dell Zhang
Birkbeck, University of London

adapted from

http://www.math.tau.ac.il/~haimk/seminar02/suffixtrees.ppt

http://www.math.tau.ac.il/~haimk/seminar02/suffixtrees.ppt

Trie

 A tree representing a set of strings

a

c

b

c

e

e

f

d b

f

e g

{

 aeef

 ad

 bbfe

 bbfg

 c

}

Trie

 Assume no string is a prefix of another

1) Each edge is labeled by

a letter.

2) No two edges outgoing

from the same node are

labeled the same.

3) Each string corresponds

to a leaf.

a
b

c

e

e

f

d b

f

e g

Compressed Trie

 Compress unary nodes, label edges by strings

a
b

c

e

e

f

d b

f

e g

a

bbf

c

eef

d

e g

 Given a string s, a suffix tree of s is a

compressed trie of all suffixes of s.

 To make these suffixes prefix-free we add a

special character, say $, at the end of s.

Suffix Tree

Suffix Tree

 For example, let s = abab, a suffix tree of s is a

compressed trie of all suffixes of abab$.

{

 $

 b$

 ab$

 bab$

 abab$

}

a
b

a
b

$

a
b
$

b

$

$

$

Note that a suffix tree has O(n) nodes n = |s|. Why?

Suffix Tree Construction

 The trivial algorithm

Put the largest suffix in

a
b
a
b
$

Put the suffix bab$ in

a
b
a
b
$

a
b
a
b

$

a
b
$

b

Put the suffix ab$ in

a
b
a
b

$

a
b
$

b

a
b

a
b

$

a
b
$

b

$

Put the suffix b$ in

a
b

a
b

$

a
b
$

b

$

a
b

a
b

$

a
b
$

b

$

$

Put the suffix $ in

a
b

a
b

$

a
b
$

b

$

$

a
b

a
b

$

a
b
$

b

$

$

$

We will also label each leaf

with the starting point of the

corresponding suffix

a
b

a
b

$

a
b
$

b

$

$

$

0
1

a
b

a
b

$

a
b

$

b

2

$ 3

$

4

$

Suffix Tree Construction

 The trivial algorithm takes O(n2) time.

 It is possible to build a suffix tree in O(n) time

using Ukkonen’s algorithm.

 But, how come? Does it take O(n) space?

 To use only O(n) space, encode the edge-labels

as (beginning-position, end-position) .

http://en.wikipedia.org/w/index.php?title=Esko_Ukkonen&action=edit&redlink=1

$

a

bbbbbb$

a b

a

a

a

b

b

b

b

b$

bbbbbb$

bbbbbb$

bbbbbb$

bbbbbb$

$

$

$

$

$

abbbbbb$

Consider the string aaaaaabbbbbb$

Consider the string aaaaaabbbbbb$

$

a

bbbbbb$

a b

a

a

a

b

b

b

b

b$

bbbbbb$

bbbbbb$

bbbbbb$

(6,12)

$

$

$

$

$

abbbbbb$

Consider the string aaaaaabbbbbb$

(0,0)

(6,12)

(6,6)

(11,12)

(6,12)

(6,12)

(6,12)

(6,12)

(5,12)

(1,1)

(2,2)

(3,3)

(4,4)

(7,7)

(8,8)

(9,9)

(10,10)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

Suffix Tree Applications

 What Can We Do with It?

 Exact String Matching

 Exact Set Matching

 The Substring Problem for a Database of Patterns

 Longest Common Substring of Two Strings

 Recognising DNA Contamination

 Common Substring of More Than Two Strings

 ……

Exact String Matching

 Given text T (|T| = n), pre-process it such that

when a pattern P (|P| = m) arrives you can quickly

decide when it occurs in T.

 We may also want to find all occurrences of P in

T.

Exact String Matching

 In pre-processing, we just build a suffix tree in

O(n) time

0
1

a
b

a
b

$

a
b
$

b

2

$ 3

$

4

$

Exact String Matching

 Given a pattern P = ab we traverse the tree

according to the pattern.

 If we do not get stuck traversing the pattern then

the pattern occurs in the text, otherwise it does

not.

 Each leaf in the subtree below the node we

reach corresponds to an occurrence.

 By traversing this subtree we get all k

occurrences in O(n+k) time.

Exact String Matching

 How to match a pattern (query) against a

database of strings (documents)?

Generalized Suffix Tree

 Given a set of strings S, the generalized suffix

tree of S is a compressed trie of all suffixes of

each s S.

 To make these suffixes prefix-free we add a

special char, say $, at the end of s.

 To associate each suffix with a unique string in S,

add a different special char to each s.

 Each leaf node needs to be labelled by the

document id together with the suffix position.

Generalized Suffix Tree

 For example, Let s1 = abab and s2 = aab, here is a

generalized suffix tree for s1 and s2.

{

 $ #

 b$ b#

 ab$ ab#

 bab$ aab#

 abab$

}

0

1

a

b

a
b

$

a
b
$

b

2

$

3

$

4

$

0

b

a

1

2

3

Longest Common Substring

 Given two strings s1 and s2, we build their

generalized suffix tree.

 Every node with a leaf descendant from string s1

and a leaf descendant from string s2 represents a

maximal common substring and vice versa.

 Find such node with largest “string depth”.

Lowest Common Ancestor

 A lot more can be gained from the suffix tree, if

we pre-process it so that we can answer LCA

queries on it in constant time.

Lowest Common Ancestor

 Why? The LCA of two leaves represents the

longest common prefix (LCP) of these 2 suffixes

0

1

a

b

a
b

$

a
b
$

b

2

$

3

$

4

$

0

b

a

1

2

3

Finding Maximal Palindromes

 A palindrome: cbaabc, caabaac, …

 To find all palindromes in a string s (of length m),

we build a generalized suffix tree for the string s

and the reversed string sr.

 The palindrome with centre between i-1 and i is

the LCP of the suffix at position i of s and the

suffix at position m-i of sr.

 For example, consider the string cbaaba.

 Prepare a generalized suffix tree for

s = cbaaba$ and sr = abaabc#

 For every i find the LCA of

the suffix i of s and the suffix m-i of sr.

 All palindromes can be identified in linear time.

Finding Maximal Palindromes

2

a

a

b

2

$

6

$

b

6

c

0

5

4

1 1

a

4

5

$

3

3

0

a

$

$

Let s = cbaaba$ then sr = abaabc#

Suffix Tree Drawbacks

 It is O(n) but the constant is quite big.

 It consume a lot of space.

 Notice that if we indeed want to traverse an edge

in O(1) time then we need an array (of pointers) of

size |Σ| in each node, where Σ is the alphabet.

Suffix Array

 It is much simpler and easier to implement.

 Compared with suffix trees, we lose some

functionality, but we save space.

Suffix Array

 For example, let s = abab

 Sort the suffixes lexicographically: ab, abab, b, bab

 The suffix array gives the indices of the suffixes in

sorted order

2 0 3 1

Suffix Array Construction

 The trivial algorithm

 Quicksort

 The linear time algorithm

 Build a suffix tree in O(n) time first, and then

traverse the tree in in-order, lexicographically

picking edges outgoing from each node, and fill

the suffix array.

 It can also be built in O(n) time directly.

Exact String Matching

 How do we search for a pattern P in the text T,

using the suffix array of T?

 If P occurs in T, then all its occurrences are

consecutive in the suffix array.

 So we can do two binary searches on the suffix

array: the first search locates the starting position

of the interval, and the second one determines

the end position.

 It takes O(m log(n)) time, as a single suffix

comparison needs to compare up to m

characters.

Exact String Matching

 It is also possible to do it in O(m+log(n)) with an

additional array of LCP.

 Manber & Myers (1990)

T = mississippi

P = issa

i

ippi

issippi

ississippi

mississippi

pi

7

4

1

0

9

8

6

3

10

5

2

ppi

sippi

sisippi

ssippi

ssissippi

L

R

M

