An Example of Bayesian Inference

Dell Zhang
16/11/2008

There's a disease that is affecting 1% of the population. We have a test for the disease that's only somewhat accurate: 80% of people with the disease will get a positive result. Unfortunately, 9.6% of people without the disease will also get a positive result. We apply the test to you and it turns out positive. What is the probability that you actually have the disease?
／／Prior Probability

$$
P(\mathrm{D}=1)=0.01 \quad P(\mathrm{D}=0)=0.99
$$

／／Likelihood
$P(+\mid \mathrm{D}=1)=0.8 \quad P(+\mid \mathrm{D}=0)=0.096$

$$
\begin{array}{rlrl}
P(\leftarrow) & =P(\longleftarrow, \mathrm{D}=1)+P(\leftarrow, \mathrm{D}=0) & & \text { // Partition Rule } \\
& =P(\curvearrowleft \mid \mathrm{D}=1) P(\mathrm{D}=1)+P(ヶ \mid \mathrm{D}=0) P(\mathrm{D}=0) & & \text { // Chain Rule } \\
& =0.8^{*} 0.01+0.096^{*} 0.99 & \\
& \approx 0.103 & &
\end{array}
$$

／／Posterior Probability computation using the Bayes＇Rule

$$
\begin{array}{rlrl}
P(\mathrm{D}=1 \mid \downarrow) & =P(ヶ, \mathrm{D}=1) / P(\downarrow) & & \text { // Chain Rule } \\
& =P(ヶ \mid \mathrm{D}=1) P(\mathrm{D}=1) / P(\downarrow) & & \text { // Chain Rule } \\
& =0.8^{*} 0.01 / 0.103 & & \\
& \approx 0.078=7.8 \% &
\end{array}
$$

P．S．

Consider a population of 10,000 persons．
Of those， 100 will have the disease，and 80 will test positive．
That leaves 10000－100 who won＇t have the disease，or 9900.
The number of folks who don＇t have the disease but tested positive is 9.6% of 9900 ，or 950 ．
$80 /(950+80)=0.078$ or 7.8% ．

