# Dan Jurafsky and James Martin <br> Speech and Language Processing 

Chapter 6:
Vector Semantics

# What do words mean? 

First thought: look in a dictionary
http://www.oed.com/

## Words, Lemmas, Senses, Definitions

## lemma <br> pepper, $n$.

Pronumctation: bitt. /'pepə/, U.S. /'pepər/

## definition

Forms: OE peopor (rare), OE pipcer (transmission erra), OE pipor, OF pipher (rare
c. U.S. The California pepper tree, Schinus molle. Cf. Pepper tree n. Frequency (in current use):
Etymology: A borrowing from Latin. Exomon: Latin piper.
< classical Latin piper, a loanwol < Indo-Aryan (as is ancient rreek $\pi / \pi \varepsilon \rho \iota$ ); compare Sar
I. The spice on the plant.

$\stackrel{1}{\square}$(a. A hot pungent spice derived from the prepared fruits (peppercorns) of the pepper plant, Piper nigrum (cle sense 22), used from early times to season food, either whole or ghound to porder (often in association with salt). Also (locally, chiefly nith distinguishing word): a similar spice derived from the fruits f certain oth/r species of the genus Piper; the fruits themselves.

The ground spic /rom Piper nigrum co/es in two forms, the more pungent black pepper, produced from black pepercorns, and the mild r white pepper, produced from white peppercorns: see black adj. and. Special uses 5a, PePPerchkn $n$. 1a, and white adj. and $n .{ }^{1}$ Special uses $7 \mathrm{~b}(\mathrm{a})$.

## 2.

a. She plant Piper nifrum (family Piperaceae), a climbing shrub indigenous to Sout/Asia and also cultivated elsewhere in the tropics, which has alternte stalked entire leaves, with pendulous spikes of small green flowers pposite the leaves, succeeded by small berries turning red when ripe. Also more widely: any plant of the genus Piper or the family Piperacene.
b. Usu. with distinguishing word: any of numerous plants of other families having hot pungent fruits or leaves which resemble pepper ( 1a) in taste and in some cases are used as a substitute for it.

## Lemma pepper

Sense 1: spice from pepper plant
Sense 2: the pepper plant itself
Sense 3: another similar plant (Jamaican pepper)
Sense 4: another plant with peppercorns (California pepper)
Sense 5: capsicum (i.e. chili, paprika, bell pepper, etc)

A sense or "concept" is the meaning component of a word

## There are relations between senses

## Relation: Synonymity

Synonyms have the same meaning in some or all contexts.

- filbert / hazelnut
- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- Water / $\mathrm{H}_{2} \mathrm{O}$


## Relation: Synonymity

Note that there are probably no examples of perfect synonymy.

- Even if many aspects of meaning are identical
- Still may not preserve the acceptability based on notions of politeness, slang, register, genre, etc.
The Linguistic Principle of Contrast:
- Difference in form -> difference in meaning


# Relation: Synonymity? 

Water/ $\mathrm{H}_{2} \mathrm{O}$
Big/large
Brave/courageous

## Relation: Antonymy

Senses that are opposites with respect to one feature of meaning

Otherwise, they are very similar!

| dark/light | short/long | fast/slow rise/fal: |
| :--- | :---: | :---: |
| hot/cold | up/down | in/out |

More formally: antonyms can

- define a binary opposition or be at opposite ends of a scale
- long/short, fast/slow
- Be reversives:
- rise/fall, up/down


## Relation: Similarity

Words with similar meanings. Not synonyms, but sharing some element of meaning
car, bicycle
cow, horse

## Ask humans how similar 2 words are

| word1 | word2 | similarity |
| :--- | :--- | :--- |
| vanish | disappear | 9.8 |
| behave | obey | 7.3 |
| belief | impression | 5.95 |
| muscle | bone | 3.65 |
| modest | flexible | 0.98 |
| hole | agreement | 0.3 |

## Relation: Word relatedness

Also called "word association"
Words be related in any way, perhaps via a semantic frame or field

- car, bicycle: similar
${ }^{\circ}$ car, gasoline: related, not similar


## Semantic field

Words that

- cover a particular semantic domain
- bear structured relations with each other.
hospitals
surgeon, scalpel, nurse, anaesthetic, hospital restaurants
waiter, menu, plate, food, menu, chef), houses
door, roof, kitchen, family, bed


## Relation: Superordinate/ subordinate

One sense is a subordinate of another if the first sense is more specific, denoting a subclass of the other

- car is a subordinate of vehicle
- mango is a subordinate of fruit

Conversely superordinate

- vehicle is a superordinate of car
- fruit is a subodinate of mango

| Superordinate | vehicle | fruit | furniture |
| :--- | :--- | :--- | :--- |
| Subordinate | car | mango | chair |

These levels are not symmetric One level of category is distinguished from the others
The "basic level"

Name these items


## Superordinate <br> Basic <br> Subordinate



Cluster of Interactional
Properties
Basic level things are "human-sized"
Consider chairs

- We know how to interact with a chair (sitting)
- Not so clear for superordinate categories like furniture
-"Imagine a furniture without thinking of a bed/table/chair/specific basic-level category"


## The basic level

Is the level of distinctive actions
Is the level which is learned earliest and at which things are first named

It is the level at which names are shortest and used most frequently

## Connotation

Words have affective meanings positive connotations (happy) negative connotations (sad)
positive evaluation (great, love) negative evaluation (terrible, hate).

## So far

Concepts or word senses

- Have a complex many-to-many association with words (homonymy, multiple senses)

Have relations with each other

- Synonymy
- Antonymy
- Similarity
- Relatedness
- Superordinate/subordinate
- Connotation


## But how to define a concept?

## Classical ("Aristotelian") Theory of Concepts

The meaning of a word:
a concept defined by necessary and sufficient conditions
A necessary condition for being an X is a condition C that X must satisfy in order for it to be an X .

- If not C, then not X
- "Having four sides" is necessary to be a square.

A sufficient condition for being an $X$ is condition such that if something satisfies condition $C$, then it must be an $X$.

- If and only if $C$, then $X$
- The following necessary conditions, jointly, are sufficient to be a square
- x has (exactly) four sides
- each of x's sides is straight
- $x$ is a closed figure
- x lies in a plane
- each of x's sides is equal in length to each of the others from
- each of x's interior angles is equal to the others (right angles)

Norman

- the sides of $x$ are joined at their ends


## Problem 1: The features are complex and may be context-dependent

William Labov. 1975

What are these?
Cup or bowl?


The category depends on complex features of the object (diameter, etc)


The category depends on the context! (If there is food in it, it's a bowl)


## Labov's definition of cup

The term cup is used to denote round containers with a ratio of depth to width of $1 \pm \mathrm{r}$ where $\mathrm{r} \leq \mathrm{r}_{\mathrm{b}}$, and $\mathrm{r}_{\mathrm{b}}=\alpha_{1}+\alpha_{2}+\ldots \alpha_{v}$ and $\alpha_{1}$ is a positive quality when the feature i is present and 0 otherwise.

```
feature 1 = with one handle
    2 = made of opaque vitreous material
    3 = used for consumption of food
    4 = used for the consumption of liquid food
    5 = used for consumption of hot liquid food
    6 with a saucer
    7 = tapering
    8 = circular in cross-section
```

Cup is used variably to denote such containers with ratios width to depth $1 \pm \mathrm{r}$ where $\mathrm{r}_{\mathrm{b}} \leq \mathrm{r} \leq \mathrm{r}_{1}$ with a probability of $r_{1}-r / r_{t}-r_{b}$. The quantity $1 \pm r_{b}$ expresses the distance from the modal value of width to height.

## Ludwig Wittgenstein (1889-

 1951)Philosopher of language
In his late years, a proponent of studying "ordinary language"


# Wittgenstein (1945) Philosophical Investigations. Paragraphs 66,67 

66. Consider for example the proceedings that we call "games". I mean board-games, card-games, ball-games, Olympic games, and so on. What is common to them all?-Don't say: "There must be something common, or they would not be called 'games' "-but look and see whether there is anything common to all.-For if you look at them you will not see something that is common to all, but similarities, relationships, and a whole series of them at that. To repeat: don't think, but look!-Look for example at board-games, with their multifarious relationships. Now pass to card-games; here you find many correspondences with the first group, but many common
features drop out, and others appear. When we pass next to ballgames, much that is common is retained, but much is lost.-Are they all 'amusing'? Compare chess with noughts and crosses. Or is there always winning and losing, or competition between players? Think of patience. In ball games there is winning and losing; but when a child throws his ball at the wall and catches it again, this feature has disappeared. Look at the parts played by skill and luck; and at the difference between skill in chess and skill in tennis. Think now of games like ring-a-ring-a-roses; here is the element of amusement, but how many other characteristic features have disappeared! And we can go through the many, many other groups of games in the same way; can see how similarities crop up and disappear.
And the result of this examination is: we see a complicated network of similarities overlapping and criss-crossing: sometimes overall similarities, sometimes similarities of detail.
67. I can think of no better expression to characterize these similarities than "family resemblances"; for the various resemblances between members of a family: build, features, colour of eyes, gait, temperament, etc. etc. overlap and criss-cross in the same way.And I shall say: 'games' form a family.

And for instance the kinds of number form a family in the same way. Why do we call something a "number"? Well, perhaps because it has a-direct-relationship with several things that have hitherto been called number; and this can be said to give it an indirect relationship to other things we call the same name. And we extend our concept of number as in spinning a thread we twist fibre on fibre. And the strength of the thread does not reside in the fact that some one fibre runs through its whole length, but in the overlapping of many fibres.

But if someone wished to say: "There is something common to all these constructions-namely the disjunction of all their common properties"-I should reply: Now you are only playing with words. One might as well say: "Something runs through the whole threadnamely the continuous overlapping of those fibres".

What is a game?

## Wittgenstein's thought experiment on "What is a game":

PI \#66:
"Don't say "there must be something common, or they would not be called `games'"-but look and see whether there is anything common to all"

Is it amusing?
Is there competition?
Is there long-term strategy?
Is skill required?
Must luck play a role?
Are there cards?
Is there a ball?

## Family Resemblance

## Game 1 Game 2 Game 3 Game 4 <br> ABC BCD <br> ACD ABD

"each item has at least one, and probably several, elements in common with one or more items, but no, or few, elements are common to all items" Rosch and Mervis

How about a radically different approach?

## Ludwig Wittgenstein

PI \#43:
"The meaning of a word is its use in the language"

Let's define words by their
usages
In particular, words are defined by their environments (the words around them)

Zellig Harris (1954): If A and B have almost identical environments we say that they are synonyms.

## Distributional Hypothesis

- Words that occur in similar contexts tend to have similar meanings.
"You shall know a word by the company it keeps."
(Firth, J. R. 1957:11)



## What does ongchoi mean?

Suppose you see these sentences:

- Ong choi is delicious sautéed with garlic.
- Ong choi is superb over rice
- Ong choi leaves with salty sauces

And you've also seen these:

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

Conclusion:

- Ongchoi is a leafy green like spinach, chard, or collard greens


## Ong choi: Ipomoea aquatica "Water Spinach"



Yamaguchi, Wikimedia Commons, public domain

## We'll build a new model of meaning focusing on similarity

Each word = a vector

- Not just "word" or word45.

Similar words are "nearby in space"


## We define a word as a vector

Called an "embedding" because it's embedded into a space

The standard way to represent meaning in NLP
Fine-grained model of meaning for similarity

- NLP tasks like sentiment analysis
- With words, requires same word to be in training and test
- With embeddings: ok if similar words occurred!!!
- Question answering, conversational agents, etc


## We'll introduce 2 kinds of embeddings

## Tf-idf

- A common baseline model
- Sparse vectors
- Words are represented by a simple function of the counts of nearby words


## Word2vec

- Dense vectors
- Representation is created by training a classifier to distinguish nearby and far-away words

Review: words, vectors, and co-occurrence matrices

## Term-document matrix

Each document is represented by a vector of words

|  | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :---: | :---: | :---: | :---: | :---: |
| battle <br> good <br> fool | 14 <br> wit | 36 | 0 | 80 |
| 20 | 58 | 7 | $\left(\begin{array}{c}13 \\ 82 \\ \hline\end{array}\right.$ |  |

## Visualizing document vectors



Vectors are the basis of information retrieval

|  | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :--- | :---: | :---: | :---: | :---: |
| battle <br> good <br> fool <br> wit | $\left[\begin{array}{c}1 \\ 14 \\ 36 \\ 20\end{array}\right.$ | $\left[\begin{array}{l}0 \\ 80 \\ 58 \\ 15\end{array}\right]$ | $\left[\begin{array}{c}7 \\ 62 \\ 1 \\ 2\end{array}\right]$ | 13 <br> 89 <br> 4 <br> 3 |

# Vectors are similar for the two comedies Different than the history 

Comedies have more fools and wit and fewer battles.

## Words can be vectors too

|  | As You Like It | Twelfth Night | Julius Caesar | Henry V |
| :---: | :---: | :---: | :---: | :---: |
| battle | 1 | 0 | 7 | 13 |
| good | 114 | 80 | 62 | 89 |
| fool | 36 | 58 | 1 | 4 |
| wit | 20 | 15 | 2 | 3 |

battle is "the kind of word that occurs in Julius
Caesar and Henry V"
fool is "the kind of word that occurs in comedies, especially Twelfth Night"

## More common: word-word matrix (or "term-context matrix")

## Two words are similar in meaning if their context vectors are similar

sugar, a sliced lemon, a tablespoonful of apricot their enjoyment. Cautiously she sampled her first pineapple<br>well suited to programming on the digital computer. for the purpose of gathering data and information

jam, a pinch each of, and another fruit whose taste she likened In finding the optimal R-stage policy from necessary for the study authorized in the
apricot pineapple digital information

| aardvark | computer | data | pinch | result | sugar | ... |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 | 0 | 1 |  |
| 0 | 0 | 0 | 1 | 0 | 1 |  |
| 0 | 2 | 1 | 0 | 1 | 0 |  |
| 0 | 1 | 6 | 0 | 4 | 0 |  |



## Reminders from linear algebra

$\operatorname{dot}-\operatorname{product}(\vec{v}, \vec{w})=\vec{v} \cdot \vec{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}$
vector length $|\vec{v}|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}$

## Cosine for computing similarity

$$
\operatorname{cosine(\vec {\rightharpoonup },\vec {w})=\frac {\vec {\vec {r}}\cdot \vec {\vec {W}}}{|\vec {|r|}|\vec {w}|}=\frac {\sum _{i=1}^{N}v_{i}w_{i}}{\sqrt {\sum _{i=1}^{N}v_{i}^{2}}\sqrt {\sum _{i=1}^{N}w_{i}^{2}}}}
$$

$v_{i}$ is the count for word $v$ in context $i$
$w_{i}$ is the count for word $w$ in context $i$.

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta
$$

## Cosine as a similarity metric

-1 : vectors point in opposite directions
+1 : vectors point in same directions
0 : vectors are orthogonal


Frequency is non-negative, so cosine range 0-1

$$
\begin{array}{l|l|l|l|l}
\cos (\vec{v}, \vec{w})=\frac{\vec{v} \bullet \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\vec{v}}{|\vec{v}|} \cdot \frac{\vec{w}}{|\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}} & \text { digital } & 0 & 1 & 2 \\
\text { information } & 1 & 6 & 1 \\
\text { Which pair of words is more similar? } \\
\text { cosine(apricot, information) = } & \frac{1+0+0}{\sqrt{1+0+0} \sqrt{1+36+1}} & =\frac{1}{\sqrt{38}}=.16
\end{array}
$$

cosine(digital,information) $=$

$$
\frac{0+6+2}{\sqrt{0+1+4} \sqrt{1+36+1}}=\frac{8}{\sqrt{38} \sqrt{5}}=.58
$$

cosine $($ apricot, digital $)=$

|  | large | data | computer |
| :--- | :--- | :--- | :--- |
| apricot | 1 | 0 | 0 |
| digital | 0 | 1 | 2 |
| information | 1 | 6 | 1 |

$$
\frac{0+0+0}{\sqrt{1+0+0} \sqrt{0+1+4}}=0
$$

## Visualizing cosines (well, angles)



Dimension 2: 'data'

## But raw frequency is a bad representation

Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information.

But overly frequent words like the, it, or they are not very informative about the context

Need a function that resolves this frequency paradox!

## tf-idf: combine two factors

tf: term frequency. frequency count (usually log-transformed):

$$
\mathrm{tf}_{t, d}= \begin{cases}1+\log _{10} \operatorname{count}(t, d) & \text { if } \operatorname{count}(t, d)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Idf: inverse document frequency: tf-


Words like "the" or "good" have very low idf
tf-idf value for word t in document d :

$$
w_{t, d}=\mathrm{tf}_{t, d} \times \operatorname{idf}_{t}
$$

Summary: tf-idf
Compare two words using tf-idf cosine to see if they are similar

Compare two documents

- Take the centroid of vectors of all the words in the document
- Centroid document vector is:

$$
d=\frac{w_{1}+w_{2}+\ldots+w_{k}}{k}
$$

## An alternative to tf-idf

Ask whether a context word is particularly informative about the target word.

- Positive Pointwise Mutual Information (PPMI)


## Pointwise Mutual Information

## Pointwise mutual information:

Do events $x$ and $y$ co-occur more than if they were independent?

$$
\operatorname{PMI}(X, Y)=\log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

PMI between two words: (Church \& Hanks 1989)
Do words $x$ and $y$ co-occur more than if they were independent?

$$
\operatorname{PMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}
$$

## Positive Pointwise Mutual Information

- PMI ranges from $-\infty$ to $+\infty$
- But the negative values are problematic
- Things are co-occurring less than we expect by chance
- Unreliable without enormous corpora
- Imagine w1 and w2 whose probability is each $10^{-6}$
- Hard to be sure $p(w 1, w 2)$ is significantly different than $10^{-12}$
- Plus it's not clear people are good at "unrelatedness"
- So we just replace negative PMI values by 0
- Positive PMI (PPMI) between word1 and word2:

$$
\operatorname{PPMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\max \left(\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}, 0\right)
$$

## Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)
$\mathrm{f}_{\mathrm{ij}}$ is \# of times $\mathrm{w}_{\mathrm{i}}$ occurs in context $\mathrm{c}_{\mathrm{j}}$

$$
\begin{aligned}
& \text { apricot } \\
& \text { pineapple } \\
& \text { digital }
\end{aligned}
$$

$$
\begin{gathered}
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}} p_{i^{*}}=\frac{\sum_{j=1}^{C} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}} \quad p_{*_{j}}=\frac{\sum_{i=1}^{W} f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}} \\
p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*} p_{*_{j}}}} \quad p_{\text {dieital }}^{\text {information }} \\
0 m i_{i j}=\left\{\begin{array}{cc}
p m i_{i j} & \text { if } p m i_{i j}>0 \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

| aardvark |
| :--- |
|  computer data pinch result sugar |
| 0 |

$$
\begin{aligned}
& \text { Count(w,context) } \\
& p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}} \begin{array}{l}
\text { apricot } \\
\begin{array}{l}
\text { pineapple } \\
\text { digital } \\
\text { information }
\end{array}
\end{array} \\
& \mathrm{p}(\mathrm{w}=\text { information, } \mathrm{c}=\text { data })=6 / 19=.32 \\
& p(w=\text { information })=11 / 19=.58 \\
& \mathrm{p}(\mathrm{c}=\text { data })= \\
& 7 / 19=.37 \\
& \text { p(w,context) } \\
& p\left(c_{j}\right)=\frac{\sum_{i=1}^{W} f_{i j}}{N} \\
& p\left(w_{i}\right)=\frac{\sum_{j=1}^{C} f_{i j}}{N} \\
& \text { p(w) } \\
& \text { computer data pinch result sugar }
\end{aligned}
$$

$$
\begin{aligned}
& \text { pmi(information,data) }=\log _{2}( \\
& .32 /(.37 * .58))=.58 \\
& \text { (. } 57 \text { using full precision) } \\
& \text { PPMI(w,context) }
\end{aligned}
$$

Weighting PMI
PMI is biased toward infrequent events

- Very rare words have very high PMI values

Two solutions:

- Give rare words slightly higher probabilities
- Use add-one smoothing (which has a similar effect)


## Weighting PMI: Giving rare context words slightly higher probability

Raise the context probabilities to $\alpha=0.75$ :

$$
\begin{aligned}
\operatorname{PPMI}_{\alpha}(w, c) & =\max \left(\log _{2} \frac{P(w, c)}{P(w) P_{\alpha}(c)}, 0\right) \\
P_{\alpha}(c) & =\frac{\operatorname{count}(c)^{\alpha}}{\sum_{c} \operatorname{count}(c)^{\alpha}}
\end{aligned}
$$

This helps because $P_{\alpha}(c)>P(c)$ for rare $c$
Consider two events, $\mathrm{P}(\mathrm{a})=.99$ and $\mathrm{P}(\mathrm{b})=.01$
$P_{\alpha}(a)=\frac{.99 \cdot .75}{.99 .75+.01^{.75}}=.97 P_{\alpha}(b)=\frac{.01^{75}}{.01^{75}+.011^{.75}}=.03$

Use Laplace (add-1) smoothing

Add-2 Smoothed Count(w,context

|  | computer | data | pinch | result | sugar |
| :--- | ---: | ---: | ---: | ---: | ---: |
| apricot | 2 | 2 | 3 | 2 | 3 |
| pineapple | 2 | 2 | 3 | 2 | 3 |
| digital | 4 | 3 | 2 | 3 | 2 |
| information | 3 | 8 | 2 | 6 | 2 |

$p(w$, context $)$ [add-2]
p(w)
computer data pinch result sugar

| apricot | 0.03 | 0.03 | 0.05 | 0.03 | 0.05 | 0.20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| pineapple | 0.03 | 0.03 | 0.05 | 0.03 | 0.05 | 0.20 |
| digital | 0.07 | 0.05 | 0.03 | 0.05 | 0.03 | 0.24 |
| information | 0.05 | 0.14 | 0.03 | 0.10 | 0.03 | 0.36 |
| p(context) | 0.19 | 0.25 | 0.17 | 0.22 | 0.17 |  |

## PPMI versus add-2 smoothed PPMI

|  | PPMI(w,context) |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | computer | data | pinch | result | sugar |  |
| apricot | - | - | 2.25 | - | 2.25 |  |
| pineapple | - | - | 2.25 | - | 2.25 |  |
| digital | 1.66 | 0.00 | - | 0.00 | - |  |
| information | 0.00 | 0.57 | - | 0.47 | - |  |
|  | PPMI(w,context) [add-2] |  |  |  |  |  |
|  | computer | data | pinch | result | sugar |  |
| apricot | 0.00 | 0.00 | 0.56 | 0.00 | 0.56 |  |
| pineapple | 0.00 | 0.00 | 0.56 | 0.00 | 0.56 |  |
| digital | 0.62 | 0.00 | 0.00 | 0.00 | 0.00 |  |
| information | 0.00 | 0.58 | 0.00 | 0.37 | 0.00 |  |

## Summary for Part I

- Survey of Lexical Semantics
- Idea of Embeddings: Represent a word as a function of its distribution with other words
- Tf-idf
- Cosines
- PPMI
- Next lecture: sparse embeddings, word2vec

