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Trie 

 A tree representing a set of strings 
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Trie 

 Assume no string is a prefix of another 

1) Each edge is labeled by 

a letter. 

 

2) No two edges outgoing 

from the same node are 

labeled the same. 

 

3) Each string corresponds 

to a leaf. 
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Compressed Trie   

 Compress unary nodes, label edges by strings 
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 Given a string s, a suffix tree of s is a 

compressed trie of all suffixes of s. 

 To make these suffixes prefix-free we add a 

special character, say $, at the end of s. 

Suffix Tree   



Suffix Tree 

 For example, let s = abab, a suffix tree of s is a 

compressed trie of all suffixes of abab$. 
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Note that a suffix tree has O(n) nodes  n = |s|.  Why? 



Suffix Tree Construction 

 The trivial algorithm 

Put the largest suffix in  
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Put the suffix bab$ in  
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Put the suffix ab$ in  
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Put the suffix b$ in  
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Put the suffix $ in  
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We will also label each leaf 

with the starting point of the 

corresponding suffix 
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Suffix Tree Construction 

 The trivial algorithm takes O(n2) time. 

 It is possible to build a suffix tree in O(n) time 

using Ukkonen’s algorithm. 

 But, how come? Does it take O(n) space? 

 To use only O(n) space, encode the edge-labels 

as (beginning-position, end-position) . 

  

http://en.wikipedia.org/w/index.php?title=Esko_Ukkonen&action=edit&redlink=1
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abbbbbb$ 

Consider the string aaaaaabbbbbb$ 



Consider the string aaaaaabbbbbb$ 
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Consider the string aaaaaabbbbbb$ 
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Suffix Tree Applications 

 What Can We Do with It? 

 Exact String Matching 

 Exact Set Matching 

 The Substring Problem for a Database of Patterns 

 Longest Common Substring of Two Strings 

 Recognising DNA Contamination 

 Common Substring of More Than Two Strings 

 …… 

 



Exact String Matching 

 Given text T (|T| = n), pre-process it such that 

when a pattern P (|P| = m) arrives you can quickly 

decide when it occurs in T. 

 We may also want to find all occurrences of P in 

T. 



Exact String Matching 

 In pre-processing, we just build a suffix tree in 

O(n) time 
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Exact String Matching 

 Given a pattern P = ab we traverse the tree 

according to the pattern. 

 If we do not get stuck traversing the pattern then 

the pattern occurs in the text, otherwise it does 

not. 

 Each leaf in the subtree below the node we 

reach corresponds to an occurrence. 

 By traversing this subtree we get all k 

occurrences in O(n+k) time. 



Exact String Matching 

 How to match a pattern (query) against a 

database of strings (documents)? 



Generalized Suffix Tree 

 Given a set of strings S, the generalized suffix 

tree of S is a compressed trie of all suffixes of 

each s  S. 

 To make these suffixes prefix-free we add a 

special char, say $, at the end of s. 

 To associate each suffix with a unique string in S, 

add a different special char to each s. 

 Each leaf node needs to be labelled by the 

document id together with the suffix position. 

 

 



Generalized Suffix Tree 

 For example, Let s1 = abab and s2 = aab, here is a 

generalized suffix tree for s1 and s2. 
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Longest Common Substring 

 Given two strings s1 and s2, we build their 

generalized suffix tree. 

 Every node with a leaf descendant from string s1 

and a leaf descendant from string s2 represents a 

maximal common substring and vice versa. 

 Find such node with largest “string depth”. 

 



Lowest Common Ancestor 

 A lot more can be gained from the suffix tree, if 

we pre-process it so that we can answer LCA 

queries on it in constant time. 

 

      

  

    

  
  



Lowest Common Ancestor 

 Why? The LCA of two leaves represents the 

longest common prefix (LCP) of these 2 suffixes 
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Finding Maximal Palindromes 

 A palindrome:  cbaabc, caabaac, … 

 To find all palindromes in a string s (of length m), 

we build a generalized suffix tree for the string s 

and the reversed string sr. 

 The palindrome with centre between i-1 and i is 

the LCP of the suffix at position i of s and the 

suffix at position m-i of sr. 



 For example, consider the string cbaaba. 

 Prepare a generalized suffix tree for  

s = cbaaba$ and sr = abaabc# 

 For every i find the LCA of  

the suffix i of s and the suffix m-i of sr. 

 All palindromes can be identified in linear time. 

Finding Maximal Palindromes 
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Suffix Tree Drawbacks 

 It is O(n) but the constant is quite big.  

 It consume a lot of space. 

 Notice that if we indeed want to traverse an edge 

in O(1) time then we need an array (of pointers) of 

size |Σ| in each node, where Σ is the alphabet. 



Suffix Array 

 It is much simpler and easier to implement. 

 Compared with suffix trees, we lose some 

functionality, but we save space. 



Suffix Array 

 For example, let s = abab 

 Sort the suffixes lexicographically: ab, abab, b, bab 

 The suffix array gives the indices of the suffixes in 

sorted order 
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Suffix Array Construction 

 The trivial algorithm 

 Quicksort 

 The linear time algorithm 

 Build a suffix tree in O(n) time first, and then 

traverse the tree in in-order, lexicographically 

picking edges outgoing from each node, and fill 

the suffix array. 

 It can also be built in O(n) time directly. 



Exact String Matching 

 How do we search for a pattern P in the text T, 

using the suffix array of T?  

 If P occurs in T, then all its occurrences are 

consecutive in the suffix array.  

 So we can do two binary searches on the suffix 

array: the first search locates the starting position 

of the interval, and the second one determines 

the end position.  

 It takes O(m log(n)) time, as a single suffix 

comparison needs to compare up to m 

characters. 



Exact String Matching 

 It is also possible to do it in O(m+log(n)) with an 

additional array of LCP. 

 Manber & Myers (1990) 
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