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Sliding Window

◼ The sliding window approach that we use in  

feed-forward network based neural language 

models is problematic.

◼ First, it shares the primary weakness of Markov 

approaches in that it limits the context from which 

information can be extracted; anything outside the 

context window has no impact on the decision 

being made. 

◼ Second, the use of windows makes it difficult for 

networks to learn systematic patterns arising from 

phenomena like constituency.



For example, the phrase “the ground” appears twice in different windows: once, as shown, in the 

first and second positions in the window, and in the preceding step in the second and third slots, 

thus forcing the network to learn two separate patterns for a single constituent.



Recurrent Neural Networks

◼ A recurrent neural network (RNN) is any network 

that contains a cycle within its network 

connections, i.e., any network where the value of 

a unit is directly, or indirectly, dependent on its 

own output as an input. 

◼ RNNs allow us to handle variable length input 

sequences explicitly as sequences without the use 

of arbitrary fixed-sized windows.



Simple Recurrent Networks

aka Elman Networks

The key difference from a 

feedforward network lies 

in the recurrent link

(shown as a dashed line).



Simple Recurrent Networks

◼ The recurrent link augments the input to the 

hidden layer with the activation value of the 

hidden layer from the preceding point in time.

◼ The hidden layer from the previous timestep 

provides a form of memory, or context, that 

encodes earlier processing and informs the 

decisions to be made at later points in time. 

◼ Importantly, the architecture does not impose a 

fixed-length limit on this prior context; the context 

embodied in the previous hidden layer includes 

information extending back to the beginning of the 

sequence.



Simple Recurrent Networks

The most significant addition lies 

in the new set of weights, U, that 

connect the hidden layer from 

the previous timestep to the 

current hidden layer.



Simple Recurrent Networks

◼ Forward inference (mapping a sequence of 

inputs to a sequence of outputs) in an SRN is 

nearly identical to what we’ve already seen with 

feed-forward networks.

e.g., 



Simple Recurrent Networks

◼ The fact that the computation at time t requires 

the value of the hidden layer from time t-1

mandates an incremental inference algorithm 

that proceeds from the start of the sequence to 

the end.





Applications of RNNs in NLP

◼ Sequence Labelling

◼ Part-Of-Speech (POS) Tagging

◼ Named Entity Recognition (NER)

◼ Sequence Classification

◼ Sentiment Analysis

◼ Topic Categorization

◼ Spam Filtering

◼ Message Routing

◼ Sequence Generation

◼ We’ll come back to this later.

◼ ……



Part-Of-Speech (POS) Tagging



The Penn TreeBank Tagset



◼ Finding all the spans in a text that correspond to 

names of people, places or organizations etc.

◼ To turn a problem like this into a per-word 

sequence labeling task, we’ll use IOB encoding: 

◼ I:   tokens inside a span

◼ O: tokens outside of any span of interest 

◼ B: tokens that begin a span of interest

Named Entity Recognition (NER)

In applications where we are interested in more than one class of entity, 

we can specialize the B and I tags to represent each of the more specific 

classes.



Sequence Classification

◼ To apply RNNs in this setting, the hidden layer 

from the final state of the network is taken to 

constitute a compressed representation of the 

entire sequence. 

◼ This compressed sequence representation can 

then in turn serve as the input to a feed-forward 

network trained to select the correct class.

◼ We use the output from the softmax layer from 

the final classifier along with a cross-entropy loss 

function to drive our network training.





Deep Networks

◼ A Stacked RNN consists of multiple networks 

where the output of one layer serves as the input 

to a subsequent layer.

◼ It has been demonstrated across numerous tasks 

that stacked RNNs can outperform single-layer 

networks. 

◼ One reason for this success has to do with the 

networks ability to induce representations at 

differing levels of abstraction across layers.





Deep Networks

◼ A Bidirectional RNN consists of two 

independent recurrent networks, one where the 

input is processed from the start to the end, and 

the other from the end to the start. 

◼ We can then combine the outputs of the two 

networks into a single representation that 

captures the both the left and right contexts of an 

input at each point in time.





Deep Networks

◼ Bidirectional RNNs have also proven to be quite 

effective for sequence classification.

◼ For sequence classification we used the final 

hidden state of the RNN as the input to a 

subsequent feed-forward classifier. A difficulty with 

this approach is that the final state naturally 

reflects more information about the end of the 

sentence than its beginning. 

◼ Bidirectional RNNs provide a simple solution to 

this problem: we simply combine the final hidden 

states from the forward and backward passes and 

use that as input for follow on processing.





Managing Context in RNNs

◼ It is quite difficult to train simple RNNs for tasks 

that require a network to make use of information 

distant from the current point of processing. 

◼ Despite having access to the entire preceding 

sequence, the information encoded in hidden 

states tends to be fairly local, more relevant to the 

most recent parts of the input sequence and 

recent decisions. 

◼ However, it is often the case that long-distance 

information is critical to many language 

applications.
The flights the airline was cancelling ___ full.

(a) was (b) were



LSTM

◼ Long Short-Term Memory (LSTM) networks, 

divide the context management problem into two 

sub-problems: removing information no longer 

needed from the context, and adding information 

likely to be needed for later decision making. 

◼ The key to the approach is to learn how to 

manage this context rather than hard-coding a 

strategy into the architecture.



LSTM

◼ LSTMs accomplish this through the use of 

specialized neural units that make use of gates

to control the flow of information into and out of 

the units that comprise the network layers.

◼ These gates are implemented through the use of 

additional sets of weights that operate sequentially 

on the context layer.







LSTM

◼ The increased complexity of the LSTM and GRU 

units is encapsulated within the units themselves. 

◼ The only additional external complexity over the 

simple recurrent unit is the presence of the 

additional context vector input ct-1 and output ct.

◼ This modularity is key to the power and 

widespread applicability of LSTM and GRU units. 

◼ Specifically, LSTM and GRU units can be 

substituted into any of the network architectures 

described before.



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

We’ll train RNNs to generate text character by character 

and ponder the question “how is that even possible?”

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Fun with RNNs

◼ Text generation

using character-level language models

based on multi-layer LSTMs.

◼ Paul Graham

◼ Shakespeare

◼ Wikipedia

◼ Algebraic Geometry (LaTeX)

◼ Linux Source Code

◼ Baby Names


