Birkbeck

(University of London)

MSc EXAMINATION

Department of Computer Science and Information Systems

Information Retrieval and Organisation (COIY064H7)

CREDIT VALUE: 15 credits

Date of examination: Thursday, 22th May 2014
Duration of paper: 2:30pm - 4:30pm (2 hours)

RUBRIC

1. This paper contains 12 questions for a total of 100 marks.
2. Students should attempt to answer all of them.
3. This paper is not prior-disclosed.
4. The use of non-programmable electronic calculators is permitted.

Build the positional inverted file index for the following document collection. Please do not use any preprocessing on the tokens and do not compress the postings lists.

docID	docText
1	hickory dickory dock
2	the mouse ran up the clock
3	the clock struck one
4	the mouse ran down
5	hickory dickory dock

2.

(5 marks)
Assume that you are using k-grams for doing wildcard searches. The search term entered by a user is *tone. What Boolean queries on a 2 -gram index and a 3 -gram index would be generated for this search term respectively?
3.
(10 marks)
Fill the following matrix to compute the Levenshtein edit distance between two strings 'kitten'and 'sitting'.

	$‘ \prime$	s	i	t	t	i	n	g
$"$								

4.

(5 marks)
How would the following dictionary entries be stored using front coding?
abandon, abandoned, abandoning, abandonment, accommodate, accommodation, accompanied
5.

Decode the following binary sequence encoded in γ-code:
111000111011111101001
6.

Compute the tf-idf weights for the terms car, auto, insurance, and best for each document, given the term frequency (tf) and document frequency (df) information in the following table:

term	df	doc1-tf	doc2-tf	doc3-tf
car	200	1	100	10
auto	20	1	10	1
insurance	2000	100	10	1
best	20,000	100	1000	10

There are a total of 200,000 documents. Assume that the logarithmic variants are used for both the tf and idf values (and the logarithm to base 10 , i.e., $\log _{10}$, is used).
7.
(5 marks)
Build the suffix tree for the string xabxa.
8.
(10 marks)
The following table shows how two human judges rated the relevance of a set of documents to a particular information need $(0=$ nonrelevant, $1=$ relevant $)$.

docID	1	2	3	4	5	6	7	8	9	10	11	12
Judge1	0	0	1	1	1	1	1	1	0	0	0	1
Judge2	0	0	1	1	0	0	0	0	1	1	1	0

Let us assume that you have developed an IR system that for this query returns the set of documents $\{4,5,6,7,8\}$.
(a) Calculate the precision, recall, and F_{1} of your system if a document is considered relevant as long as either judge thinks that it is relevant.
(b) Calculate the precision, recall, and F_{1} of your system if a document is considered relevant only if the two judges agree that it is relevant.
9.
(5 marks)
The vendor of an IR system claims that their system outputs the following result for a TREC query. Is this a believable result? Briefly explain your answer.

Ranking	Recall	Precision
1. d_{8}	10%	80%
2. d_{32}	30%	70%
3. d_{98}	40%	60%
4. d_{124}	30%	50%
5. d_{9}	40%	40%
6. d_{78}	40%	30%
7. d_{73}	40%	20%

10.

(10 marks)
Consider the following document collection that consists of 4 documents.

$d_{1}:$ computer computer
$d_{2}:$ computer science master degree advanced computer computer computer
$d_{3}:$ information technology
$d_{4}:$ computer science information technology

Suppose the query q is 'computer science'. Show how the above documents should be ranked for q, using an unigram language model that mixes the distributions estimated from the specific document and the entire collection with equal weights.
11.
(10 marks)
Consider the following collection of documents that belong to two classes: UK and US.

	docID	docText	class
TRAINING	d_{1}	London, England.	UK
	d_{2}	York, England.	UK
	d_{3}	New England.	US
	d_{4}	Newark, New Jersey.	US
TEST	d_{5}	York. New York.	$?$

Show how the Naive Bayes algorithm (with Laplace smoothing) can be used to train a classifier and predict the class of the test document.
12.
(15 marks)
Suppose that the pair-wise similarity information of a document collection $\left\{d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right\}$ is given by the following table.

d_{1}						
d_{2}	0.7					
d_{3}	0.4	0.8				
d_{4}	0.2	0.1	0.5			
d_{5}	0.0	0.1	0.0	0.6		
d_{6}	0.1	0.4	0.2	0.3	0.4	
	d_{1}	d_{2}	d_{3}	d_{4}	d_{5}	d_{6}

(a) If it is known that $\left\{d_{1}, d_{2}, d_{3}\right\}$ are Facts and $\left\{d_{4}, d_{5}\right\}$ are Myths, how will document d_{6} be classified by the $k \mathrm{NN}$ algorithm with $k=3, k=4$, and $k=5$ respectively? Please use the standard $k \mathrm{NN}$ algorithm but not its weighted variant.
(b) Use the single-link HAC algorithm to cluster these documents, and draw the generated dendrogram. (5 marks)
(c) Use the complete-link HAC algorithm to cluster these documents, and draw the generated dendrogram.
(5 marks)

