Minimum Edit Distance

Definition of Minimum Edit Distance

How similar are two strings?

Spell correction

- The user typed "graffe"
 Which is closest?
 - graf
 - graft
 - grail
 - giraffe

- **Computational Biology**
 - Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

• Resulting alignment:

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

• Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

The minimum edit distance between two strings Is the minimum number of editing operations

- Insertion
- Deletion
- Substitution

Needed to transform one into the other

Minimum Edit Distance

Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

Minimum Edit Distance

INTE * NTION | | | | | | | | | * EXECUTION dss is

If each operation has cost of 1

• Distance between these is 5

If substitutions cost 2 (Levenshtein)

Distance between them is 8

Alignment in Computational Biology

Given a sequence of bases

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment: -AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

Evaluating Machine Translation and speech recognition

R Spokesman confirmssenior government adviser was appointedH Spokesman saidthe senioradviser was appointedSIDI

Named Entity Extraction and Entity Coreference

- IBM Inc. announced today
- **IBM** profits
- Stanford Professor Jennifer Eberhardt announced yesterday
- for Professor Eberhardt...

How to find the Min Edit Distance?

Searching for a path (sequence of edits) from the start string to the final string:

- Initial state: the word we're transforming
- Operators: insert, delete, substitute
- **Goal state**: the word we're trying to get to
- Path cost: what we want to minimize: the number of edits intention

Minimum Edit as Search

But the space of all edit sequences is huge!

- We can't afford to navigate naïvely
- Lots of distinct paths wind up at the same state.
 - We don't have to keep track of all of them
 - Just the shortest path to each of those revisted states.

Defining Min Edit Distance

For two strings

- X of length n
- Y of length m

We define D(*i*,*j*)

- the edit distance between X[1..*i*] and Y[1..*j*]
 - i.e., the first *i* characters of X and the first *j* characters of Y
- The edit distance between X and Y is thus D(*n*,*m*)

Minimum Edit Distance

Computing Minimum Edit Distance

Dynamic Programming for Minimum Edit Distance

Dynamic programming: A tabular computation of D(*n*,*m*)

Solving problems by combining solutions to subproblems.

Bottom-up

- We compute D(i,j) for small *i*,*j*
- And compute larger D(i,j) based on previously computed smaller values
- i.e., compute D(*i*,*j*) for all *i* (0 < *i* < n) and *j* (0 < *j* < m)

Defining Min Edit Distance (Levenshtein)

Initialization

D(i,0) = i D(0,j) = j

Recurrence Relation:

For each
$$i = 1...M$$

For each $j = 1...N$
 $D(i,j) = \min \begin{cases} D(i-1,j) + 1 \\ D(i,j-1) + 1 \\ D(i-1,j-1) + 2; \\ if X(i) \neq Y(j) \\ 0; \\ if X(i) = Y(j) \end{cases}$

Termination:
 D(N,M) is distance

The Edit Distance Table

The Edit Distance Table

Ν	9									
0	8									
Ι	7									
Н	6									
Ν	5									
Е	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	X	E	С	U	Т	Ι	0	Ν

The Edit Distance Table

Ν	9	8	9	10	11	12	11	10	9	8
0	8	7	8	9	10	11	10	9	8	9
Ι	7	6	7	8	9	10	9	8	9	10
Т	6	5	6	7	8	9	8	9	10	11
Ν	5	4	5	6	7	8	9	10	11	10
Е	4	3	4	5	6	7	8	9	10	9
Н	3	4	5	6	7	8	7	8	9	8
Ν	2	3	4	5	6	7	8	7	8	7
Ι	1	2	3	4	5	6	7	6	7	8
#	0	1	2	3	4	5	6	7	8	9
	#	E	Х	E	С	U	Т	Ι	0	Ν

Minimum Edit Distance

Backtrace for Computing Alignments

Computing alignments

Edit distance isn't sufficient

- We often need to align each character of the two strings to each other
- We do this by keeping a "backtrace"

Every time we enter a cell, remember where we came from

When we reach the end,

 Trace back the path from the upper right corner to read off the alignment

Ν	9									
0	8									
Ι	7									
Н	6									
Ν	5									
Е	4									
Т	3									
Ν	2									
Ι	1									
#	0	1	2	3	4	5	6	7	8	9
	#	E	X	E	С	U	Т	Ι	0	Ν

MinEdit with Backtrace

n	9	↓ 8	∠←↓9	∠←↓ 10	∠←↓ 11	∠←↓ 12	↓ 11	↓ 10	↓ 9	∠ 8	
0	8	↓ 7	∠←↓ 8	∠→↓ 9	∠←↓ 10	∠←↓ 11	↓ 10	↓ 9	∠ 8	$\leftarrow 9$	
i	7	↓ 6	∠←↓ 7	∠←↓ 8	.∠←↓9	∠←↓ 10	↓ 9	∠ 8	$\leftarrow 9$	$\leftarrow 10$	
t	6	↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	9 ,,⊸∑	∠ 8	← 9	<i>←</i> 10	$\leftarrow \downarrow 11$	
n	5	↓ 4	∠←↓ 5	∠←↓6	∠←↓ 7	∠́←↓ 8	∠́←↓ 9	∠←↓ 10	∠←↓ 11	∠↓ 10	
e	4	∠ 3	← 4	∠ ← 5	← 6	← 7	$\leftarrow \downarrow 8$	∠́←↓ 9	∠←↓ 10	↓ 9	
t	3	∠←↓ 4	∠←↓ 5	∠←↓6	∠←↓ 7	∠←↓ 8	∠ 7	$\leftarrow \downarrow 8$	∠́←↓ 9	↓ 8	
n	2	∠←↓3	∠←↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠←↓ 8	↓ 7	∠←↓ 8	∠ 7	
i	1		∠←↓3	∠←↓4	∠←↓ 5	∠←↓ 6	∠←↓ 7	∠ 6	← 7	~ 8	
#	0	1	2	3	4	5	6	7	8	9	
	#	e	X	e	c	u	t	i	0	n	

Adding Backtrace to Minimum Edit Distance

Termination:

Base conditions:

D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

The Distance Matrix

Every non-decreasing path

from (0,0) to (M, N)

corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

Two strings and their **alignment**:

INTE * NTION | | | | | | | | | | * EXECUTION

Performance

Time: O(nm) Space: O(nm) Backtrace O(n+m)

Minimum Edit Distance

Weighted Minimum Edit Distance

Weighted Edit Distance

Why would we add weights to the computation?

- Spell Correction: some letters are more likely to be mistyped than others
- Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

sub[X, Y] = Substitution of X (incorrect) for Y (correct)

Y (correct)

X |

	a	b	с	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
с	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
e	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	- 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
р	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2,	I	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
Z	0	0	0	7	0	0	0	0	0	0	0	- 7	- 5	- 0	0	0	0	2	21	- 3	- 0	- 0	0	0	3	0

Weighted Min Edit Distance

Initialization:

Recurrence Relation:

$$D(i-1,j) + del[x(i)]$$

$$D(i,j) = min \begin{cases} D(i,j-1) + ins[y(j)] \\ D(i-1,j-1) + sub[x(i),y(j)] \end{cases}$$
Termination:

$$D(N,M) \text{ is distance}$$

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research...

I decided therefore to use the word, "programming".

I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely **dynamic**... it's impossible to use the word, **dynamic**, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.