Minimum Edit Distance

Definition of Minimum Edit Distance

How similar are two strings?

Spell correction

- The user typed "graffe" Which is closest?
- graf
- graft
- grail
- giraffe
- Computational Biology
- Align two sequences of nucleotides

AGGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

- Resulting alignment:
- AGGCTATCAC $С$ GACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

- Also for Machine Translation, Information Extraction, Speech Recognition

Edit Distance

The minimum edit distance between two strings
Is the minimum number of editing operations

- Insertion
- Deletion
- Substitution

Needed to transform one into the other

Minimum Edit Distance

Two strings and their alignment:

$$
\begin{aligned}
& \text { I NTE*NTION } \\
& \text { ||||||||| } \\
& \text { * E X E C U T O N }
\end{aligned}
$$

Minimum Edit Distance

$$
\begin{aligned}
& \text { INTE*NTION }
\end{aligned}
$$

$$
\begin{aligned}
& \text { * EXECUTION } \\
& \text { dssis }
\end{aligned}
$$

If each operation has cost of 1

- Distance between these is 5

If substitutions cost 2 (Levenshtein)

- Distance between them is 8

Alignment in Computational Biology

Given a sequence of bases

> AgGCTATCACCTGACCTCCAGGCCGATGCCC TAGCTATCACGACCGCGGTCGATTTGCCCGAC

An alignment:
-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC
Given two sequences, align each letter to a letter or gap

Other uses of Edit Distance in NLP

Evaluating Machine Translation and speech recognition

R Spokesman confirms senior government adviser was appointed
\boldsymbol{H} Spokesman said the senior adviser was appointed

S I D I
Named Entity Extraction and Entity Coreference

- IBM Inc. announced today
- IBM profits
- Stanford Professor Jennifer Eberhardt announced yesterday
- for Professor Eberhardt...

How to find the Min Edit Distance?

Searching for a path (sequence of edits) from the start string to the final string:

- Initial state: the word we're transforming
- Operators: insert, delete, substitute
- Goal state: the word we're trying to get to
- Path cost: what we want to minimize: the number of edits

entention

Minimum Edit as Search

But the space of all edit sequences is huge!

- We can't afford to navigate naïvely
- Lots of distinct paths wind up at the same state.
- We don't have to keep track of all of them
- Just the shortest path to each of those revisted states.

Defining Min Edit Distance

For two strings

- X of length n
- Y of length m

We define $\mathrm{D}(i, j)$

- the edit distance between X[1..i] and Y[1..j]
- i.e., the first i characters of X and the first j characters of Y
- The edit distance between X and Y is thus $D(n, m)$

Minimum Edit
Distance

Computing Minimum Edit

 Distance
Dynamic Programming for Minimum Edit Distance

Dynamic programming: A tabular computation of $D(n, m)$

Solving problems by combining solutions to subproblems.
Bottom-up

- We compute D(i,j) for small i, j
- And compute larger $D(i, j)$ based on previously computed smaller values
- i.e., compute $\mathrm{D}(\mathrm{i}, \mathrm{j})$ for all $i(0<i<\mathrm{n})$ and $j(0<\mathrm{j}<\mathrm{m})$

Defining Min Edit Distance (Levenshtein)

Initialization
D (i,0) = i
$D(0, j)=j$
Recurrence Relation:

$$
\begin{aligned}
& \text { For each i = 1...M } \\
& \text { For each j = 1...N } \\
& D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+\quad 2 ;
\end{array} \quad \begin{array}{l}
\text { if } X(i) \neq Y(j) \\
\text { if } X(i)=Y(j)
\end{array}\right.
\end{aligned}
$$

Termination:
$D(N, M)$ is distance

The Edit Distance Table

	9												
\bigcirc	7												
	7												
T	${ }^{6}$												
$\begin{array}{\|l\|} \hline N \\ \hline \end{array}$	5												
$\begin{array}{\|l\|} \hline E \\ \hline T \\ \hline \end{array}$	${ }_{3}^{4}$												
N	2												
1													
\#	${ }_{\#}^{0}$	1	$\stackrel{2}{\times}$		3	${ }_{4}^{4}$	${ }_{5}$		T	7	0		

The Edit Distance Table

N	9									
O	8									

$$
\begin{aligned}
& D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1
\end{array}\right. \\
& \text { Edit Distance } \\
& D(i-1, j-1)+ \begin{cases}2 ; & \text { if } S_{1}(i) \neq S_{2}(j) \\
0 ; & \text { if } S_{1}(i)=S_{2}(j)\end{cases}
\end{aligned}
$$

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

The Edit Distance Table

N	9	8	9	10	11	12	11	10	9	8
O	8	7	8	9	10	11	10	9	8	9
I	7	6	7	8	9	10	9	8	9	10
T	6	5	6	7	8	9	8	9	10	11
N	5	4	5	6	7	8	9	10	11	10
E	4	3	4	5	6	7	8	9	10	9
T	3	4	5	6	7	8	7	8	9	8
N	2	3	4	5	6	7	8	7	8	7
I	1	2	3	4	5	6	7	6	7	8
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

Minimum Edit
Distance

Backtrace for Computing Alignments

Computing alignments

Edit distance isn't sufficient

- We often need to align each character of the two strings to each other
We do this by keeping a "backtrace"
Every time we enter a cell, remember where we came from

When we reach the end,

- Trace back the path from the upper right corner to read off the alignment

$$
\begin{aligned}
& D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1
\end{array}\right. \\
& \text { Edit Distance } \\
& D(i-1, j-1)+ \begin{cases}2 ; & \text { if } S_{1}(i) \neq S_{2}(j) \\
0 ; & \text { if } S_{1}(i)=S_{2}(j)\end{cases}
\end{aligned}
$$

N	9									
O	8									
I	7									
T	6									
N	5									
E	4									
T	3									
N	2									
I	1									
$\#$	0	1	2	3	4	5	6	7	8	9
	$\#$	E	X	E	C	U	T	I	O	N

MinEdit with Backtrace

n	9	18	く-19	$\stackrel{\square}{ } 10$	-৮11	$\stackrel{\square}{ } 12$	$\downarrow 11$	$\downarrow 10$	19	8
o	8	$\downarrow 7$	く-18		$\stackrel{\leftarrow 10}{ }$	$\stackrel{-11}{ }$	$\downarrow 10$	$\downarrow 9$	8	$\leftarrow 9$
i	7	16	$\stackrel{-\downarrow}{ }$	$\checkmark\llcorner 8$		$\stackrel{\leftarrow}{\sim} 10$	$\downarrow 9$	/	$\leftarrow 9$	$\leftarrow 10$
t	6	15		$\llcorner\llcorner\downarrow$		$\llcorner\leftarrow \downarrow$	8	$\leftarrow 9$	$\leftarrow 10$	$\leftarrow \downarrow 11$
n	5	14	$1 \leftarrow 5$	$\checkmark \leftarrow 6$	$\checkmark \leftarrow \downarrow$	$\backslash \leftarrow 8$	- +19	$\leftarrow \downarrow 10$	$\stackrel{-11}{ }$	$\checkmark \downarrow 10$
e	4	/3	4	$1 \leftarrow 5$	6	$\leftarrow 7$	$\leftarrow 8$	\leftharpoonup ¢	$\stackrel{\leftarrow 10}{ }$	$\downarrow 9$
t	3	$\stackrel{-1}{ }$	$\stackrel{\square}{5}$	$\checkmark \leftarrow 6$	$\checkmark \leftarrow \downarrow$	$\checkmark \leftarrow 8$	$\checkmark 7$	$\leftarrow 8$	$\leftharpoonup \leftarrow 9$	18
n	2	$\checkmark 1$	\wedge	$\checkmark \downarrow 5$	\checkmark ¢ 6		- $\downarrow 8$	$\downarrow 7$	$1 \leftarrow 8$	$\checkmark 7$
i	1		$\checkmark-\downarrow 3$		$\checkmark \downarrow 5$	$\downarrow 6$	/ $\downarrow 7$	$\checkmark 6$	$\leftarrow 7$	$\leftarrow 8$
\#	\#	1	2 \mathbf{x}	3 e	4	5	t	7 \mathbf{i}	8	9

Adding Backtrace to Minimum Edit Distance

Base conditions:
$D(i, 0)=i$
$D(0, j)=j$

Termination:
$D(N, M)$ is distance

Recurrence Relation:

```
For each i = 1...M
    For each j = 1...N
```

 \(D(i, j)=\quad \min \left\{\begin{array}{l}D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+\end{array}\right.\)
 \(D(i, j)=\quad \min \left\{\begin{array}{l}D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+\end{array}\right.\)
 deletion
 \(D(i, j)=\min \left\{\begin{array}{l}D(i-1, j)+1 \\ D(i, j-1)+1 \\ D(i-1, j-1)+\end{array}\right.\)
 \(\operatorname{ptr}(i, j)= \begin{cases}\text { LEFT } & \text { insertion } \\ \text { DOWN } & \text { deletion } \\ \text { DIAG } & \text { substitution }\end{cases}\)

The Distance Matrix

Every non-decreasing path
from $(0,0)$ to (M, N)
corresponds to an alignment of the two sequences

An optimal alignment is composed of optimal subalignments

Result of Backtrace

Two strings and their alignment:

$$
\begin{aligned}
& \text { I NTE*NTION } \\
& \text { ||||||||| } \\
& \text { * EXECUTION }
\end{aligned}
$$

Performance

Time:

$$
\mathrm{O}(\mathrm{~nm})
$$

Space:

$$
\mathrm{O}(\mathrm{~nm})
$$

Backtrace

$$
\mathrm{O}(\mathrm{n}+\mathrm{m})
$$

Minimum Edit
Distance
Weighted Minimum Edit Distance

Weighted Edit Distance

Why would we add weights to the computation?

- Spell Correction: some letters are more likely to be mistyped than others
- Biology: certain kinds of deletions or insertions are more likely than others

Confusion matrix for spelling errors

$\operatorname{sub}[\mathbf{X}, \mathbf{Y}]=$ Substitution of \mathbf{X} (incorrect) for \mathbf{Y} (correct)

X																										
	a	b	c	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	w	x	y	z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
c	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	,	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
0	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
s	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
y	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
,	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

Weighted Min Edit Distance

Initialization:
$D(0,0)=0$
$D(i, 0)=D(i-1,0)+\operatorname{del}[x(i)] ; \quad 1<i \leq N$
$D(0, j)=D(0, j-1)+i n s[y(j)] ; \quad 1<j \leq M$
Recurrence Relation:

$$
\begin{aligned}
& D(i, j)=n \\
& \text { Termination: }
\end{aligned}
$$

D (N,M) is distance

Where did the name, dynamic programming, come from?

...The 1950s were not good years for mathematical research. [the] Secretary of Defense ...had a pathological fear and hatred of the word, research... I decided therefore to use the word, "programming".
I wanted to get across the idea that this was dynamic, this was multistage... I thought, let's ... take a word that has an absolutely precise meaning, namely dynamic... it's impossible to use the word, dynamic, in a pejorative sense. Try thinking of some combination that will possibly give it a pejorative meaning. It's impossible.

Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to."

Richard Bellman, "Eye of the Hurricane: an autobiography" 1984.

