
Information Retrieval and Organisation

Suffix Trees

Dell Zhang
Birkbeck, University of London

adapted from

http://www.math.tau.ac.il/~haimk/seminar02/suffixtrees.ppt

http://www.math.tau.ac.il/~haimk/seminar02/suffixtrees.ppt

Trie

 A tree representing a set of strings

a

c

b

c

e

e

f

d b

f

e g

{

 aeef

 ad

 bbfe

 bbfg

 c

}

Trie

 Assume no string is a prefix of another

1) Each edge is labeled by

a letter.

2) No two edges outgoing

from the same node are

labeled the same.

3) Each string corresponds

to a leaf.

a
b

c

e

e

f

d b

f

e g

Compressed Trie

 Compress unary nodes, label edges by strings

a
b

c

e

e

f

d b

f

e g

a

bbf

c

eef

d

e g

 Given a string s, a suffix tree of s is a

compressed trie of all suffixes of s.

 To make these suffixes prefix-free we add a

special character, say $, at the end of s.

Suffix Tree

Suffix Tree

 For example, let s = abab, a suffix tree of s is a

compressed trie of all suffixes of abab$.

{

 $

 b$

 ab$

 bab$

 abab$

}

a
b

a
b

$

a
b
$

b

$

$

$

Note that a suffix tree has O(n) nodes n = |s|. Why?

Suffix Tree Construction

 The trivial algorithm

Put the largest suffix in

a
b
a
b
$

Put the suffix bab$ in

a
b
a
b
$

a
b
a
b

$

a
b
$

b

Put the suffix ab$ in

a
b
a
b

$

a
b
$

b

a
b

a
b

$

a
b
$

b

$

Put the suffix b$ in

a
b

a
b

$

a
b
$

b

$

a
b

a
b

$

a
b
$

b

$

$

Put the suffix $ in

a
b

a
b

$

a
b
$

b

$

$

a
b

a
b

$

a
b
$

b

$

$

$

We will also label each leaf

with the starting point of the

corresponding suffix

a
b

a
b

$

a
b
$

b

$

$

$

0
1

a
b

a
b

$

a
b

$

b

2

$ 3

$

4

$

Suffix Tree Construction

 The trivial algorithm takes O(n2) time.

 It is possible to build a suffix tree in O(n) time

using Ukkonen’s algorithm.

 But, how come? Does it take O(n) space?

 To use only O(n) space, encode the edge-labels

as (beginning-position, end-position) .

http://en.wikipedia.org/w/index.php?title=Esko_Ukkonen&action=edit&redlink=1

$

a

bbbbbb$

a b

a

a

a

b

b

b

b

b$

bbbbbb$

bbbbbb$

bbbbbb$

bbbbbb$

$

$

$

$

$

abbbbbb$

Consider the string aaaaaabbbbbb$

Consider the string aaaaaabbbbbb$

$

a

bbbbbb$

a b

a

a

a

b

b

b

b

b$

bbbbbb$

bbbbbb$

bbbbbb$

(6,12)

$

$

$

$

$

abbbbbb$

Consider the string aaaaaabbbbbb$

(0,0)

(6,12)

(6,6)

(11,12)

(6,12)

(6,12)

(6,12)

(6,12)

(5,12)

(1,1)

(2,2)

(3,3)

(4,4)

(7,7)

(8,8)

(9,9)

(10,10)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

(12,12)

Suffix Tree Applications

 What Can We Do with It?

 Exact String Matching

 Exact Set Matching

 The Substring Problem for a Database of Patterns

 Longest Common Substring of Two Strings

 Recognising DNA Contamination

 Common Substring of More Than Two Strings

 ……

Exact String Matching

 Given text T (|T| = n), pre-process it such that

when a pattern P (|P| = m) arrives you can quickly

decide when it occurs in T.

 We may also want to find all occurrences of P in

T.

Exact String Matching

 In pre-processing, we just build a suffix tree in

O(n) time

0
1

a
b

a
b

$

a
b
$

b

2

$ 3

$

4

$

Exact String Matching

 Given a pattern P = ab we traverse the tree

according to the pattern.

 If we do not get stuck traversing the pattern then

the pattern occurs in the text, otherwise it does

not.

 Each leaf in the subtree below the node we

reach corresponds to an occurrence.

 By traversing this subtree we get all k

occurrences in O(n+k) time.

Exact String Matching

 How to match a pattern (query) against a

database of strings (documents)?

Generalized Suffix Tree

 Given a set of strings S, the generalized suffix

tree of S is a compressed trie of all suffixes of

each s  S.

 To make these suffixes prefix-free we add a

special char, say $, at the end of s.

 To associate each suffix with a unique string in S,

add a different special char to each s.

 Each leaf node needs to be labelled by the

document id together with the suffix position.

Generalized Suffix Tree

 For example, Let s1 = abab and s2 = aab, here is a

generalized suffix tree for s1 and s2.

{

 $ #

 b$ b#

 ab$ ab#

 bab$ aab#

 abab$

}

0

1

a

b

a
b

$

a
b
$

b

2

$

3

$

4

$

0

b

a

1

2

3

Longest Common Substring

 Given two strings s1 and s2, we build their

generalized suffix tree.

 Every node with a leaf descendant from string s1

and a leaf descendant from string s2 represents a

maximal common substring and vice versa.

 Find such node with largest “string depth”.

Lowest Common Ancestor

 A lot more can be gained from the suffix tree, if

we pre-process it so that we can answer LCA

queries on it in constant time.

Lowest Common Ancestor

 Why? The LCA of two leaves represents the

longest common prefix (LCP) of these 2 suffixes

0

1

a

b

a
b

$

a
b
$

b

2

$

3

$

4

$

0

b

a

1

2

3

Finding Maximal Palindromes

 A palindrome: cbaabc, caabaac, …

 To find all palindromes in a string s (of length m),

we build a generalized suffix tree for the string s

and the reversed string sr.

 The palindrome with centre between i-1 and i is

the LCP of the suffix at position i of s and the

suffix at position m-i of sr.

 For example, consider the string cbaaba.

 Prepare a generalized suffix tree for

s = cbaaba$ and sr = abaabc#

 For every i find the LCA of

the suffix i of s and the suffix m-i of sr.

 All palindromes can be identified in linear time.

Finding Maximal Palindromes

2

a

a

b

2

$

6

$

b

6

c

0

5

4

1 1

a

4

5

$

3

3

0

a

$

$

Let s = cbaaba$ then sr = abaabc#

Suffix Tree Drawbacks

 It is O(n) but the constant is quite big.

 It consume a lot of space.

 Notice that if we indeed want to traverse an edge

in O(1) time then we need an array (of pointers) of

size |Σ| in each node, where Σ is the alphabet.

Suffix Array

 It is much simpler and easier to implement.

 Compared with suffix trees, we lose some

functionality, but we save space.

Suffix Array

 For example, let s = abab

 Sort the suffixes lexicographically: ab, abab, b, bab

 The suffix array gives the indices of the suffixes in

sorted order

2 0 3 1

Suffix Array Construction

 The trivial algorithm

 Quicksort

 The linear time algorithm

 Build a suffix tree in O(n) time first, and then

traverse the tree in in-order, lexicographically

picking edges outgoing from each node, and fill

the suffix array.

 It can also be built in O(n) time directly.

Exact String Matching

 How do we search for a pattern P in the text T,

using the suffix array of T?

 If P occurs in T, then all its occurrences are

consecutive in the suffix array.

 So we can do two binary searches on the suffix

array: the first search locates the starting position

of the interval, and the second one determines

the end position.

 It takes O(m log(n)) time, as a single suffix

comparison needs to compare up to m

characters.

Exact String Matching

 It is also possible to do it in O(m+log(n)) with an

additional array of LCP.

 Manber & Myers (1990)

T = mississippi

P = issa

i

ippi

issippi

ississippi

mississippi

pi

7

4

1

0

9

8

6

3

10

5

2

ppi

sippi

sisippi

ssippi

ssissippi

L

R

M

