

Extensions of the k Nearest Neighbour Methods for Classification Problems

Zacharias Voulgaris and George D. Magoulas

University of London

School of Computer Science and Information Systems, Birkbeck College

United Kingdom

{zacharias, gmagoulas}@dcs.bbk.ac.uk

ABSTRACT

The k Nearest Neighbour (kNN) method is a widely used

technique which has found several applications in

clustering and classification. In this paper, we focus on

classification problems and we propose modifications of

the nearest neighbour method that exploit information

from the structure of a dataset. The results of our

experiments using datasets from the UCI repository

demonstrate that the classifiers produced perform

generally better than the classic kNN and are more

reliable, without being significantly slower.

KEY WORDS

Nearest neighbour classifier, kNN, classification, pattern

recognition, discernibility.

1. Introduction

The k Nearest Neighbour (kNN) is one of the most

commonly used methods for pattern recognition [1], and

has been applied in a variety of cases [2, 3, 4]. Its

simplicity and relatively high convergence speed make it

a popular choice. However, in some applications, it may

fail to produce adequate results [5], whilst in others its

operation may render impractical [1]. Yet, the fact that it

has only one parameter, the number of neighbours used

(k), makes it easy to fine-tune to a variety of situations. Its

main process consists of the following steps: given a set

of N points (training set), whose class labels are known,

classify a set of n points (testing set) into the same set of

classes by examining the k closest points around each

point of the testing set and by applying the majority vote

scheme.

This process has a few inherent problems, which is why

researchers have proposed different extensions of the

kNN [1, 2, 3, 4, 5, 6, 7, 8], or even ensemble formulations

of kNN classifiers [9]. Most of these approaches have

exhibited some interesting and quite promising results and

have motivated further research on improving the kNN

method.

The contribution of this paper lies in proposing variants of

kNN that are eminently suitable for classification

problems, as they exploit information inherent in the data

sets, such as the dataset structure. These proposed

methods are based on new concepts, which are described

briefly in this paper, and their potential is numerically

confirmed through experiments using datasets of the UCI

repository. The paper also proposes and evaluates

measures for assessing the performance of the proposed

methods.

The rest of the paper is structured as follows. The next

section reviews some of the pertinent literature on k-NN

extensions, pinpointing their most promising ideas and

their drawbacks. Section 2 also introduces some concepts

for evaluating the classifiers. In section 3, our proposed

variations of kNN are presented and discussed. The

results of experiments carried out on these classifiers, as

well as on kNN, are presented in section 4. Lastly, in

section 5 the findings on the methods’ performance are

discussed and conclusions stemming from all this research

are presented.

2. Background

Although the kNN method when used in classification

problems is quite fast, it is often impeded by the size of

certain datasets, which is why some researchers have

focused on improving its speed. SMART-TV for instance

[2] was designed to deal with datasets of high

dimensionality by transforming them into a single-

dimensional feature space. A similar approach is shared in

[3] for spatial data, where this method works best [2, 6].

Yet, these approaches concentrate on high speed mainly

and often fail to achieve exceptionally good accuracy rate

unless they are applied on particular problems, such as

spatial datasets [3].

Other approaches involve feature selection methods [5].

These methods appear to be promising and are partly

similar to one of kNN variations we propose later in this

paper. Yet, the methods described in the literature are not

always very fast, since it appears to be a trade-off between

performance and speed [5].

Changing the way distance is dealt with, in a fundamental

level, is an interesting alternative which can improve

speed considerably, without significant reductions in

accuracy rate [1]. When dealing with complex problems

this can be quite fruitful [4], yet these methods appear to

be rather cumbersome when applied to other simpler

datasets.

Often it is more efficient to combine different classifiers,

either by forming a low-level mixture [7] or by building

an ensemble [9]. In the first case, it becomes apparent that

changes in the structure of the kNN may be essential in

order to improve its performance. This idea has triggered

our interest in developing new types of kNN-based

classifiers, like the ones described later on. In the second

case, a creation of uncorrelated classifier is attempted, as

negatively correlated classifiers in an ensemble seem to

improve the accuracy rate of the whole. Yet, the results

although interesting, denote that kNN-based approaches

still require much improvement if they are to be used in

ensembles to target various classes of problems.

The use of rules in kNN has been researched in [8], where

rules have been used as additional attributes with some

success. However, in many datasets the creation of rules

may be time-consuming and even computationally

expensive. Also, in datasets of high dimensionality, the

additional cost could make the classification very slow

and therefore inefficient.

Another method encountered in the literature questions

the efficiency of the voting scheme of kNN [10], and

proposes an alternative measure for determining how each

class is related to a test point. This approach is taken one

step further in some of the kNN variations proposed in

this paper, since the use of only one measure (distance) to

assess the relationship to a class is often insufficient.

Of the methods described above, [10] goes beyond the

simple counting of neighbours by evaluating them as well.

We share this philosophy and in this paper we bring

forward some kNN-based alternatives, which either assign

a quality index to each element of the dataset, or a

different k value. Also, similarly to [5], we introduce a

classifier that makes use of different weights for the

various features of the dataset. However, this is done in a

fast and quite efficient way.

Since the methods we propose in this paper might be used

in ensemble formulations we discuss below two measures

that are used later on in our experiments to estimate the

performance of the classifiers produced and can provide

insight on the performance of these methods in ensemble

formulations. The first one yields a sign of how “certain”

the classifiers are for each classification performed and is

called degree of certainty, and the second one measures

how related the certainty of the classification is with the

correctness of it, and is called net reliability.

2.1 Degree of Certainty

The Degree of Certainty is a generalisation of the

Certainty Factor (CF), which according to [11] is defined

for a type of classifier as in Eq. 3.1:

,

)(

)(
#

1

∑
=

=
classesof

c

i

cvotefinal

ivotefinal
CF

(2.1)

where i denotes the i-th classified and c the class number.

By substituting final vote(c) for the classification score of

class, and final vote(i) for max(final vote), we obtain the

Degree of Certainty (DC), an index of assuredness which

is compatible with all types of classifiers (Eq. 3.2). This

measure yields information about how confident a

classifier is for a particular classification and is in the

form of a vector.

,

)(

)max(
#

1

∑
=

=
classesof

c

i

cscoretionclassifica

scoretionclassifica
DC

(2.2)

where i denotes the i-th pattern classified, c the class

number and classification_score is the score determining

the classification output of the classifier.

2.2 Net Reliability

Net Reliability (NR) is a measure, primarily developed for

evaluating how trustworthy the Degree of Certainty of a

classifier is. This is because it has been observed that

there are cases where a classifier has high DC for a

classification which later proves to be wrong, while a low

DC is yielded for a classification which is later found to

be correct. In other words, it is similar to a correlation

measure between Accuracy and DC. It takes values in the

interval [-1, 1] and is calculated by Eq. (3.3). Apparently,

the higher the Net Reliability of classifier is, the better for

the classifier (usually anything positive is good).

()[] ,12
1

1

∑
=

⋅−=
n

i

ii DCyv
n

NR

(2.3)

where v is the classification validity vector (a binary

vector depicting the correct classifications as 1 and the

wrong ones as 0), Dcy the Degree of Certainty vector, i

denotes the pattern classified, and n is the total number of

elements in the test set.

Since NR greatly depends on the classifier as well as on

the dataset, it is often useful to calculate it every time and

to regard it as a significant measure of its performance, if

we are to make use of the DC of the classifier.

3. Classification Approaches Based on kNN

3.1 The Density Based kNN Classifier – DB-kNN

As the mere counting of the neighbours appears to be

insufficient for determining the class of a test element

[10], we altered the kNN classifier in a way that another

factor would be taken into account, namely that of

density. In our work this is defined by the name Structural

Density as it reveals information about the structure of a

dataset and is inspired from physics.

Structural Density (SD) is defined as the number of points

in the neighbourhood of an element over the volume of

this neighbourhood. The parameter involved is that of the

radius (r) defining the neighbourhood, which is

determined as follows. First, we calculate the density of

all the elements as a function of r and the average density

of the whole set (as the total number of elements over the

total volume of the dataset, something irrelevant to r). We

then search for a value of r such that the mean of the

individual densities is equal to the average density

calculated earlier.

The Density Based kNN (DB-kNN) classifier has been

created by taking into account the structural density

concept for evaluating the significance of each neighbour,

along with the distances. Initially the densities of all the

elements are computed for each one of the classes of the

dataset. Then, they are normalised to [0, 1] since the

relative densities appear to have more meaning than the

absolute ones. Based on these densities, each

neighbouring element is assessed regarding its role as

“core” element of its class by measuring its relative

structural density with regard to the class. By dividing it

by its Euclidean distance a score is obtained for each

neighbour. By taking a biased mean (which is influenced

more by the larger numbers) of these scores for each one

of the classes, we end up with q voting scores, where q is

the number of classes. From these final scores the

classification of each test point is derived, as well as the

Degree of Certainty. In the not so common case that the

DC of the classification of a particular test element is

below 0.667 (i.e. the classification is considered

unreliable), the classic kNN method is applied for that

instance.

The DB-kNN provides a new look at the use of the

neighbours in the kNN, because it explores the potential

of evaluating them rather than merely counting them,

which, in our view, is an important step forward. Also, the

distance is used, making the evaluation of the neighbours

more refined.

3.2. The Variable k Nearest Neighbour Classifier – V-

kNN

Since the value of the k parameter often influences the

classification results, sometimes significantly, we devised

another classification algorithm that overcomes this issue.

By making use of the DC concept, it estimates the

optimum k for each classification.

The Variable kNN (V-kNN) classifier works as follows.

First for each one of the training set elements a

classification of it is performed based on various

neighbourhoods. The k value that maximises the DC of

each classification is found. Therefore, for each training

set there corresponds a particular k value which is

considered the best available. Afterwards, for each

unknown element, the nearest neighbour is found and its k

value is assumed (based on the “optimum” k array). Then,

the kNN classifier is applied on that test element, using

that k value. As a concept, this is something similar to one

of the ideas presented in [3].

It is noteworthy that apart from its performance as a

classifier, the V-kNN approach yields some useful

information about the dataset: the average optimum k

value, which for kNN-type classifiers is very useful to

know as it improves their performance, particularly for

the classical kNN classifier. However, for very sparse

datasets the optimum k found may not be valid and the

results may not be better than those of kNN.

3.3. The Weighted kNN Classifier – W-kNN

Similarly to the Density Based kNN classifier, the

Weighted kNN (W-kNN) performs an evaluation but this

time on the features instead of on the patterns. Each

feature is evaluated and assigned a weight based on how

useful this feature is for discerning the classes of the

dataset. To do this a new concept is introduced here,

namely that of the Index of Discernibility.

The Index of Discernibility (ID) is a measure developed

for assessing how easily distinguishable the classes of a

dataset are. Originally we discerned classes using boxes

containing them, but this appeared to be non-sensitive to

the class structures and not computationally effective. In

this version of the Index of Discernibility we make use of

(hyper)spheres; this attempt assumes a fixed radius

around each element of the dataset, which corresponds to

the average distance between this and the rest of the

elements of that class. Note that the radius depends on the

class structure, so elements belonging to different classes

may have different radii. Once the radius of an element is

established, elements of the same class as the examined

element that belong to its (hyper)sphere are identified and

counted. The discernibility of that element is calculated

by dividing the number of these elements by the number

of total elements in the (hyper)sphere (see Figure 1). The

Index of Discernibility of the whole dataset is calculated

as the number of elements having discernibility higher

than 0.5 divided by the total number of elements.

The Index of Discernibility is also used for evaluating

individual features by applying it on single dimensions of

the dataset.

Figure 1 – Illustration of the Index of Discernibility for a simple

dataset with only two features, X1 and X2. In this example, the

discernibility of the element in the centre of circle A is ID1 = 2 /

2 = 1, that of the element in the centre of circle B is ID2 = 1 / 2

= 0.5, while that of the element in the centre of circle C is ID3 =

0 / 3 = 0.

The W-kNN classifier works as follows. First each one of

the features of the training set are evaluated using the ID.

The weights are then obtained by normalising the IDs.

Lastly, the weights are applied on both the training and

the testing set and the kNN classifier operates on the now

transformed dataset.

3.4. The Class Based kNN Classifier – CB-kNN

The Class Based kNN (CB-kNN) is somewhat different as

a kNN extension. It was developed because often the

datasets are unbalanced as regards their class structure, so

it may be the case that one class has too few elements to

“win” the vote of a classification of the kNN classifier.

The CB-kNN algorithm deals with these datasets working

in the following way. For every test element, the k nearest

elements of each class are taken. The value of k is

automatically selected by the classifier, so as to maximise

the DC of the classification. Afterwards, the harmonic

mean of the distances of these neighbours is calculated (so

that it is not influenced so much by the most distant

elements). Finally, these means are compared and the

class yielding the lowest value is chosen for the

classification.

3.5. The Discernibility kNN Classifier – D-kNN

Inspired by the W-kNN method, we decided to make use

of the discernibility concept once again. This time we

devised an algorithm similar in structure to the original

kNN extension of the DB-kNN. The aim was to make an

algorithm that is quite fast, without losing in accuracy.

Similarly to DB-kNN, the Discernibility kNN (D-kNN)

takes into account the distance of each neighbour. Yet,

instead of using the structural density it takes the

discernibility of each element (through which the Index of

Discernibility is computed in other cases). By dividing the

discernibility by the distance, a score is produced, for

each one of the neighbours. Then, the scores for each

class are averaged to produce one classification score for

each one of the classes. The class yielding the highest

classification score is selected for the classification.

4. Experimental Results

4.1 Description of the Experiments

The experiments carried out included 50 rounds of 10-

fold cross-validation (500 classifications altogether, for

each one of the classifiers). They were performed on 6

datasets obtained from the UCI repository [12]. The

characteristics of these datasets can be seen in Table 1.

The classifiers that required a k value used the one shown

at the rightmost column of the table.

Table 1 – Characteristics of the datasets used in the experiments. K*

denotes the “optimum” k calculated by the Variable k Nearest Neighbour

algorithm.

4.2 Results

The performance of the kNN-based classifiers was

evaluated using the Accuracy Rate and the Net Reliability

(discussed in section 2.2). Also, the average CPU time of

the training part of the classification was taken into

account. For each one of the datasets a series of

experiments took place and based on the above criteria the

winner, i.e. the best available classifier, was found. These

results are shown in Table 2.

Table 2 – Winners based on average performance over the 50 rounds.

The winning performance metric is shown inside brackets. The Net

Reliability is calculated by means of the classification and the Degree of

Certainty vectors at the end of each experiment.
Afterwards, a one-to-one comparison was made for each

pair of classifiers, showing how many times (rounds) one

Da ta set Chara cterist ics

Na me Att ributes Pat te rns K*

Bupa Liver 6 345 7

Pima Indians 8 768 6

Breast Cancer W. 9 683 2
Heart Disease 13 270 6

Vehicle 18 846 5

Boston Housing 13 506 6

classifier outperformed the other. Then these scores were

added up for each classifier. The final sum revealed the

relative performance of each classifier, shown in Table 3.

Table 3 – Winners based on the relative performance, pairwise, over 50

rounds. The numbers in brackets show the sum of the times the winning

classifier was better than the others in terms of a particular performance

measure, for each dataset.

In is noteworthy that in all of the six datasets, kNN was

outperformed by one of the variations introduced in this

paper. Also, the only criterion where it actually performed

well was speed, since it required no training.

5. Conclusions and Discussion

In this paper, an investigation on extensions of the kNN

method was conducted. Our approach which uses

properties of the dataset led to the development of

effective modifications of the kNN method for

classification problems. The proposed kNN variants were

tested in classification problems from the UCI repository.

Based on the experiments carried out, the DB-kNN

method worked much slower than kNN due to the

structural density calculation. However, its performance

was generally better than that of kNN.

The V-kNN classifier was very fast (often the fastest of

all) and generally performed better than kNN.

The W-kNN method was exceptionally fast, since the

operations required for computing and applying the

weights are very simple and without any complications.

Its performance is generally better than that of kNN and

the CPU time required is minimal for various values of k.

With regards to the CB-kNN classifier, the large number

of computations involved in the process makes the overall

CPU time naturally longer than that of the other

classifiers. Yet, it outperforms kNN significantly, as it

was the most accurate classifier in three of the datasets.

The D-kNN classifier achieved its aim to a great extent as

it was quite fast (though not the fastest), while at the same

time it generally outperformed kNN and many of the

other kNN extensions. Moreover, it proved to be quite

reliable (in terms of Net Reliability).

Summing up, all of the introduced classifiers seem to

have a good performance overall, though most of them

excel in one or two datasets. Also, even though they are

all slower than kNN since they require a training phase,

they are generally quite reliable in terms of Net

Reliability. Our future work involves further testing at a

larger scale to fully investigate the advantages of the

proposed methods and identify their limitations.

Acknowledgements

The authors would like to thank Prof. Boris Mirkin for his

valuable suggestions during the initial stages of this paper,

as well as the insightful supervision and guidance he

provided in the experiments involved in this work.

References

[1] Moreno-Seco, F., Mico, L. and Oncina, J. A

Modification of the LAESA Algorithm for

Approximated k-NN Classification. Pattern

Recognition Letters 24 (2003), pp. 47–53

[2] Abidin, T. and Perrizo, W. SMART-TV: A Fast and

Scalable Nearest Neighbor Based Classifier for Data

Mining. Proceedings of ACM SAC-06, Dijon, France,

April 23-27, 2006. ACM Press, New York, NY, pp.

536-540

[3] Khan, M., Ding, Q. and Perrizo, W. K-Nearest

Neighbors Classification of Spatial Data Streams

using P-trees. Proceedings of the PAKDD, 2002, pp.

517-528

[4] Yu, K. and Ji, L. Karyotyping of Comparative

Genomic Hybridization Human Metaphases Using

Kernel Nearest-Neighbor Algorithm, Cytometry, 48,

202–208, 2002.

[5] Sotoca J.M., Sanchez J.S., and Pla F, Estimating

Feature Weights for Distance-Based Classification.

Pattern Recognition in Information Systems

PRIS2003, Angers (France), pp.156-166, Ed. ICEIS

PRESS, ISBN: 972-98816-3-4, 2003

[6] Mainar-Ruiz, G. and Juan Carlos Pérez- Cortes

Approximate Nearest Neighbor Search Using a

Single Space-filling Curve and Multiple

Representations of the Data Points. Proc. 18
th

International Conference on Pattern Recognition

(ICPR 2006), 20-24 August 2006, Hong Kong,

China: 502-505

[7] Hendrickx, I. and Antal van den Bosch. Maximum-

Entropy Parameter Estimation for the k-nn Modified

Value-Difference Kernel. Proceedings of the 16th

Belgian-Dutch Conference on Artificial Intelligence,

Groningen, The Netherlands, 2004

[8] Antal van den Bosch Feature Transformation Through

Rule Induction: A Case Study with the k-NN

Classifier. In J. Fürnkrantz (Ed.), Proceedings of the

ECML/PKDD 2004 Workshop on Advances in

Inductive Rule Learning, Pisa, Italy, September

2004, pp. 1-16

[9] Domeniconi, C., and Yan, B. On Error Correlation and

Accuracy of Nearest Neighbor Ensemble Classifiers.

Proceedings of the SIAM International Conference

on Data Mining, Newport Beach, California, April

21-23, 2005

[10] Wang, H. and Bell, D. Extended k-Nearest

Neighbours Based on Evidence Theory. The

Computer Journal, Vol. 47 (6) Nov. 2004, pp. 662-

672.

[11] Aydin, T. and Guvenir, H. A. Modeling

Interestingness of Streaming Classification Rules as

a Classification Problem. Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, ISSN 1611-

349 (Online), Volume 3949, 2006

[12] UCI Machine Learning Repository, available on line

at the University of California, Irvine

http://www.ics.uci.edu/~mlearn/MLSum mary.html

