Information Retrieval and Organisation

Suffix Trees

adapted from http://www.math.tau.ac.il/~haimk/seminar02/suffixtrees.ppt

Dell Zhang Birkbeck, University of London

Trie

A tree representing a set of strings

С a b aeef ad e b bbfe d bbfg e С f f С e g

Trie

- Assume no string is a prefix of another
- 1) Each edge is labeled by a letter.
- 2) No two edges outgoing from the same node are labeled the same.
- 3) Each string corresponds to a leaf.

Compressed Trie

Compress unary nodes, label edges by strings

Suffix Tree

- Given a string s, a suffix tree of s is a compressed trie of all suffixes of s.
- To make these suffixes prefix-free we add a special character, say \$, at the end of s.

Suffix Tree

For example, let s = abab, a suffix tree of s is a compressed trie of all suffixes of abab\$.

Note that a suffix tree has O(n) nodes n = |s|. Why?

Suffix Tree Construction

The trivial algorithm

Put the largest suffix in

Put the suffix **bab\$** in

Put the suffix ab\$ in

Put the suffix **b**\$ in

Put the suffix \$ in

We will also label each leaf with the starting point of the corresponding suffix

Suffix Tree Construction

- The trivial algorithm takes $O(n^2)$ time.
- It is possible to build a suffix tree in O(n) time using Ukkonen's algorithm.
 - But, how come? Does it take O(n) space?
 - To use only O(n) space, encode the edge-labels as (beginning-position, end-position).

Consider the string aaaaabbbbbbb

Consider the string aaaaabbbbbbb

Consider the string aaaaabbbbbbb

Suffix Tree Applications

- What Can We Do with It?
 - Exact String Matching
 - Exact Set Matching
 - The Substring Problem for a Database of Patterns
 - Longest Common Substring of Two Strings
 - Recognising DNA Contamination
 - Common Substring of More Than Two Strings
 -

- Given text T(|T| = n), pre-process it such that when a pattern P(|P| = m) arrives you can quickly decide when it occurs in T.
- We may also want to find all occurrences of P in T.

In pre-processing, we just build a suffix tree in O(n) time

- Given a pattern P = ab we traverse the tree according to the pattern.
- If we do not get stuck traversing the pattern then the pattern occurs in the text, otherwise it does not.
- Each leaf in the subtree below the node we reach corresponds to an occurrence.
- By traversing this subtree we get all k occurrences in O(n+k) time.

How to match a pattern (query) against a database of strings (documents)?

Generalized Suffix Tree

- Given a set of strings S, the generalized suffix tree of S is a compressed trie of all suffixes of each s ∈ S.
- To make these suffixes prefix-free we add a special char, say \$, at the end of s.
- To associate each suffix with a unique string in S, add a different special char to each s.
- Each leaf node needs to be labelled by the document id together with the suffix position.

Generalized Suffix Tree

• For example, Let $s_1 = abab$ and $s_2 = aab$, here is a generalized suffix tree for s_1 and s_2 .

{ \$ b\$ b# ab\$ ab# bab\$ aab# abab\$

Longest Common Substring

- Given two strings s_1 and s_2 , we build their generalized suffix tree.
- Every node with a leaf descendant from string s₁ and a leaf descendant from string s₂ represents a maximal common substring and vice versa.
- Find such node with largest "string depth".

Lowest Common Ancestor

 A lot more can be gained from the suffix tree, if we pre-process it so that we can answer LCA queries on it in constant time.

Lowest Common Ancestor

 Why? The LCA of two leaves represents the longest common prefix (LCP) of these 2 suffixes

Finding Maximal Palindromes

- A palindrome: cbaabc, caabaac, ...
- To find all palindromes in a string s (of length m), we build a generalized suffix tree for the string s and the reversed string s^r.
- The palindrome with centre between *i*-1 and *i* is the LCP of the suffix at position *i* of *s* and the suffix at position *m*-*i* of *s*^r.

Finding Maximal Palindromes

- For example, consider the string chaaba.
- Prepare a generalized suffix tree for s = cbaaba\$ and s^r = abaabc#
- For every *i* find the LCA of the suffix *i* of *s* and the suffix *m*-*i* of *s*^r.
- All palindromes can be identified in linear time.

Let s = cbaaba then $s^r = abaabc$

Suffix Tree Drawbacks

- It is O(*n*) but the constant is quite big.
- It consume a lot of space.
 - Notice that if we indeed want to traverse an edge in O(1) time then we need an array (of pointers) of size |Σ| in each node, where Σ is the alphabet.

Suffix Array

- It is much simpler and easier to implement.
- Compared with suffix trees, we lose some functionality, but we save space.

Suffix Array

For example, let s = abab

- Sort the suffixes lexicographically: ab, abab, b, bab
- The suffix array gives the indices of the suffixes in sorted order

Suffix Array Construction

- The trivial algorithm
 - Quicksort
- The linear time algorithm
 - Build a suffix tree in O(n) time first, and then traverse the tree in in-order, lexicographically picking edges outgoing from each node, and fill the suffix array.
 - It can also be built in O(n) time directly.

- How do we search for a pattern P in the text T, using the suffix array of T?
- If P occurs in T, then all its occurrences are consecutive in the suffix array.
- So we can do two <u>binary searches</u> on the suffix array: the first search locates the starting position of the interval, and the second one determines the end position.
- It takes O(m log(n)) time, as a single suffix comparison needs to compare up to m characters.

- It is also possible to do it in O(m+log(n)) with an additional array of LCP.
 - Manber & Myers (1990)

T =mississippi P =issa

