NLP & IR

’ﬂ“ Pearson International Edition

7
> v
/ . ;
>

DANIEL JURAFSKY & JAMES H. MARTIN

Chapter 9

Deep Learning Architectures for
Sequence Processing

Dell Zhang
Birkbeck, University of London



Sliding Window

= The sliding window approach that we use Iin
feed-forward network based neural language
models Is problematic.

s First, it shares the primary weakness of Markov
approaches in that it limits the context from which
Information can be extracted; anything outside the
context window has no impact on the decision
being made.

= Second, the use of windows makes it difficult for
networks to learn systematic patterns arising from
phenomena like constituency.



Output layer P(w|u 1X|V] @\ Q @
VthU/M\ P(m.'r:V42\ur W W, 3)

Hidden layer 1Xxdy, [\ @ @ )

d,x3d W /,/

Projection layer 1x3d (@6 :-@ --00) (€0 --0 :-00 (00 :--0 :-00)

\

concatenated embeddings | empedding for embedding for  embeddin g for
for context words word 35 word 9925 word 45180 word 42
A N A
Z..[holef in the ground there lived |[.£
Wi 3 Wiy Wi W

IDPICRAY A simplified view of a feedforward neural language model moving through a text. At each
timestep ¢ the network takes the 3 context words, converts each to a d-dimensional embeddings, and con-
catenates the 3 embeddings together to get the 1 x Nd unit input layer x for the network.

For example, the phrase “the ground” appears twice in different windows: once, as shown, in the
first and second positions in the window, and in the preceding step in the second and third slots,
thus forcing the network to learn two separate patterns for a single constituent.



Recurrent Neural Networks

= A recurrent neural network (RNN) is any network
that contains a cycle within its network
connections, I.e., any network where the value of
a unit is directly, or indirectly, dependent on its
own output as an input.

= RNNSs allow us to handle variable length input

sequences explicitly as sequences without the use
of arbitrary fixed-sized windows.



Simple Recurrent Networks

( 7 ) aka Elman Networks
The key difference from a
feedforward network lies A
In the recurrent link ( t )
(shown as a dashed line). A

C Xy )

1T ®]  Simple recurrent neural network after Elman (Elman, 1990). The hidden layer
includes a recurrent connection as part of its input. That is, the activation value of the hidden

layer depends on the current input as well as the activation value of the hidden layer from the
previous timestep.




Simple Recurrent Networks

= The recurrent link augments the input to the
hidden layer with the activation value of the
hidden layer from the preceding point in time.

= The hidden layer from the previous timestep
provides a form of memory, or context, that
encodes earlier processing and informs the
decisions to be made at later points in time.

» Importantly, the architecture does not impose a
fixed-length limit on this prior context; the context
embodied in the previous hidden layer includes
iInformation extending back to the beginning of the
seguence.



Simple Recurrent Networks

7N
<
—

The most significant addition lies
In the new set of weights, U, that
connect the hidden layer from

the previous timestep to the ¢ n;
current hidden layer.

j
\

( N1 ) C Xt

10T R]  Simple recurrent neural network illustrated as a feed-forward network.



Simple Recurrent Networks
|

= Forward inference (mapping a sequence of
Inputs to a sequence of outputs) in an SRN is
nearly identical to what we’ve already seen with
feed-forward networks.

hy = gUhi—1 +Wx;)
vy = f(Vh) e.q., vi = softmax(Vh)



Simple Recurrent Networks

= The fact that the computation at time t requires
the value of the hidden layer from time t-1
mandates an incremental inference algorithm
that proceeds from the start of the sequence to
the end.

function FORWARDRNN(x, network) returns output sequence y

h{)%o

for i< 1 to LENGTH(x) do
hi<—g(U hi—y + W x;)
i< f(V h)

return y

I0TIVRA]  Forward inference in a simple recurrent network.



>

DT A simple recurrent neural network shown unrolled in time. Network layers are copied for each
timestep, while the weights U, V and W are shared in common across all timesteps.



Applications of RNNs in NLP

= Sequence Labelling
» Part-Of-Speech (POS) Tagging
= Named Entity Recognition (NER)
= Sequence Classification
» Sentiment Analysis
= Topic Categorization
= Spam Filtering
= Message Routing
= Sequence Generation
s We'll come back to this later.



Part-Of-Speech (POS) Tagging

i J{ o JCallo [l J( e
[ | [

RNN

Janet ) ( will Y(C back )( the ) ( bill

10T R Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained
word embeddings serve as inputs and a softmax layer provides a probability distribution over
the part-of-speech tags as output at each time step.



The Penn TreeBank Tagset

Tag  Description Example Tag Description Example
CC coordin. conjunction and, but, or SYM symbol +,%, &
CD cardinal number one, two TO “to” to

DT determiner a, the UH  interjection ah, oops
EX existential ‘there’ there VB verb base form eat

FW  foreign word mea culpa VBD verb past tense ate

IN preposition/sub-conj of, in, by VBG verb gerund eating

JJ adjective yellow VBN verb past participle eaten

JJR adj., comparative bigger VBP verb non-3sg pres eat

1JS adj., superlative wildest VBZ verb 3sg pres eats

LS list item marker 1, 2, One WDT wh-determiner which, that
MD  modal can, should WP  wh-pronoun what, who
NN noun, sing. or mass  llama WP$  possessive wh- whose
NNS  noun, plural llamas WRB wh-adverb how, where
NNP proper noun, sing. IBM $ dollar sign $

NNPS proper noun, plural ~ Carolinas # pound sign #

PDT predeterminer all, both “ left quote ‘or*
POS  possessive ending s 7 right quote “or”
PRP  personal pronoun I, you, he ( left parenthesis LG <
PRP$ possessive pronoun  your, one’s ) right parenthesis 1)} >
RB adverb quickly, never comma ,

RBR  adverb, comparative faster . sentence-final punc . ! ?

RBS  adverb, superlative  fasrest : mid-sentence punc ;... —-

RP particle up, off




Named Entity Recognition (NER)

= Finding all the spans in a text that correspond to
names of people, places or organizations etc.

= To turn a problem like this into a per-word
sequence labeling task, we’ll use IOB encoding:

K tokens inside a span
» O: tokens outside of any span of interest
= B: tokens that begin a span of interest

In applications where we are interested in more than one class of entity,
we can specialize the B and | tags to represent each of the more specific

classes.
United cancelled the flight from Denver to San Francisco.
B-ORG O O O O B-LOCO B-LOC I-LOC



Seqguence Classification

= To apply RNNs in this setting, the hidden layer
from the final state of the network is taken to
constitute a compressed representation of the
entire sequence.

= This compressed seguence representation can
then in turn serve as the input to a feed-forward
network trained to select the correct class.

= We use the output from the softmax layer from
the final classifier along with a cross-entropy loss
function to drive our network training.



RNN

% HC X H(C X3 ) X )

|OTaIRAY  Sequence classification using a simple RNN combined with a feedforward net-
work.



Deep Networks

= A Stacked RNN consists of multiple networks

where the output of one layer serves as the input
to a subsequent layer.

s |t has been demonstrated across numerous tasks

that stacked RNNs can outperform single-layer
networks.

= One reason for this success has to do with the
networks ability to induce representations at
differing levels of abstraction across layers.



RNN 3

RNN 2
N T
RNN 1
(’H)(Xz)(i) C_xn )

| DT B I]  Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.



Deep Networks

= A Bidirectional RNN consists of two
Independent recurrent networks, one where the
Input is processed from the start to the end, and
the other from the end to the start.

= We can then combine the outputs of the two
networks into a single representation that
captures the both the left and right contexts of an
Input at each point in time.

ward
hfomar — SRNe (x1 : x
h, — hfam-'ard@hbafkl,mrd t fornaml( ] r)
f r ! ] backward
1

SRNpackward (Xn - Xt )



RNN 2 (Right to Left) < |

A A

RNN 1 (Left to Right) | >

A W A

. X HC X H(C X ) C_ % )

A bidirectional RNN. Separate models are trained in the forward and backward
directions with the output of each model at each time point concatenated to represent the state
of affairs at that point in time. The box wrapped around the forward and backward network
emphasizes the modular nature of this architecture.



Deep Networks

= Bidirectional RNNs have also proven to be quite
effective for sequence classification.

= For sequence classification we used the final
hidden state of the RNN as the input to a
subsequent feed-forward classifier. A difficulty with
this approach is that the final state naturally
reflects more information about the end of the
sentence than its beginning.

» Bidirectional RNNs provide a simple solution to
this problem: we simply combine the final hidden
states from the forward and backward passes and
use that as input for follow on processing.



( Softmax )

C M pack ) RNN 2 (Right to Left) < \

A A A \ A

\
RNN 1 (Left to Right) | > C Py forw )

X% Y X HC X3 ) G

DTN RIAP] A bidirectional RNN for sequence classification. The final hidden units from
the forward and backward passes are combined to represent the entire sequence. This com-
bined representation serves as input to the subsequent classifier.



Managing Context in RNNs

= It is quite difficult to train simple RNNSs for tasks
that require a network to make use of information
distant from the current point of processing.

» Despite having access to the entire preceding
sequence, the information encoded in hidden
states tends to be fairly local, more relevant to the
most recent parts of the input sequence and
recent decisions.

= However, it is often the case that long-distance
iInformation is critical to many language
applications.

The flights the airline was cancelling ____ full.
(a) was (b) were




LSTM

= Long Short-Term Memory (LSTM) networks,
divide the context management problem into two
sub-problems: removing information no longer
needed from the context, and adding information
likely to be needed for later decision making.

= The key to the approach is to learn how to
manage this context rather than hard-coding a
strategy into the architecture.



LSTM

= LSTMs accomplish this through the use of
specialized neural units that make use of gates
to control the flow of information into and out of

the units that comprise the network layers.

= These gates are implemented through the use of
additional sets of weights that operate sequentially

on the context layer.



| ) g = tanh(Ughi—1 +W,x;)
i; = o(Uh;—1+Wwx;)
) f, = G(Ufh;_l-l-wfxr)
or = o(Ushy— +Wox;)

IT) -
/\ ¢ = OG- 1+1LOg

or O tanh(c;)

IOTOICRAR] A single LSTM memory unit displayed as a computation graph.



h ht S ht C; ht
a a
Z
(> (>
X he_1 Xt Ct-1 he_1 Xt Ct-1 he_1 Xt
(a) (b) (c) (d)

[OTu ] Basic neural units used in feed-forward, simple recurrent networks (SRN),
long short-term memory (LSTM) and gate recurrent units.



LSTM

= The increased complexity of the LSTM and GRU
units is encapsulated within the units themselves.
= The only additional external complexity over the

simple recurrent unit is the presence of the
additional context vector input c,; and output c..

= This modularity is key to the power and
widespread applicability of LSTM and GRU units.

= Specifically, LSTM and GRU units can be
substituted into any of the network architectures
described before.



Aﬂdrej Karpathy blog About  Hacker's guide to Neural Networks

The Unreasonable Effectiveness of Recurrent Neural
Networks

May 21, 2015

We’ll train RNNSs to generate text character by character
and ponder the question “how Is that even possible?”

http://karpathy.qithub.io/2015/05/21/rnn-effectiveness/



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fun with RNNs

= [ext generation
using character-level language models
based on multi-layer LSTMSs.

» Paul Graham

= Shakespeare

» Wikipedia

= Algebraic Geometry (LaTeX)
= Linux Source Code

= Baby Names



