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Trie 

 A tree representing a set of strings 
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Trie 

 Assume no string is a prefix of another 

1) Each edge is labeled by 

a letter. 

 

2) No two edges outgoing 

from the same node are 

labeled the same. 

 

3) Each string corresponds 

to a leaf. 
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Compressed Trie   

 Compress unary nodes, label edges by strings 
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 Given a string s, a suffix tree of s is a 

compressed trie of all suffixes of s. 

 To make these suffixes prefix-free we add a 

special character, say $, at the end of s. 

Suffix Tree   



Suffix Tree 

 For example, let s = abab, a suffix tree of s is a 

compressed trie of all suffixes of abab$. 
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Note that a suffix tree has O(n) nodes  n = |s|.  Why? 



Suffix Tree Construction 

 The trivial algorithm 

Put the largest suffix in  
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Put the suffix bab$ in  
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Put the suffix ab$ in  
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Put the suffix b$ in  
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Put the suffix $ in  
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We will also label each leaf 

with the starting point of the 

corresponding suffix 
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Suffix Tree Construction 

 The trivial algorithm takes O(n2) time. 

 It is possible to build a suffix tree in O(n) time 

using Ukkonen’s algorithm. 

 But, how come? Does it take O(n) space? 

 To use only O(n) space, encode the edge-labels 

as (beginning-position, end-position) . 

  

http://en.wikipedia.org/w/index.php?title=Esko_Ukkonen&action=edit&redlink=1
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Consider the string aaaaaabbbbbb$ 



Consider the string aaaaaabbbbbb$ 
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Consider the string aaaaaabbbbbb$ 
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Suffix Tree Applications 

 What Can We Do with It? 

 Exact String Matching 

 Exact Set Matching 

 The Substring Problem for a Database of Patterns 

 Longest Common Substring of Two Strings 

 Recognising DNA Contamination 

 Common Substring of More Than Two Strings 

 …… 

 



Exact String Matching 

 Given text T (|T| = n), pre-process it such that 

when a pattern P (|P| = m) arrives you can quickly 

decide when it occurs in T. 

 We may also want to find all occurrences of P in 

T. 



Exact String Matching 

 In pre-processing, we just build a suffix tree in 

O(n) time 

 

0 
1 

a 
b 

a 
b 

$ 

a 
b 
$ 

b 

2 

$ 3 

$ 

4 

$ 



Exact String Matching 

 Given a pattern P = ab we traverse the tree 

according to the pattern. 

 If we do not get stuck traversing the pattern then 

the pattern occurs in the text, otherwise it does 

not. 

 Each leaf in the subtree below the node we 

reach corresponds to an occurrence. 

 By traversing this subtree we get all k 

occurrences in O(n+k) time. 



Exact String Matching 

 How to match a pattern (query) against a 

database of strings (documents)? 



Generalized Suffix Tree 

 Given a set of strings S, the generalized suffix 

tree of S is a compressed trie of all suffixes of 

each s  S. 

 To make these suffixes prefix-free we add a 

special char, say $, at the end of s. 

 To associate each suffix with a unique string in S, 

add a different special char to each s. 

 Each leaf node needs to be labelled by the 

document id together with the suffix position. 

 

 



Generalized Suffix Tree 

 For example, Let s1 = abab and s2 = aab, here is a 

generalized suffix tree for s1 and s2. 
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Longest Common Substring 

 Given two strings s1 and s2, we build their 

generalized suffix tree. 

 Every node with a leaf descendant from string s1 

and a leaf descendant from string s2 represents a 

maximal common substring and vice versa. 

 Find such node with largest “string depth”. 

 



Lowest Common Ancestor 

 A lot more can be gained from the suffix tree, if 

we pre-process it so that we can answer LCA 

queries on it in constant time. 

 

      

  

    

  
  



Lowest Common Ancestor 

 Why? The LCA of two leaves represents the 

longest common prefix (LCP) of these 2 suffixes 
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Finding Maximal Palindromes 

 A palindrome:  cbaabc, caabaac, … 

 To find all palindromes in a string s (of length m), 

we build a generalized suffix tree for the string s 

and the reversed string sr. 

 The palindrome with centre between i-1 and i is 

the LCP of the suffix at position i of s and the 

suffix at position m-i of sr. 



 For example, consider the string cbaaba. 

 Prepare a generalized suffix tree for  

s = cbaaba$ and sr = abaabc# 

 For every i find the LCA of  

the suffix i of s and the suffix m-i of sr. 

 All palindromes can be identified in linear time. 

Finding Maximal Palindromes 
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Let s = cbaaba$ then sr = abaabc# 



Suffix Tree Drawbacks 

 It is O(n) but the constant is quite big.  

 It consume a lot of space. 

 Notice that if we indeed want to traverse an edge 

in O(1) time then we need an array (of pointers) of 

size |Σ| in each node, where Σ is the alphabet. 



Suffix Array 

 It is much simpler and easier to implement. 

 Compared with suffix trees, we lose some 

functionality, but we save space. 



Suffix Array 

 For example, let s = abab 

 Sort the suffixes lexicographically: ab, abab, b, bab 

 The suffix array gives the indices of the suffixes in 

sorted order 
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Suffix Array Construction 

 The trivial algorithm 

 Quicksort 

 The linear time algorithm 

 Build a suffix tree in O(n) time first, and then 

traverse the tree in in-order, lexicographically 

picking edges outgoing from each node, and fill 

the suffix array. 

 It can also be built in O(n) time directly. 



Exact String Matching 

 How do we search for a pattern P in the text T, 

using the suffix array of T?  

 If P occurs in T, then all its occurrences are 

consecutive in the suffix array.  

 So we can do two binary searches on the suffix 

array: the first search locates the starting position 

of the interval, and the second one determines 

the end position.  

 It takes O(m log(n)) time, as a single suffix 

comparison needs to compare up to m 

characters. 



Exact String Matching 

 It is also possible to do it in O(m+log(n)) with an 

additional array of LCP. 

 Manber & Myers (1990) 
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