Birkbeck
 (University of London)

MSc EXAMINATION
Department of Computer Science and Information Systems

Information Retrieval and Organisation (COIY064H7)

CREDIT VALUE: 15 credits

Date of examination: Friday, 14th June 2019
Duration of paper: 1:30 pm - 3:30 pm (2 hours)

RUBRIC

1. This paper contains ten questions for a total of 100 marks.
2. Students should attempt to answer all of them.
3. This paper is not prior-disclosed.
4. The use of non-programmable electronic calculators is permitted.

Build the positional inverted index for the following document collection. Do not use any token preprocessing or index compression technique. The document frequency and term frequency information should be included in the index.

```
d}\mp@subsup{d}{1}{}: The Annotated Alice
d}\mp@subsup{d}{2}{}\mathrm{ : More Annotated Alice
d}\mp@code{3}\mathrm{ : The Annotated Alice: The Definitive Edition
d4: The Annotated Alice: 150th Anniversary Deluxe Edition
```

2.

(10 marks)
Find out whether drive is closer to divers or to brief according to minimum edit distances. The allowed operations include insertion (with cost 1), deletion (with cost 1), and substitution (with cost 2). Show your work using the edit distance grids.
3.
(10 marks)
Give a brief answer to each of the following questions.
(a) What are the entries for the search term metoo in a permuterm index?
(b) What is the Jaccard coefficient between may and mary using bigrams?
(c) What is the biggest value that can be encoded by a two-byte VB code?
(d) What is the biggest value that can be encoded by a 9 -bit γ-code?
4.
(10 marks)
The following ranked list shows the relevance judgements of the twenty search results that an IR system retrieved for a given query ($\sqrt{ }=$ relevant, $\times=$ nonrelevant $)$.

position	1	2	3	4	5	6	7	8	9	10
relevance	$\sqrt{ }$	$\sqrt{ }$	\times	$\sqrt{ }$	\times	\times	\times	$\sqrt{ }$	\times	\times
position	11	12	13	14	15	16	17	18	19	20
relevance	\times	$\sqrt{ }$								

There are five more relevant document in the collection, but the system missed them.
Calculate the following performance measures of the system with respect to this query:
(a) Precision P,
(2 marks)
(b) Recall R,
(c) F_{1} measure,
(d) Precision-Recall Break-Even Point ($P R B E P$),
(e) Mean Average Precision ($M A P$) for this query.
5.
(10 marks)
Consider a fictitious document collection that contains the following two documents.

- d_{1} :Which university is the best university?
- d_{2} : Birkbeck College is the best university!

Suppose the query q is 'best university'. Show how the above documents should be ranked for q, using a unigram language model with Jelinek-Mercer smoothing that mixes the distributions estimated from the specific document (weight $\lambda=0.6$) and the entire collection.
6.
(10 marks)
The following document collection consists of book reviews that are either positive (P) or negative (N).

	docID	docText	class
TRAINING	d_{1}	easy read	P
	d_{2}	easy read funny	P
	d_{3}	hard read	N
	d_{4}	hard read dull	N
	d_{5}	hard hard dull	N
	d_{6}	hard funny	N
TEST	d_{7}	very good read hard read	$?$

Train a classifier for sentiment analysis using the (multinomial) Naive Bayes algorithm (with Laplace smoothing), and then apply it to predict the class of the test document.
7.
(10 marks)
We are given the following corpus where the special symbols $\langle s\rangle$ and $</ s\rangle$ represent the beginning and the end of sentence respectively.

```
<s> cause all of me </s>
<s> loves all of you </s>
<s> give your all to me </s>
<s> i will give my all to you </s>
```

(a) What are the probability estimations P (your|all to) and P (you|all to) in a trigram language model (without smoothing)?
(b) What is the probability of the following sentence computed using a bigram language model (with Laplace smoothing)?

```
<s> all of you </s>
```

8.

(10 marks)
The following table shows a simplified term-term co-occurrence matrix.

	black	white	red
comedy	4	1	1
action	0	0	2
horror	1	2	0

(a) Is comedy more similar to action or horror, according to the cosine similarity (based on the raw counts in the table)?
(5 marks)
(b) Is horror more similar to black or white, according to the Positive Pointwise-Mutual-Information (PPMI)?
(5 marks)
9.
(10 marks)
Give a brief answer to each of the following questions.
(a) What is the distributional hypothesis in linguistics?
(b) Why do dense word vectors usually work better than sparse word vectors in NLP tasks?
(3 marks)
(c) Use skip-gram with negative sampling (SGNS) to generate training examples for the target word $t=$ "eggs" in the following sentence, with the context window length $L= \pm 2$ and the ratio of negative examples to positive examples $k=1.5$.
"A full English breakfast typically includes bacon, sausages, eggs and a beverage such as coffee or tea."
(5 marks)
10.
(10 marks)
Give a brief answer to each of the following questions.
(a) Consider a neural unit with just one input $x=-1$.

What will be its output if the activation function is sigmoid ?
What will be its output if the activation function is ReLU?
Tip: $e \approx 2.72$.
(b) What are the advantages and disadvantages of neural language models in comparison with traditional n-gram language models?
(c) Label the following sentence using the IOB encoding for named entity recognition with two entity types: ORG (organisation) and LOC (location).
"Blue Prism has offices in London, Paris, and New York etc."
(4 marks)

