
Interview with Simon Funk: Why SVD approach?

Gregory Piatetsky-Shapiro

KDnuggets : News : 2007 : n08 : item6

Abstract

This is part of the KDnuggets interview with Simon Funk who became
well-known in the Netflix prize competition for his application of Singu-
lar Value Decomposition (SVD) to that recommendation problem. The
original article has been adapted by Dell Zhang for his NLP module at
Birkbeck to make the notations consistent with the Stanford IR textbook
(Chapter 18: Matrix decompositions and latent semantic indexing).

GPS: Q3) What led you to choose SVD approach over other methods. You
have explained it well in your blog post , but can you briefly summarize the
SVD approach?

Simon Funk: The best way to understand SVD is probably in reverse: to
look at how one re-constructs a data matrix from the singular vectors. Consider
just a single column-vector u1 and corresponding row-vector vT

1 . If you multiply
u1 by vT

1 you get a matrix u1v
T
1 as tall as u1 and as wide as vT

1 . Now if you
have some target data matrix C of the same size (say the Netflix movie-by-
user ratings matrix) you can ask: What choice of u1 and vT

1 would make that
reconstructed matrix C1 = σ1u1v

T
1 as close to my target matrix C as possible?

Here σ1 is a weight to make the two vectors u1 and vT
1 both normlized (i.e., of

length 1).
SVD is a mathematical trick for finding that optimal u1 and vT

1 pair. It’s
really just that simple, and the only additional tidbit is that once you’ve found
that first u1, vT

1 pair, you can repeat the process with the leftovers (the differ-
ence between the original target matrix C and σ1u1v

T
1 ) to get a second pair of

vectors, u2 and vT
2 , and so on, such that the target matrix C is approximated

by:
C = σ1u1v

T
1 + σ2u2v

T
2 + . . . ,

with each successive term being progressively less significant due to the “biggest
bite first” nature of the basic algorithm.

Looked at that way, it’s clear that SVD is a particular way of modeling the
data matrix C. Assuming we trust the math to find the optimal parameters
(ui, v

T
i , . . .), the question is how well does the model reflect the true process

behind the data matrix? Here ui is a vector over movies, and vT
i over users,

and the matrix uiv
T
i has in each cell the movie value from ui times the user

1

www.kdnuggets.com/news/2007/n08/6i.html
http://sifter.org/~simon/
https://www.netflixprize.com/
https://www.dcs.bbk.ac.uk/~dell/
https://www.dcs.bbk.ac.uk/~dell/teaching/nlp/
https://www.dcs.bbk.ac.uk/~dell/teaching/nlp/
https://nlp.stanford.edu/IR-book/
http://sifter.org/~simon/journal/20061211.html


value from vT
i . So in effect we are saying there is some aspect or attribute which

is measured for each movie by ui, such as “how much Action does this movie
have?”, and for each user by vT

j , such as “how much does this user like Action

movies?”, and we just multiply those together to get our uiv
T
i estimate for how

much each user would like each movie based only on the amount of Action. The
model further says that the contributions from the different attributes are just
added up linearly to make a final prediction. And that’s it.

It’s a very simple model, but it feels qualitatively correct to a first degree
of approximation. And I had a very simple way to implement it using the
incremental SVD method that I had come up with previously in my attempts
to filter spam among other things, so I gave it a go. Honestly I only expected it
to do about as well as Netflix’s posted baseline — I was quite surprised when
it did as well as it did!

2


