
Basic Text 
Processing

Regular Expressions



Regular expressions

A formal language for specifying text strings

How can we search for any of these?
◦ woodchuck

◦ woodchucks

◦ Woodchuck

◦ Woodchucks



Regular Expressions: Disjunctions

Letters inside square brackets []

Ranges [A-Z]

Pattern Matches

[wW]oodchuck Woodchuck, woodchuck

[1234567890] Any digit

Pattern Matches

[A-Z] An upper case letter Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole



Regular Expressions: Negation in Disjunction

Negations [^Ss]

◦ Carat means negation only when first in []

Pattern Matches

[^A-Z] Not an upper case 
letter

Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”

[^e^] Neither e nor ^ Look here

a^b The pattern a carat b Look up a^b now



Regular Expressions: More Disjunction

Woodchuck is another name for groundhog!

The pipe | for disjunction

Pattern Matches

groundhog|woodchuck woodchuck

yours|mine yours

a|b|c = [abc]

[gG]roundhog|[Ww]oodchuck Woodchuck



Regular Expressions: ? *+.

Stephen C Kleene

Pattern Matches

colou?r Optional
previous char

color colour

oo*h! 0 or more of
previous char

oh! ooh! oooh! ooooh!

o+h! 1 or more of 
previous char

oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n

Kleene *,   Kleene +   



Regular Expressions: Anchors  ^   $

Pattern Matches

^[A-Z] Palo Alto

^[^A-Za-z] 1 “Hello”

\.$ The end.

.$ The end? The end!



Example

Find me all instances of the word “the” in a text.
the

Misses capitalized examples
[tT]he

Incorrectly returns other or theology
[^a-zA-Z][tT]he[^a-zA-Z]



Errors

The process we just went through was based on 
fixing two kinds of errors:

1. Matching strings that we should not have matched 
(there, then, other)

False positives (Type I errors)

2. Not matching things that we should have matched (The)
False negatives (Type II errors)



Errors cont.

In NLP we are always dealing with these kinds of 
errors.

Reducing the error rate for an application often 
involves two antagonistic efforts: 

◦ Increasing accuracy or precision (minimizing false 
positives)

◦ Increasing coverage or recall (minimizing false negatives).



Substitutions

Substitution in Python and UNIX commands:

s/regexp1/pattern/ 

e.g.:

s/colour/color/ 



Capture Groups

• Say we want to put angles around all numbers:
the 35 boxes→ the <35> boxes

• Use parens () to "capture" a pattern into a 
numbered register (1, 2, 3…)

• Use \1  to refer to the contents of the register

s/([0-9]+)/<\1>/ 



Capture groups: multiple registers

/the (.*)er they (.*), the \1er we \2/ 

Matches

the faster they ran, the faster we ran

But not

the faster they ran, the faster we ate 



But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and 
capturing

Non-capturing groups: add a ?: after paren:

/(?:some|a few) (people|cats) like some \1/ 

matches 
◦ some cats like some cats 

But not 
◦ some cats like some a few 



Simple Application: ELIZA

Early NLP system that imitated a Rogerian 
psychotherapist (Weizenbaum, 1966). 

Uses pattern matching to match, e.g.,:
◦ “I need X” 

and translates them into, e.g.
◦ “What would it mean to you if you got X? 



Simple Application: ELIZA

Men are all alike.
IN WHAT WAY

They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE 

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED 



How ELIZA works

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/ 

s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY?/ 

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/ 



Summary

Regular expressions play a surprisingly large role
◦ Sophisticated sequences of regular expressions are often 

the first model for any text processing text

For hard tasks, we use machine learning classifiers
◦ But regular expressions are still used for pre-processing, 

or as features in the classifiers

◦ Can be very useful in capturing generalizations

18



Lookahead assertions

(?= pattern) is true if pattern matches, but is zero-
width; doesn't advance character pointer

(?! pattern) true if a pattern does not match 

How to match, at the beginning of a line, any single word 
that doesn’t start with “Volcano”: 

/ˆ(?!Volcano)[A-Za-z]+/ 



Basic Text 
Processing

Words and Corpora



How many words?

"I do uh main- mainly business data processing"
◦ Fragments, filled pauses

"Seuss’s cat in the hat is different from other cats!" 
◦ Lemma: same stem, part of speech, rough word sense

◦ cat and cats = same lemma

◦ Wordform: the full inflected surface form
◦ cat and cats = different wordforms



How many words?

they lay back on the San Francisco grass and looked at the stars and their

Type: an element of the vocabulary.

Token: an instance of that type in running text.

How many?
◦ 15 tokens (or 14)

◦ 13 types (or 12) (or 11?)



How many words?
N = number of tokens

V = vocabulary = set of types, |V| is size of vocabulary

Heaps Law = Herdan's Law =                                 where often .67 < β < .75

i.e., vocabulary size grows with > square root of the number of word tokens

Tokens = N Types = |V|

Switchboard phone conversations 2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA 440 million 2 million

Google N-grams 1 trillion 13+ million



Corpora

Words don't appear out of nowhere. 

A text is produced by a specific writer(s), at a 
specific time, in a specific variety of a specific 
language, for a specific function.



Corpora vary along dimension like
◦ Language: 7097 languages in the world
◦ Variety, like African American Language varieties.

◦ AAL Twitter posts might include forms like "iont" (I don't)

◦ Code switching, e.g., Spanish/English, Hindi/English:
S/E: Por primera vez veo a @username actually being hateful! It was beautiful:) 

[For the first time I get to see @username actually being hateful! it was beautiful:) ] 

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe

[“he was and will remain a friend ... don’t worry ... but have faith”] 

◦ Genre: newswire, fiction, non-fiction, scientific articles, 
Wikipedia

◦ Author Demographics: writer's age, gender, race, 
socioeconomic status, etc. 



Corpus datasheets

Motivation: Why was the corpus collected, by 
whom, and who funded it? 

Situation: In what situation was the text written?

Collection process: If it is a subsample how was it 
sampled? Was there consent? Pre-processing?

+Annotation process, Language variety, speaker 
demographics

Gebru et al (2020), Bender and Friedman (2018)



Basic Text 
Processing

Word tokenization



Text Normalization

Every NLP task requires text normalization: 
1. Tokenzing (segmenting) words

2. Normalizing word formats

3. Segmenting sentences



Simple Tokenization in UNIX
(Inspired by Ken Church’s UNIX for Poets.)

Given a text file, output the word tokens and their frequencies
tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort 

| uniq –c 

1945 A

72 AARON

19 ABBESS

5 ABBOT

... ...

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

3 Abbot

....   …

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type



The first step: tokenizing

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | head

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...



The second step: sorting

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | sort | head

A

A

A

A

A

A

A

A

A

...



More counting

Merging upper and lower case
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c 

Sorting the counts
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c | sort –n –r

23243 the

22225 i

18618 and

16339 to

15687 of

12780 a

12163 you

10839 my

10005 in

8954  d

What happened here?



Issues in Tokenization

Can't just blindly remove punctuation:
◦ m.p.h., Ph.D., AT&T, cap’n. 
◦ prices ($45.55) and dates (01/02/06); URLs; 

(http://www.stanford.edu), hashtags (#nlproc), email 
addresses (someone@cs.colorado.edu). 

Clitics: a part of a word that can't stand on its own
◦ we're→ we are, French j'ai, l'honneur

Can "Multiword Expressions (MWE) be words?
◦ New York, rock ’n’ roll 



Tokenization in NLTK
Bird et al. (2009)



Tokenization without spaces 

Chinese, Japanese, Thai, don't use spaces to 
separate words



Word tokenization in Chinese

Chinese words are composed of characters called 
hanzi

Each one represents a meaning unit called a 
morpheme.

Each word has on average 2.4 of them.

But deciding what counts as a word is complex and 
not agreed upon.



How to do word tokenization in Chinese?

姚明进入总决赛 “Yao Ming reaches the finals”

3 words?
姚明 进入 总决赛
YaoMing reaches  finals 

5 words?
姚 明 进入 总 决赛
Yao    Ming reaches overall    finals 

7 characters? (don't use words at all):
姚 明 进 入 总 决 赛
Yao Ming enter enter overall decision game 



Word tokenization

So in Chinese it's common not to do word 
segmentation at all

But in Thai and Japanese, it's required

The standard algorithms are neural sequence 
models trained by supervised machine learning.



Basic Text 
Processing

Byte Pair Encoding 
tokenization



A third option for word segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens are often 
parts of words)

Can include common morphemes like -est or -er. 
◦ (A morpheme is the smallest meaning-bearing unit of a 

language; unlikeliest has morphemes un-, likely, and -est.) 



Subword tokenization

Three common algorithms:
◦ Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
◦ unigram language modeling tokenization (Kudo, 2018)
◦ WordPiece (Schuster and Nakajima, 2012)

All have 2 parts:
◦ A token learner that takes a raw training corpus and induces 

a vocabulary (a set of tokens). 
◦ A token segmenter that takes a raw test sentence and 

tokenizes it according to that vocabulary



Byte Pair Encoding (BPE)

Let vocabulary be the set of all individual characters 

= {A, B, C, D,…,a, b, c, d….}

Repeat:
◦ choose the two symbols that are most frequently 

adjacent in training corpus (say ‘A’, ‘B’), 
◦ adds a new merged symbol ‘AB’ to the vocabulary
◦ replace every adjacent ’A’ ’B’ in corpus with ‘AB’. 

Until k merges have been done.



BPE token learner algorithm



Byte Pair Encoding (BPE)

Most subword algorithms are run inside white-
space separated tokens. 

So first add a special end-of-word symbol '__' 
before whitespace in training corpus

Next, separate into letters.



BPE token learner

Original (very fascinating🙄) corpus:

low low low low low lowest lowest newer newer newer        

newer newer newer wider wider wider new new

Add end-of-word tokens and segment:



BPE token learner

Merge e r to er



BPE

Merge er  _ to er_



BPE

Merge n  e  to ne



BPE

The next merges are:



BPE token learner algorithm

On the test data, run each merge learned from the 
training data:

◦ Greedily

◦ In the order we learned them

◦ (test frequencies don't play a role)

So: merge every e r to er, then merge er _ to er_, etc.

Result: 
◦ Test set "n e w e r _" would be tokenized as a full word 

◦ Test set "l o w e r _" would be two tokens: "low er_"



Basic Text 
Processing

Word Normalization and 
other issues



Word Normalization

Putting words/tokens in a standard format
◦ U.S.A. or USA

◦ uhhuh or uh-huh

◦ Fed or fed

◦ am, is be, are 



Case folding

Applications like IR: reduce all letters to lower case
◦ Since users tend to use lower case

◦ Possible exception: upper case in mid-sentence?
◦ e.g., General Motors

◦ Fed vs. fed

◦ SAIL vs. sail

For sentiment analysis, MT, Information extraction
◦ Case is helpful (US versus us is important)



Lemmatization

Represent all words as their shared root, = dictionary 
headword form:

◦ am, are, is → be

◦ car, cars, car's, cars'→ car

◦ Spanish quiero (‘I want’), quieres (‘you want’) → querer ‘want'

He is reading detective stories → He be read detective 
story 



Lemmatization is done by Morphological Parsing

Morphemes:
◦ The small meaningful units that make up words
◦ Stems: The core meaning-bearing units
◦ Affixes: Parts that adhere to stems, often with grammatical 

functions

Morphological Parsers:
◦ Parse cats into two morphemes cat and s
◦ Parse Spanish amaren (‘if in the future they would love’) into 

morpheme amar ‘to love’, and the morphological features 3PL 
and future subjunctive. 



Stemming

Reduce terms to stems, chopping off affixes crudely

This was not the map we 

found in Billy Bones’s

chest, but an accurate 

copy, complete in all 

things-names and heights 

and soundings-with the 

single exception of the 

red crosses and the 

written notes. 

Thi wa not the map we 

found in Billi Bone s chest 

but an accur copi complet

in all thing name and 

height and sound with the 

singl except of the red 

cross and the written note 

. 



Porter Stemmer

Based on a series of rewrite rules run in series
◦ A cascade, in which output of each pass fed to next pass

Some sample rules:



Dealing with complex morphology is necessary 
for many languages

◦ E.g., the Turkish word:

◦ Uygarlastiramadiklarimizdanmissinizcasina

◦ `(behaving) as if you are among those whom we could not civilize’

◦ Uygar `civilized’ + las `become’ 
+ tir `cause’ + ama `not able’ 

+ dik `past’ + lar ‘plural’

+ imiz ‘p1pl’ + dan ‘abl’ 

+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’ 



Sentence Segmentation

!, ? are relatively unambiguous but period “.” is quite 
ambiguous

◦ Sentence boundary
◦ Abbreviations like Inc. or Dr.
◦ Numbers like .02% or 4.3

Common Algorithm: decide (using rules or ML) whether a 
period is part of the word or is a sentence-boundary marker. 

◦ An abbreviation dictionary can help

Sentence segmentation can then often be done by rules 
based on this tokenization.


