
NLP & IR

Chapter 7

Neural Networks and 

Neural Language Models

Dell Zhang
Birkbeck, University of London



Neural Networks

◼ A modern neural network is a network of small 

computing units, each of which takes a vector of 

input values and produces a single output value.

◼ The architecture that we introduce in this chapter 

is called a feed-forward network, because the 

computation proceeds iteratively from one layer 

of units to the next. 

◼ In this chapter we’ll see feedforward networks as 

classifiers, and apply them to the simple task of 

language modeling: assigning probabilities to 

word sequences and predicting upcoming words.



NN vs LR

◼ Neural networks share much of the same 

mathematics as logistic regression. 

◼ But neural networks are more powerful than 

logistic regression. Indeed a minimal neural 

network (technically one with a single ‘hidden 

layer’) can be shown to learn any function.

◼ Furthermore, with neural networks, it is more 

common to avoid the use of rich hand-derived 

features (as in logistic regression), instead 

building neural networks that take raw words as 

inputs and learn to induce features as part of the 

end-to-end process of learning to classify.



Deep Learning

◼ The use of modern neural nets is often called 

deep learning, because modern networks are 

often deep (have many layers).

◼ Nets that are very deep are particularly good at 

representation learning. 

◼ For that reason, deep neural nets are the right tool 

for large scale problems that offer sufficient data to 

learn features automatically.



Neural Units

◼ The weights and bias ◼ The sigmoid 

(a special case of 

logistic function)

Does it look familiar?



Neural Units



Neural Units



Neural Units

◼ Example



Neural Units

◼ Activation Function

◼ In practice, the sigmoid is not commonly used as 

an activation function. 

◼ A function that is very similar but almost always 

better is the tanh function.

◼ It is a variant of the sigmoid 

that ranges from -1 to +1.

◼ The simplest activation function, and perhaps the 

most commonly used, is the rectified linear unit, 

also called the ReLU.

◼ It is just the same as x when x is positive, 

and 0 otherwise.



Neural Units

◼ Activation Function



Neural Units

◼ Activation Function

◼ In the sigmoid or tanh functions, very high values 

of z result in values of y that are saturated, i.e., 

extremely close to 1, which causes problems for 

learning. ReLU does not have this problem, since 

the output of values close to 1 also approaches 1

in a nice gentle linear way. 

◼ By contrast, the tanh function has the nice 

properties of being smoothly differentiable and 

mapping outlier values toward the mean.



Feed-Forward Neural Networks 

◼ A feed-forward network is a multilayer network in 

which the units are connected with no cycles: the 

outputs from units in each layer are passed to 

units in the next higher layer, and no outputs are 

passed back to lower layers.

◼ For historical reasons, multi-layer feedforward 

networks, are sometimes called 

multi-layer perceptrons (MLPs)

◼ Simple feed-forward networks have three kinds of 

nodes: input units, hidden units, and output units.

◼ In the standard architecture, each layer is 

fully-connected.



Feed-Forward Neural Networks



Feed-Forward Neural Networks

◼ We can think of a neural network classifier with 

one hidden layer as building a vector h which is a 

hidden layer representation of the input, and then 

running standard logistic regression on the 

features that the network develops in h.



Feed-Forward Neural Networks

◼ A 3-layer net

◼ The activation functions g() are generally different 

at the final layer. Thus g[2] might be softmax for 

multinomial classification or sigmoid for binary 

classification, while ReLU or tanh might be the 

activation function g() at the internal layers.



Feed-Forward Neural Networks

◼ The algorithm for computing the forward step in 

an n-layer feed-forward network, given the input 

vector a[0], is thus simply:



Computation Graphs

◼ A computation graph is a representation of 

the process of computing a mathematical 

expression in which the computation is 

broken down into separate operations, each 

of which is modeled as a node in a graph.



Computation Graphs



Computation Graphs



NN vs LR (again)

◼ So a neural network is like logistic regression, 

but 

◼ (a) with many layers.

◼ A deep neural network is like layer after layer of 

logistic regression classifiers.

◼ A logistic regression classifier is simply a 

one-layer neural network.

◼ (b) rather than forming the features by feature 

templates, the prior layers of the network induce 

the feature representations themselves.



Training Neural Nets

◼ For classification problems, neural networks use 

the cross entropy loss function, which is exactly 

the same one we saw in logistic regression.

◼ Backpropagation (backward differentiation on 

computation graphs).



Neural Language Models

◼ For a training set of a given size, a neural 

language model has much higher predictive 

accuracy than an n-gram language model due to 

the following advantages: 

◼ neural language models don’t need smoothing,

◼ they can handle much longer histories, and 

◼ they can generalize over contexts of similar words. 

◼ On the other hand, neural language models are 

strikingly slower to train than traditional 

n-gram language models.



Neural Language Models

◼ A feedforward neural LM is a standard 

feedforward network that takes as input at time t

a representation of some number of previous 

words (wt-1, wt-2, etc.) and outputs a probability 

distribution over possible next words wt.

◼ Like in the n-gram LM, the probability of a word 

given the entire prior context is approximated 

based on the N previous words:



Neural Language Models

◼ Embeddings

◼ Representing the prior context as embeddings, 

rather than by exact words as used in n-gram 

language models would allow neural language 

models to generalize to unseen data much better 

than n-gram language models.

◼ For example,

◼ Training: 

“I have to make sure when I get home to feed the cat.”

◼ Testing:

“I forgot when I got home to feed the ? ”.

What is the probability of the word “dog”, using 

n-gram LM and neural LM respectively?



Neural Language Models

◼ Embeddings:

Use pretrained embeddings

◼ The embeddings could be learnt separately in 

advance by another algorithm like word2vec. 

◼ In this case, we have an embedding dictionary E

that gives us, for each word in our vocabulary V, 

the embedding for that word.

◼ Fig. 7.12 shows a sketch of this simplified neural 

LM with N=3.



Neural Language Models



Neural Language Models

◼ Embeddings:

Learn embeddings simultaneously

◼ It is desirable when whatever task the network is 

designed for places strong constraints on what 

makes a good representation.

◼ To do this, we’ll add an extra layer to the network, 

and propagate the error all the way back to the 

embedding vectors. The embeddings would be 

initialized with random values, and slowly moved 

toward sensible representations.



Neural Language Models

◼ Embeddings:

Learn embeddings simultaneously

◼ At the input layer, instead of using pre-trained 

embeddings, we represent each of the N previous 

words as a one-hot vector of length |V|, i.e., with 

one dimension for each word in the vocabulary.

◼ A one-hot vector is a vector that has one element equal 

to 1 — in the dimension corresponding to that word’s 

index in the vocabulary — while all the other elements 

are set to 0.

◼ For example, supposing the word “toothpaste” happens 

to have index 5 in the vocabulary, its one-hot 

representation is:



Neural Language Models

◼ Embeddings:

Learn embeddings simultaneously

◼ Fig. 7.13 shows the additional layers needed to 

learn the embeddings during the training of LM. 

◼ Note that we want one single embedding 

dictionary E that’s shared among all the context 

words, because we’d like to just represent each 

word with one vector whichever context position it 

appears in. 

◼ The embedding weight matrix E thus has a row for 

each word, each a vector of d dimensions, and 

hence has dimensionality |V|×d.



Neural Language Models



Neural Language Models

◼ The forward pass of this neural LM (Fig. 7.13)



Neural Language Models

◼ The equations of this neural LM (Fig. 7.13)



Neural Language Models

◼ Train the neural LM

◼ Training proceeds by taking as input a very long 

text, concatenating all the sentences, start with 

random weights, and then iteratively moving 

through the text predicting each word wt.

◼ At each word wt , the cross-entropy (negative 

log-likelihood) loss is:

◼ Training will result in not only an algorithm for 

language modeling (a word predictor), but also a 

new set of embeddings which can be used as 

word representations for other tasks.




