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ABSTRACT 

The k Nearest Neighbour (kNN) method is a widely used 

technique which has found several applications in 

clustering and classification. In this paper, we focus on 

classification problems and we propose modifications of 

the nearest neighbour method that exploit information 

from the structure of a dataset. The results of our 

experiments using datasets from the UCI repository 

demonstrate that the classifiers produced perform 

generally better than the classic kNN and are more 

reliable, without being significantly slower.  
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1.  Introduction 
 

The k Nearest Neighbour (kNN) is one of the most 

commonly used methods for pattern recognition [1], and 

has been applied in a variety of cases [2, 3, 4]. Its 

simplicity and relatively high convergence speed make it 

a popular choice. However, in some applications, it may 

fail to produce adequate results [5], whilst in others its 

operation may render impractical [1]. Yet, the fact that it 

has only one parameter, the number of neighbours used 

(k), makes it easy to fine-tune to a variety of situations. Its 

main process consists of the following steps: given a set 

of N points (training set), whose class labels are known, 

classify a set of n points (testing set) into the same set of 

classes by examining the k closest points around each 

point of the testing set and by applying the majority vote 

scheme. 

 

This process has a few inherent problems, which is why 

researchers have proposed different extensions of the 

kNN [1, 2, 3, 4, 5, 6, 7, 8], or even ensemble formulations 

of kNN classifiers [9]. Most of these approaches have 

exhibited some interesting and quite promising results and 

have motivated further research on improving the kNN 

method. 

 

The contribution of this paper lies in proposing variants of 

kNN that are eminently suitable for classification 

problems, as they exploit information inherent in the data 

sets, such as the dataset structure. These proposed 

methods are based on new concepts, which are described 

briefly in this paper, and their potential is numerically 

confirmed through experiments using datasets of the UCI 

repository. The paper also proposes and evaluates 

measures for assessing the performance of the proposed 

methods. 

 

The rest of the paper is structured as follows. The next  

section reviews some of the pertinent literature on k-NN 

extensions, pinpointing their most promising ideas and 

their drawbacks. Section 2 also introduces some concepts 

for evaluating the classifiers. In section 3, our proposed 

variations of kNN are presented and discussed. The 

results of experiments carried out on these classifiers, as 

well as on kNN, are presented in section 4. Lastly, in 

section 5 the findings on the methods’ performance are 

discussed and conclusions stemming from all this research 

are presented. 

 

 

2.  Background 

 
Although the kNN method when used in classification 

problems is quite fast, it is often impeded by the size of 

certain datasets, which is why some researchers have 

focused on improving its speed. SMART-TV for instance 

[2] was designed to deal with datasets of high 

dimensionality by transforming them into a single-

dimensional feature space. A similar approach is shared in 

[3] for spatial data, where this method works best [2, 6]. 

Yet, these approaches concentrate on high speed mainly 

and often fail to achieve exceptionally good accuracy rate 

unless they are applied on particular problems, such as 

spatial datasets [3]. 

 
Other approaches involve feature selection methods [5]. 

These methods appear to be promising and are partly 

similar to one of kNN variations we propose later in this 

paper. Yet, the methods described in the literature are not 



always very fast, since it appears to be a trade-off between 

performance and speed [5]. 

 
Changing the way distance is dealt with, in a fundamental 

level, is an interesting alternative which can improve 

speed considerably, without significant reductions in 

accuracy rate [1]. When dealing with complex problems 

this can be quite fruitful [4], yet these methods appear to 

be rather cumbersome when applied to other simpler 

datasets. 

 
Often it is more efficient to combine different classifiers, 

either by forming a low-level mixture [7] or by building 

an ensemble [9]. In the first case, it becomes apparent that 

changes in the structure of the kNN may be essential in 

order to improve its performance. This idea has triggered 

our interest in developing new types of kNN-based 

classifiers, like the ones described later on. In the second 

case, a creation of uncorrelated classifier is attempted, as 

negatively correlated classifiers in an ensemble seem to 

improve the accuracy rate of the whole. Yet, the results 

although interesting, denote that kNN-based approaches 

still require much improvement if they are to be used in 

ensembles to target various classes of problems. 

 
The use of rules in kNN has been researched in [8], where 

rules have been used as additional attributes with some 

success. However, in many datasets the creation of rules 

may be time-consuming and even computationally 

expensive. Also, in datasets of high dimensionality, the 

additional cost could make the classification very slow 

and therefore inefficient. 

 
Another method encountered in the literature questions 

the efficiency of the voting scheme of kNN [10], and 

proposes an alternative measure for determining how each 

class is related to a test point. This approach is taken one 

step further in some of the kNN variations proposed in 

this paper, since the use of only one measure (distance) to 

assess the relationship to a class is often insufficient. 

 
Of the methods described above, [10] goes beyond the 

simple counting of neighbours by evaluating them as well. 

We share this philosophy and in this paper we bring 

forward some kNN-based alternatives, which either assign 

a quality index to each element of the dataset, or a 

different k value. Also, similarly to [5], we introduce a 

classifier that makes use of different weights for the 

various features of the dataset. However, this is done in a 

fast and quite efficient way. 

 
Since the methods we propose in this paper might be used 

in ensemble formulations we discuss below two measures 

that are used later on in our experiments to estimate the 

performance of the classifiers produced and can provide 

insight on the performance of these methods in ensemble 

formulations. The first one yields a sign of how “certain” 

the classifiers are for each classification performed and is 

called degree of certainty, and the second one measures 

how related the certainty of the classification is with the 

correctness of it, and is called net reliability. 

 

2.1 Degree of Certainty 

 

The Degree of Certainty is a generalisation of the 

Certainty Factor (CF), which according to [11] is defined 

for a type of classifier as in Eq. 3.1: 
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where i denotes the i-th classified and c the class number. 

 

By substituting final vote(c) for the classification score of 

class, and final vote(i) for max(final vote), we obtain the 

Degree of Certainty (DC), an index of assuredness which 

is compatible with all types of classifiers (Eq. 3.2). This 

measure yields information about how confident a 

classifier is for a particular classification and is in the 

form of a vector. 
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where i denotes the i-th pattern classified, c the class 

number and classification_score is the score determining 

the classification output of the classifier. 

 

2.2 Net Reliability 

 

Net Reliability (NR) is a measure, primarily developed for 

evaluating how trustworthy the Degree of Certainty of a 

classifier is. This is because it has been observed that 

there are cases where a classifier has high DC for a 

classification which later proves to be wrong, while a low 

DC is yielded for a classification which is later found to 

be correct. In other words, it is similar to a correlation 

measure between Accuracy and DC. It takes values in the 

interval [-1, 1] and is calculated by Eq. (3.3). Apparently, 

the higher the Net Reliability of classifier is, the better for 

the classifier (usually anything positive is good). 
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where v is the classification validity vector (a binary 

vector depicting the correct classifications as 1 and the 

wrong ones as 0), Dcy the Degree of Certainty vector, i 

denotes the pattern classified, and n is the total number of 

elements in the test set. 

 

Since NR greatly depends on the classifier as well as on 

the dataset, it is often useful to calculate it every time and 



to regard it as a significant measure of its performance, if 

we are to make use of the DC of the classifier. 

 

 

3. Classification Approaches Based on kNN 
 

3.1 The Density Based kNN Classifier – DB-kNN 

 

As the mere counting of the neighbours appears to be 

insufficient for determining the class of a test element 

[10], we altered the kNN classifier in a way that another 

factor would be taken into account, namely that of 

density. In our work this is defined by the name Structural 

Density as it reveals information about the structure of a 

dataset and is inspired from physics. 

 

Structural Density (SD) is defined as the number of points 

in the neighbourhood of an element over the volume of 

this neighbourhood. The parameter involved is that of the 

radius (r) defining the neighbourhood, which is 

determined as follows. First, we calculate the density of 

all the elements as a function of r and the average density 

of the whole set (as the total number of elements over the 

total volume of the dataset, something irrelevant to r). We 

then search for a value of r such that the mean of the 

individual densities is equal to the average density 

calculated earlier.  

 

The Density Based kNN (DB-kNN) classifier has been 

created by taking into account the structural density 

concept for evaluating the significance of each neighbour, 

along with the distances. Initially the densities of all the 

elements are computed for each one of the classes of the 

dataset. Then, they are normalised to [0, 1] since the 

relative densities appear to have more meaning than the 

absolute ones. Based on these densities, each 

neighbouring element is assessed regarding its role as 

“core” element of its class by measuring its relative 

structural density with regard to the class. By dividing it 

by its Euclidean distance a score is obtained for each 

neighbour. By taking a biased mean (which is influenced 

more by the larger numbers) of these scores for each one 

of the classes, we end up with q voting scores, where q is 

the number of classes. From these final scores the 

classification of each test point is derived, as well as the 

Degree of Certainty. In the not so common case that the 

DC of the classification of a particular test element is 

below 0.667 (i.e. the classification is considered 

unreliable), the classic kNN method is applied for that 

instance. 

 

The DB-kNN provides a new look at the use of the 

neighbours in the kNN, because it explores the potential 

of evaluating them rather than merely counting them, 

which, in our view, is an important step forward. Also, the 

distance is used, making the evaluation of the neighbours 

more refined. 

 

3.2. The Variable k Nearest Neighbour Classifier – V-

kNN 

 

Since the value of the k parameter often influences the 

classification results, sometimes significantly, we devised 

another classification algorithm that overcomes this issue. 

By making use of the DC concept, it estimates the 

optimum k for each classification. 

 

The Variable kNN (V-kNN) classifier works as follows. 

First for each one of the training set elements a 

classification of it is performed based on various 

neighbourhoods. The k value that maximises the DC of 

each classification is found. Therefore, for each training 

set there corresponds a particular k value which is 

considered the best available. Afterwards, for each 

unknown element, the nearest neighbour is found and its k 

value is assumed (based on the “optimum” k array). Then, 

the kNN classifier is applied on that test element, using 

that k value. As a concept, this is something similar to one 

of the ideas presented in [3]. 

 
It is noteworthy that apart from its performance as a 

classifier, the V-kNN approach yields some useful 

information about the dataset: the average optimum k 

value, which for kNN-type classifiers is very useful to 

know as it improves their performance, particularly for 

the classical kNN classifier. However, for very sparse 

datasets the optimum k found may not be valid and the 

results may not be better than those of kNN. 

 

3.3. The Weighted kNN Classifier – W-kNN 

 

Similarly to the Density Based kNN classifier, the 

Weighted kNN (W-kNN) performs an evaluation but this 

time on the features instead of on the patterns. Each 

feature is evaluated and assigned a weight based on how 

useful this feature is for discerning the classes of the 

dataset. To do this a new concept is introduced here, 

namely that of the Index of Discernibility. 

 

The Index of Discernibility (ID) is a measure developed 

for assessing how easily distinguishable the classes of a 

dataset are. Originally we discerned classes using boxes 

containing them, but this appeared to be non-sensitive to 

the class structures and not computationally effective. In 

this version of the Index of Discernibility we make use of 

(hyper)spheres; this attempt assumes a fixed radius 

around each element of the dataset, which corresponds to 

the average distance between this and the rest of the 

elements of that class. Note that the radius depends on the 

class structure, so elements belonging to different classes 

may have different radii. Once the radius of an element is 

established, elements of the same class as the examined 

element that belong to its (hyper)sphere are identified and 

counted. The discernibility of that element is calculated 

by dividing the number of these elements by the number 

of total elements in the (hyper)sphere (see Figure 1). The 

Index of Discernibility of the whole dataset is calculated 



as the number of elements having discernibility higher 

than 0.5 divided by the total number of elements. 

 

The Index of Discernibility is also used for evaluating 

individual features by applying it on single dimensions of 

the dataset. 

 

 
Figure 1 – Illustration of the Index of Discernibility for a simple 

dataset with only two features, X1 and X2. In this example, the 

discernibility of the element in the centre of circle A is ID1 = 2 / 

2 = 1, that of the element in the centre of circle B is ID2 = 1 / 2 

= 0.5, while that of the element in the centre of circle C is ID3 = 

0 / 3 = 0. 

 

The W-kNN classifier works as follows. First each one of 

the features of the training set are evaluated using the ID. 

The weights are then obtained by normalising the IDs. 

Lastly, the weights are applied on both the training and 

the testing set and the kNN classifier operates on the now 

transformed dataset. 

 

3.4. The Class Based kNN Classifier – CB-kNN 

 

The Class Based kNN (CB-kNN) is somewhat different as 

a kNN extension. It was developed because often the 

datasets are unbalanced as regards their class structure, so 

it may be the case that one class has too few elements to 

“win” the vote of a classification of the kNN classifier.  

 

The CB-kNN algorithm deals with these datasets working  

in the following way. For every test element, the k nearest 

elements of each class are taken. The value of k is 

automatically selected by the classifier, so as to maximise 

the DC of the classification. Afterwards, the harmonic 

mean of the distances of these neighbours is calculated (so 

that it is not influenced so much by the most distant 

elements). Finally, these means are compared and the 

class yielding the lowest value is chosen for the 

classification.  

 

3.5. The Discernibility kNN Classifier – D-kNN 

 

Inspired by the W-kNN method, we decided to make use 

of the discernibility concept once again. This time we 

devised an algorithm similar in structure to the original 

kNN extension of the DB-kNN. The aim was to make an 

algorithm that is quite fast, without losing in accuracy. 

 

Similarly to DB-kNN, the Discernibility kNN (D-kNN) 

takes into account the distance of each neighbour. Yet, 

instead of using the structural density it takes the 

discernibility of each element (through which the Index of 

Discernibility is computed in other cases). By dividing the 

discernibility by the distance, a score is produced, for 

each one of the neighbours. Then, the scores for each 

class are averaged to produce one classification score for 

each one of the classes. The class yielding the highest 

classification score is selected for the classification. 

 

 

4. Experimental Results 
 

4.1 Description of the Experiments 

 

The experiments carried out included 50 rounds of 10-

fold cross-validation (500 classifications altogether, for 

each one of the classifiers). They were performed on 6 

datasets obtained from the UCI repository [12]. The 

characteristics of these datasets can be seen in Table 1. 

The classifiers that required a k value used the one shown 

at the rightmost column of the table. 

 

 
Table 1 – Characteristics of the datasets used in the experiments. K* 

denotes the “optimum” k calculated by the Variable k Nearest Neighbour 

algorithm. 

 

4.2 Results 

 

The performance of the kNN-based classifiers was 

evaluated using the Accuracy Rate and the Net Reliability 

(discussed in section 2.2). Also, the average CPU time of 

the training part of the classification was taken into 

account. For each one of the datasets a series of 

experiments took place and based on the above criteria the 

winner, i.e. the best available classifier, was found. These 

results are shown in Table 2. 

 

 
Table 2 – Winners based on average performance over the 50 rounds. 

The winning performance metric is shown inside brackets. The Net 

Reliability is calculated by means of the classification and the Degree of 

Certainty vectors at the end of each experiment. 
Afterwards, a one-to-one comparison was made for each 

pair of classifiers, showing how many times (rounds) one 

Da ta set  Chara cterist ics

Na me Att ributes Pat te rns K*

Bupa Liver 6 345 7

Pima Indians 8 768 6

Breast Cancer W. 9 683 2
Heart  Disease 13 270 6

Vehicle 18 846 5

Boston Housing 13 506 6



classifier outperformed the other. Then these scores were 

added up for each classifier. The final sum revealed the 

relative performance of each classifier, shown in Table 3. 

 

 
Table 3 – Winners based on the relative performance, pairwise, over 50 

rounds. The numbers in brackets show the sum of the times the winning 

classifier was better than the others in terms of a particular performance 

measure, for each dataset. 

 

In is noteworthy that in all of the six datasets, kNN was 

outperformed by one of the variations introduced in this 

paper. Also, the only criterion where it actually performed 

well was speed, since it required no training. 

 

 

5.  Conclusions and Discussion  
 

In this paper, an investigation on extensions of the kNN 

method was conducted. Our approach which uses 

properties of the dataset led to the development of 

effective modifications of the kNN method for 

classification problems. The proposed kNN variants were 

tested in classification problems from the UCI repository.  

 

Based on the experiments carried out, the DB-kNN 

method worked much slower than kNN due to the 

structural density calculation. However, its performance 

was generally better than that of kNN. 

 

The V-kNN classifier was very fast (often the fastest of 

all) and generally performed better than kNN.  

 

The W-kNN method was exceptionally fast, since the 

operations required for computing and applying the 

weights are very simple and without any complications. 

Its performance is generally better than that of kNN and 

the CPU time required is minimal for various values of k.  

 

With regards to the CB-kNN classifier, the large number 

of computations involved in the process makes the overall 

CPU time naturally longer than that of the other 

classifiers. Yet, it outperforms kNN significantly, as it 

was the most accurate classifier in three of the datasets. 

 

The D-kNN classifier achieved its aim to a great extent as 

it was quite fast (though not the fastest), while at the same 

time it generally outperformed kNN and many of the 

other kNN extensions. Moreover, it proved to be quite 

reliable (in terms of Net Reliability). 

 

Summing up, all of the introduced classifiers seem to 

have a good performance overall, though most of them 

excel in one or two datasets. Also, even though they are 

all slower than kNN since they require a training phase, 

they are generally quite reliable in terms of Net 

Reliability. Our future work involves further testing at a 

larger scale to fully investigate the advantages of the 

proposed methods and identify their limitations. 
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