
NLP & IR

Chapter 9

Deep Learning Architectures for

Sequence Processing

Dell Zhang
Birkbeck, University of London

Sliding Window

◼ The sliding window approach that we use in

feed-forward network based neural language

models is problematic.

◼ First, it shares the primary weakness of Markov

approaches in that it limits the context from which

information can be extracted; anything outside the

context window has no impact on the decision

being made.

◼ Second, the use of windows makes it difficult for

networks to learn systematic patterns arising from

phenomena like constituency.

For example, the phrase “the ground” appears twice in different windows: once, as shown, in the

first and second positions in the window, and in the preceding step in the second and third slots,

thus forcing the network to learn two separate patterns for a single constituent.

Recurrent Neural Networks

◼ A recurrent neural network (RNN) is any network

that contains a cycle within its network

connections, i.e., any network where the value of

a unit is directly, or indirectly, dependent on its

own output as an input.

◼ RNNs allow us to handle variable length input

sequences explicitly as sequences without the use

of arbitrary fixed-sized windows.

Simple Recurrent Networks

aka Elman Networks

The key difference from a

feedforward network lies

in the recurrent link

(shown as a dashed line).

Simple Recurrent Networks

◼ The recurrent link augments the input to the

hidden layer with the activation value of the

hidden layer from the preceding point in time.

◼ The hidden layer from the previous timestep

provides a form of memory, or context, that

encodes earlier processing and informs the

decisions to be made at later points in time.

◼ Importantly, the architecture does not impose a

fixed-length limit on this prior context; the context

embodied in the previous hidden layer includes

information extending back to the beginning of the

sequence.

Simple Recurrent Networks

The most significant addition lies

in the new set of weights, U, that

connect the hidden layer from

the previous timestep to the

current hidden layer.

Simple Recurrent Networks

◼ Forward inference (mapping a sequence of

inputs to a sequence of outputs) in an SRN is

nearly identical to what we’ve already seen with

feed-forward networks.

e.g.,

Simple Recurrent Networks

◼ The fact that the computation at time t requires

the value of the hidden layer from time t-1

mandates an incremental inference algorithm

that proceeds from the start of the sequence to

the end.

Applications of RNNs in NLP

◼ Sequence Labelling

◼ Part-Of-Speech (POS) Tagging

◼ Named Entity Recognition (NER)

◼ Sequence Classification

◼ Sentiment Analysis

◼ Topic Categorization

◼ Spam Filtering

◼ Message Routing

◼ Sequence Generation

◼ We’ll come back to this later.

◼ ……

Part-Of-Speech (POS) Tagging

The Penn TreeBank Tagset

◼ Finding all the spans in a text that correspond to

names of people, places or organizations etc.

◼ To turn a problem like this into a per-word

sequence labeling task, we’ll use IOB encoding:

◼ I: tokens inside a span

◼ O: tokens outside of any span of interest

◼ B: tokens that begin a span of interest

Named Entity Recognition (NER)

In applications where we are interested in more than one class of entity,

we can specialize the B and I tags to represent each of the more specific

classes.

Sequence Classification

◼ To apply RNNs in this setting, the hidden layer

from the final state of the network is taken to

constitute a compressed representation of the

entire sequence.

◼ This compressed sequence representation can

then in turn serve as the input to a feed-forward

network trained to select the correct class.

◼ We use the output from the softmax layer from

the final classifier along with a cross-entropy loss

function to drive our network training.

Deep Networks

◼ A Stacked RNN consists of multiple networks

where the output of one layer serves as the input

to a subsequent layer.

◼ It has been demonstrated across numerous tasks

that stacked RNNs can outperform single-layer

networks.

◼ One reason for this success has to do with the

networks ability to induce representations at

differing levels of abstraction across layers.

Deep Networks

◼ A Bidirectional RNN consists of two

independent recurrent networks, one where the

input is processed from the start to the end, and

the other from the end to the start.

◼ We can then combine the outputs of the two

networks into a single representation that

captures the both the left and right contexts of an

input at each point in time.

Deep Networks

◼ Bidirectional RNNs have also proven to be quite

effective for sequence classification.

◼ For sequence classification we used the final

hidden state of the RNN as the input to a

subsequent feed-forward classifier. A difficulty with

this approach is that the final state naturally

reflects more information about the end of the

sentence than its beginning.

◼ Bidirectional RNNs provide a simple solution to

this problem: we simply combine the final hidden

states from the forward and backward passes and

use that as input for follow on processing.

Managing Context in RNNs

◼ It is quite difficult to train simple RNNs for tasks

that require a network to make use of information

distant from the current point of processing.

◼ Despite having access to the entire preceding

sequence, the information encoded in hidden

states tends to be fairly local, more relevant to the

most recent parts of the input sequence and

recent decisions.

◼ However, it is often the case that long-distance

information is critical to many language

applications.
The flights the airline was cancelling ___ full.

(a) was (b) were

LSTM

◼ Long Short-Term Memory (LSTM) networks,

divide the context management problem into two

sub-problems: removing information no longer

needed from the context, and adding information

likely to be needed for later decision making.

◼ The key to the approach is to learn how to

manage this context rather than hard-coding a

strategy into the architecture.

LSTM

◼ LSTMs accomplish this through the use of

specialized neural units that make use of gates

to control the flow of information into and out of

the units that comprise the network layers.

◼ These gates are implemented through the use of

additional sets of weights that operate sequentially

on the context layer.

LSTM

◼ The increased complexity of the LSTM and GRU

units is encapsulated within the units themselves.

◼ The only additional external complexity over the

simple recurrent unit is the presence of the

additional context vector input ct-1 and output ct.

◼ This modularity is key to the power and

widespread applicability of LSTM and GRU units.

◼ Specifically, LSTM and GRU units can be

substituted into any of the network architectures

described before.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

We’ll train RNNs to generate text character by character

and ponder the question “how is that even possible?”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fun with RNNs

◼ Text generation

using character-level language models

based on multi-layer LSTMs.

◼ Paul Graham

◼ Shakespeare

◼ Wikipedia

◼ Algebraic Geometry (LaTeX)

◼ Linux Source Code

◼ Baby Names

