An Example of Vector Space Model

Dell Zhang
30/11/2006

Query

q : "gold silver truck"
Document Collection
d_{1} : "Shipment of gold arrived in a truck."
d_{2} : "Shipment of gold damaged in a fire."
d_{3} : "Delivery of silver arrived in a silver truck."

Term IDF Weights

The number of documents in the collection $n=3$.
$i d f_{\mathrm{a}}=\log \left(n / d f_{\mathrm{a}}\right)=\log (3 / 3)=0$
$i d f_{\text {arrived }}=\log \left(n / d f_{\text {arrived }}\right)=\log (3 / 2)=0.18$
$i d f_{\text {damaged }}=\log \left(n / d f_{\text {damaged }}\right)=\log (3 / 1)=0.48$
$i d f_{\text {delivery }}=\log \left(n / d f_{\text {delivery }}\right)=\log (3 / 1)=0.48$
$i d f_{\text {fire }}=\log \left(n / d f_{\text {fire }}\right)=\log (3 / 1)=0.48$
$i d f_{\text {gold }}=\log \left(n / d f_{\text {gold }}\right)=\log (3 / 2)=0.18$
$i d f_{\text {in }}=\log \left(n / d f_{\text {in }}\right)=\log (3 / 3)=0$
$i d f_{\text {of }}=\log \left(n / d f_{\text {of }}\right)=\log (3 / 3)=0$
$i d f_{\text {shipment }}=\log \left(n / d f_{\text {shipment }}\right)=\log (3 / 2)=0.18$
$i d f_{\text {silver }}=\log \left(n / d f_{\text {silver }}\right)=\log (3 / 1)=0.48$
$i d f_{\text {truck }}=\log \left(n / d f_{\text {truck }}\right)=\log (3 / 2)=0.18$

TF×IDF Document Vectors

$$
w_{i, j}=t f_{i, j} \times i d f_{i}
$$

	a	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
d_{1}	0	0.18	0	0	0	0.18	0	0	0.18	0	0.18
d_{2}	0	0	0.48	0	0.48	0.18	0	0	0.18	0	0
d_{3}	0	0.18	0	0.48	0	0	0	0	0	0.96	0.18

Document Vector Length

$$
\begin{aligned}
& \left|\vec{d}_{j}\right|=\sqrt{\sum_{i=1}^{m} w_{i, j}^{2}} \\
& \left|\vec{d}_{1}\right|=\sqrt{0.18^{2}+0.18^{2}+0.18^{2}+0.18^{2}}=0.36 \\
& \left|\vec{d}_{2}\right|=\sqrt{0.48^{2}+0.48^{2}+0.18^{2}+0.18^{2}}=0.72 \\
& \left|\vec{d}_{3}\right|=\sqrt{0.18^{2}+0.48^{2}+0.96^{2}+0.18^{2}}=1.10
\end{aligned}
$$

TF×IDF Query Vector

$$
w_{i, j}=t f_{i, j} \times i d f_{i}
$$

	a	arrived	damaged	delivery	fire	gold	in	of	shipment	silver	truck
q	0	0	0	0	0	0.18	0	0	0	0.48	0.18

Query Vector Length

$|\vec{q}|=\sqrt{\sum_{i=1}^{m} w_{i, q}^{2}}$
$|\vec{q}|=\sqrt{0.18^{2}+0.48^{2}+0.18^{2}}=0.54$

Query Processing with Cosine Similarities

$$
\begin{aligned}
& \operatorname{sim}\left(q, d_{j}\right)=\frac{\vec{q} \cdot \vec{d}_{j}}{|\vec{q}| \cdot\left|\vec{d}_{j}\right|}=\frac{\sum_{i=1}^{m} w_{i, q} w_{i, j}}{|\vec{q}| \cdot\left|\vec{d}_{j}\right|} \\
& \operatorname{sim}\left(q, d_{1}\right)=\frac{\sum_{i=1}^{11} w_{i, q} w_{i, 1}}{|\vec{q}| \cdot\left|\vec{d}_{1}\right|} \\
& =\frac{0 \times 0+0 \times 0.18+0 \times 0+0 \times 0+0 \times 0+0.18 \times 0.18+0 \times 0+0 \times 0+0 \times 0.18+0.48 \times 0+0.18 \times 0.18}{0.54 \times 0.36} \\
& =\frac{0.18 \times 0.18+0.18 \times 0.18}{0.54 \times 0.36}=0.33
\end{aligned}
$$

$$
\operatorname{sim}\left(q, d_{2}\right)=\frac{\sum_{i=1}^{11} w_{i, q} w_{i, 2}}{|\vec{q}| \cdot\left|\vec{d}_{2}\right|}
$$

$$
=\frac{0 \times 0+0 \times 0+0 \times 0.48+0 \times 0+0 \times 0.48+0.18 \times 0.18+0 \times 0+0 \times 0+0 \times 0.18+0.48 \times 0+0.18 \times 0}{0.54 \times 0.72}
$$

$$
=\frac{0.18 \times 0.18}{0.54 \times 0.72}=0.08
$$

$$
\operatorname{sim}\left(q, d_{3}\right)=\frac{\sum_{i=1}^{11} w_{i, q} w_{i, 3}}{|\vec{q}| \cdot\left|\vec{d}_{3}\right|}
$$

$$
\begin{aligned}
& =\frac{0 \times 0+0 \times 0.18+0 \times 0+0 \times 0.48+0 \times 0+0.18 \times 0+0 \times 0+0 \times 0+0 \times 0+0.48 \times 0.96+0.18 \times 0.18}{0.54 \times 1.10} \\
& =\frac{0.48 \times 0.96+0.18 \times 0.18}{0.54 \times 1.10}=0.83
\end{aligned}
$$

Search Result

Because $\operatorname{sim}\left(q, d_{3}\right)>\operatorname{sim}\left(q, d_{1}\right)>\operatorname{sim}\left(q, d_{2}\right)$, the ranking of documents would be d_{3}, d_{1}, d_{2}.

