
Navigating the World-Wide-Web

Mark Levene and Richard Wheeldon

School of Computer Science and Information Systems
Birkbeck University of London
Malet Street, London, WC1E 7HX, U.K.
email: {mark,richard}@dcs.bbk.ac.uk

Summary. Navigation (colloquially known as “surfing”) is the activity of following
links and browsing web pages. This is a time intensive activity engaging all web users
seeking information. We often get “lost in hyperspace” when we lose the context
in which we are browsing, giving rise to the infamous navigation problem. So, in
this age of information overload we need navigational assistance to help us find
our way through the tangled web of pages and links. Search engines partially solve
this problem by locating relevant documents and finding “good” starting points for
navigation, but more navigational assistance is needed to guide users through and
between web sites.

We present a model for navigation which has enabled us to develop several
tools and algorithms for helping users with their navigation difficulties. Our point
of view is that to help understand how users navigate the web topology we can
attach probabilities to links giving rise to a probabilistic automaton, which can also
be viewed as a Markov chain. These probabilities have two interpretations, namely,
they can denote the proportion of times a user (or a group of users) followed a link,
or alternatively they can denote the relevance (or expected utility) of following a
link.

We present a new metric for measuring the navigational potential of a web
page, called the potential gain. This metric is used to find “good” starting point
for an algorithm we describe in detail, called the Best Trail algorithm, which semi-
automates web navigation by deriving relevant trails given a user query. We also
present techniques we have developed in the area of web usage mining, detailing our
algorithms for analysing records of trails that emerge from either an individual user
or a group of users through navigation within the web graph over a period a time.

We also give historical and current overviews of attempts to address the naviga-
tion problem, and review the various navigation tools available to the web “surfer”.
Finally, we give a brief introduction to navigating within the mobile web, and dis-
cuss new navigation techniques that have arisen from viewing the web as a social
network.
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1 Introduction

We are living in an era of information overload, where finding relevant content
is becoming increasingly difficult. The World-Wide-Web (the web) collates a
massive amount of online information of varying quality, some of which can
found through search engines and some which can only be traced through in-
tensive browsing of web pages coupled with navigation via link following. As an
indication of the massive volume of the web, a recent estimate of its size given
by Murray of Cyveillance during 2000 [49] was 2.1 billion pages, and more re-
cently towards the end of 2001, Google reported that their index contains over
3 billion web documents; see www.google.com/press/pressrel/3billion.html.
We expect that the actual number of web pages is much higher than 3 billion,
as each search engine covers only a fraction of the totality of accessible web
pages [36]. Moreover, this estimate does not include deep web data contained
in databases which are not accessible to search engines [5].

A user seeking information on the web will normally iterate through the
following steps:

(1) Query − the user submits a query to a search engine specifying his/her
goal; normally a query consists of one or more input keywords.

(2) Selection − the user selects one the returned links from the ranked list of
pages presented by the search engine, and browses that web page displayed
as a result of clicking the link.

(3) Navigation (colloquially known as “surfing”) − the user initiates a navi-
gation session, which involves following links highlighted by link text and
browsing the web pages displayed.

(4) Query modification − a navigation session may be interrupted for the
purpose of query modification, when the user decides to reformulate the
original query and resubmit it to the search engine. In this case the user
returns to step (1).

In other cases the user may go directly to a home page of a web site or
some other starting point, and start navigation by iterating through steps (2)
and (3).

Behind each query to a global search engine there is an information need,
which according to Broder [11] can be classified into three types:

(1) Informational − when the intent is to acquire some information presumed
to be present in one or more web pages.

(2) Navigational − when the intent is to find a particular site from which the
user can start “surfing”.

(3) Transactional − when the intent is to perform some activity which is
mediated by a web site, for example online shopping.

Depending on the specification of the query and the quality of the search
engine, the user issuing an informational or transactional query may satisfy
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his/her information need with minimal navigation and query modification.
For example, if the user is interested in a particular paper by a given au-
thor, he/she may find the paper directly through an informational query such
as “bush as we may think”. As an example of a transactional query, the
keywords “bargains online bookshop”, would point the user towards online
bookshops where further interaction with the user will take place within the
online bookshop rather than with the global search engine. In this case the
user will probably interact with a local search engine and may have to navi-
gate within the web site to find the information needed. As an example of a
navigational query, the user may wish find Tim Berners-Lee’s keynote address
in the WWW2002 conference by issuing the query, “www2002 conference”,
and then following the appropriate links to the desired information. In this
case the effort the user needs to expend to find the keynote address depends on
two factors: (1) on the navigational assistance provided within the WWW2002
web site and, (2) the navigational competence of the user in picking up the
available navigation cues within the WWW2002 web site. Although Broder’s
taxonomy was devised with global search in mind, it is also relevant for search
within medium to large web sites, with the user’s starting point often being
the home page of the site.

Here we will limit ourselves to step (3) of the information seeking process,
i.e. the navigation step, which is not directly supported by search engines.
Although search engines can provide a user with “good” web pages for starting
a navigation session, once the user is “surfing” the search engine provides no
additional support to assist the user in realising his/her goal. If the navigation
process is unsuccessful the user may opt to modify the query through step (4)
or go back to a previous page and choose a different link to follow.

It may be argued that it is not within the scope of search engines to
provide navigational assistance and that firstly, the browser should supply
some navigation tools, and secondly, web sites should aid users navigating
within them. To some degree this is a valid argument (see Section 5) but
we take the view that search engines can give help by providing contextual
information in the form of trails, see Section 7. The notion of a trail, inspired
by Bush’s vision [14], is defined as a sequence of links which may be followed
by the user at step (3) of the information seeking process. Thus navigation is
the process enacted when following a trail of information, where the value of
the trail as a whole is, in general, greater than the individual values of pages
on the trail. We believe that trails should be first-class objects in the web,
in addition to pages and links which are considered to be the basic building
blocks of any hypertext [51].

Providing navigational support in the web, and, in general, in any hy-
pertext, is important due to the infamous navigation problem, whereby users
become “lost in hyperspace” [51], meaning that they become disoriented in
terms of
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• where they are relative to prominent pages such as the home page,
• what they should do next in order to achieve their goal, and
• how they can return to a previously browsed page.

In other words, web “surfers” or, more generally, hypertext readers may
lose the context in which they are browsing and need assistance in finding
their way. In this critical review we will concentrate on ways of tackling the
navigation problem, mainly within the web which is the definitive, existing
global hypertext.

Our starting point will be the presentation of a formal model of hyper-
text and the web, which will provide us with a useful reference point; see
Section 2. We will then review the field from an historical perspective start-
ing from Bush’s seminal work on the memex [14], through Nelson’s Xanadu
project and his vision of a global hypertext [50], culminating in the current
day web invented by Berners-Lee, the current director of the World-Wide-Web
Consortium which is most influential in directing for the evolution of the web
[6]. Following that we will review the navigation problem from a hypertext
perspective, leading to recent web specific proposals for tackling the problem;
see Section 4. We will not ignore recent developments relating to the mobile
web [62], where access to the web is becoming pervasive through a wide variety
of input modalities and computing devices such as voice via mobile phones
and pens via handheld PCs; see Section 9. In Section 10 we will briefly review
recent work, which shows that viewing the web as a social network leads to
new techniques for tackling the navigation problem. Finally, in Section 11 we
list some open problems that warrant further investigation.

We do not attempt to review all recent work in this area as the number of
publications in this area is well beyond a single review; we do note that many
recent contributions in this area can be found on the web.

Our work in recent years has looked at the navigation problem from two
perspectives:

(1) Given a user query, and no other information about the user, is it possible
to semi-automate the navigation process? For a search engine the unit
of information that is manipulated is a single web page. We investigate
the possibility of a trail being the logical unit of information, through
the development of a navigation engine where trails are manipulated as
first-class objects.

(2) Given a (continuous) log of users navigation sessions, is it possible to
provide these users with navigational assistance using web usage mining
techniques? Such assistance should be personalised and have the ability
to suggest users with relevant links to follow.

We review the following solutions we have been developing for the naviga-
tion problem:
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(1) The potential gain, which is a query independent measure of how “good”
a web page is as a starting point for navigation; see Section 6.

(2) The Best Trail algorithm [70, 71], which is an algorithm for finding relevant
and compact trails given a user query; see Section 7.

(3) Data mining of user navigation patterns [8, 9, 10] based on a novel model
of trail records which is suitable both for virtual and physical spaces; see
Section 8

2 A Model for Web Navigation

We now introduce the main points of our model via an example. Consider the
web topology shown in Figure 1, where each node is annotated with its URL
(Unified Resource Locator), Ui, which is the unique address of the page Pi

represented by the node. In addition to the URL Ui each node contains the
score which is a measure of the relevance of the page Pi to the input query.
(We assume that users query represents their information need.) Thus, in the
hypertext tradition [51], the web is represented as a labelled directed graph
[13], which we refer to as the web graph.

U1 (1)

U2 (3) U3 (2)

U4 (5) U5 (3)

U6 (6)

Fig. 1. An example web graph
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A trail of information through the web graph consists of a sequence of
pages visited by the user in a navigation session. For example, with respect
to Figure 1 four possible user trails starting from P1 are:

1) P1 → P2,
2) P1 → P3 → P4 → P1 → P2,
3) P1 → P3 → P5 → P6 → P1 and
4) P1 → P3 → P5 → P6 → P3 → P4.

In our formal model we view the web as a finite automaton called a Hy-
pertext Finite Automaton (HFA), whose states are web pages and transitions
are links [38]. In a HFA all states can be initial and final, since we allow navi-
gation to start and finish at any page. The state transitions of the HFA occur
according to the links of the web graph, namely the state transition from state
si to state sj , labelled by symbol (page) Pi, is given by

si
Pi−→ sj

and corresponds to a link from page Pi to page Pj . Our interpretation of this
state transition is that a user browsing Pi decides to follow the link leading
to page Pj . At the end of the navigation session, after some further state
transitions, the user will be in state, say sk, browsing page Pk.

A word that is accepted by a HFA, which we call a trail of the HFA, is a
sequence of pages

P1 → P2 → . . . → Pn

which were browsed during a navigation session, starting at page P1, then
following links according to the state transitions of the HFA and ending at
page Pn. The language accepted by a HFA is the set of trails of the HFA. In
other words, the language accepted by a HFA is the set of all possible trails a
user could follow, which are consistent with the topology of the web graph.

Let xy denote the concatenation of the words x and y. Then a word y is
a subword of a word w if w = xyz for some words x and z, and a word w
is the join of words xy and yz if w = xyz and y is not the empty word. In
[39] we provide a characterisation of the set of languages accepted by a HFA,
as the subset of regular languages closed under the operations of subwords
and join. This result is intuitive in terms of web navigation since subwords
correspond to subtrails, and the join of two words corresponds to the join of
two navigation trails, where the second trail completes the first one.

We advocate the support of trails as first-class objects, and thus define
a keyword-based query language, compatible with the usual input to search
engines, where a trail query is of the form

k1 k2 . . . km

having m ≥ 1 keywords.
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A trail, T , which is accepted by a HFA satisfies a trail query if for all
ki in the query there is a page Pj in T such that ki is a keyword of Pj . We
note that in the special case when the trail has a single web page then all the
keywords must be present in this page, complying with the usual semantics of
search engine query answering. (We will discuss trail scoring mechanisms in
Section 7.) In [38] we show that checking whether a HFA accepts a trail sat-
isfying a trail query is NP-complete. The proof of this result utilises a duality
between propositional linear temporal logic and a subclass of finite automata.
In temporal logic terminology the condition that ki is a keyword of page Pj

is the assertion that “sometimes” ki, viewed as a condition on Pj , is true.
Therein we also defined a more general class of trail queries which supports
the additional temporal operators “nexttime” and “finaltime”, and more gen-
eral Boolean conditions. In the context of the web the natural interpretation
of “time” is “position” within a given trail. So, “sometimes” refers to a page
at some position in the trail, “nexttime” refers to the page at the next position
in the trail, and “finaltime” refers to the page at the last position in the trail.
In [38] we have shown that only for restricted subclasses of trail queries is the
problem of checking, whether a HFA accepts a trail satisfying a trail query,
polynomial-time solvable. Such a subclass essentially prescribes a one-step at
a time navigation session using the “nexttime” operator. Current navigation
practice where links are followed one at a time conforms to this subclass.

These time-complexity results have led us to enrich the semantics of HFA
by attaching probabilities (or equivalently weights) to state transitions result-
ing in Hypertext Probabilistic Automata (HPA) [39]. The transition probabil-
ities in our model can have two interpretations. Firstly they can denote the
proportion of times a user (or a group of users) followed a link, and secondly
they can denote the relevance (or expected utility) of following a link. The first
interpretation will be developed in Section 8 while the second in Section 7.

We further develop the notion of HPA by viewing them as finite ergodic
Markov chains [30]. In order to realise this view we may consider the user’s
home page as an artificial starting point for all navigation sessions and assume
that there is a positive probability (however small) of jumping to any other
relevant web page. We can thus modify Figure 1 by adding to the graph the
user’s home page and links from it to all other pages. The probabilities of these
links are the initial probabilities of the Markov chain. Moreover, we assume
that the user is following links according to the transition probabilities and
when completing a navigation session returns to his/her home page. Thus
we would further modify Figure 1 by adding links from existing pages to
the artificial home page. A probability attached to such a link denotes the
probability of concluding the navigation session after visiting a particular web
page. The resulting HPA can be seen to be an ergodic Markov chain [40]. The
probability of a trail T is thus defined as the product of the initial probability
of the first page of the trail together with the transition probabilities of the
links in the trail.
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As a further example, consider the web graph shown in Figure 2, which
shows a fragment of the School of Computer Science and Information Systems
(SCSIS) web site; see www.dcs.bbk.ac.uk. Note that the logical organisation
of the web site gives rise to many meaningful trails such as

SCSIS → Research → Students → Kevin

which is intuitive and easy to understand.

SCSIS

Alex

Chris George

Staff

Edgar
Kevin

Students

Activities

BSc

MSc

MPhil/PhD

Open Days

Past Events

Seminars

Research

Courses

News

Senate House
Booth

Azy

Fig. 2. SCSIS web graph

In our model we can distinguish between the following different types of
trails according to their mode of creation:

http://www.dcs.bbk.ac.uk�
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(1) authored trails − trails that have been explicitly defined for a given pur-
pose; for example a guided-tour [68, 63] through the research areas of a
Computer Science Department.

(2) derived trails − trails that are derived according to specific criteria; for
example, as a result of query (see Section 7) or following the hierarchy (or
more generally, a suitable ontology) of a web-directory such as Yahoo or
the Open Directory.

(3) emergent trails − trails that are created via repeated navigation and
browsing through a web space (see Section 8). These may be
a) personal trails − trails that arise from an individual’s activity, or
b) collaborative trails − trails that arise from a group activity through

the space.

3 An Historical Perspective of Navigation in Hypertext

The inspiration for hypertext comes from the memex machine proposed by
Bush [14] (see [53] for a collection of essays on Bush and his memex). The
memex is a “sort of mechanized private file and library” which supports “asso-
ciative indexing” and allows navigation whereby “any item may be caused at
will to select immediately and automatically another”. Bush emphasises that
“the process of tying two items together is an important thing”. By repeating
this process of creating links we can form a trail which can be traversed by the
user, in Bush’s words “when numerous items have been thus joined together
to form a trail they can be reviewed in turn”. The motivation for the memex’s
support of trails as first-class objects was that the human mind “operates by
association” and “in accordance to some intricate web of trails carried out by
the cells of the brain”.

Bush also envisaged the “new profession of trailblazers” who create new
trails for other memex users, thus enabling sharing and exchange of knowledge.
The memex was designed as a personal desktop machine, where information is
stored locally on the machine. Trigg [68] emphasises that Bush views the ac-
tivities of creating a new trail and following a trail as being connected. Trails
can be authored by trailblazers based on their experience (these are authored
trails) and can also be created by memex which records all user navigation
sessions (these are emergent trails). In his later writings on the memex, pub-
lished in [53], Bush revisited and extended the memex concept. In particular,
he envisaged that memex could “learn form its own experience” and “refine its
trails”. By this Bush means that memex collects statistics on the trails that
the user follows and “notices” the ones which are most frequently followed.
Oren [54] calls this extended version adaptive memex, stressing that adap-
tation means that trails can be constructed dynamically and given semantic
justification; for example, by giving these new trails meaningful names.
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Engelbart’s NLS system [23] was the first working hypertext system.,
where documents could be linked to other documents and thus groups of
people could work collaboratively. The term “hypertext” was coined by Ted
Nelson in 1965 (see [50]), who considers “a literature” (such as the scientific
literature) to be a system of interconnected writings. The process of referring
to other connected writings, when reading an article or a document, is that
of following links. Nelson’s vision is that of creating a repository of all the
documents that have ever been written thus achieving a universal hypertext.
Nelson views his hypertext system, which he calls Xanadu, as a network of dis-
tributed documents that should be allowed to grow without any size limit and
such that users, each corresponding to a node in the network, may link their
documents to any other documents in the network. Xanadu can be viewed as
a generalised memex system, which is both for private and public use. As with
memex, Xanadu remained a vision which was not fully implemented. Nelson’s
pioneering work in hypertext is materialised to a large degree in the web,
since he also views his system as a means of publishing material by making
it universally available to a wide network of interconnected users. An inter-
esting feature of Xanadu is its copyright mechanism where reuse of material
is done through linking to the portion of material being republished. Berners
Lee turned the vision of hypertext into reality by creating the World-Wide-
Web as we know it today [6] through the invention of the URL, HTTP and
HTML, and more recently through the semantic web and XML.

4 Tackling the Navigation Problem

We have already introduced the navigation problem in Section 1 whereby
users “get lost in hyperspace” while they are “surfing”, as a result of losing
the context in which they are browsing, and are then unsure how to proceed
in terms of satisfying their information need. We will now briefly survey some
recent suggestions for tackling this problem; we will differ discussion of our
proposal via the Best Trail algorithm to Section 7.

Search engine results are not always up-to-date, since they only access in-
formation stored in a static index. The idea of dynamic search is to fetch web
pages online during the search process thus guaranteeing valid and precise in-
formation. The downside of such a dynamic approach is that is does not scale.
An early dynamic search algorithm called fish search [20] uses the metaphor
of a school of fish (search agents) foraging (searching) for food (relevant docu-
ments). When food is found, the fish reproduce and continue looking for food.
In the absence of food or when the water is polluted (poor bandwidth), they
die. An improved algorithm is shark search [26], which uses the vector-space
model [59] to detect relevant documents, and a decay factor between zero and
one to reduce the influence of pages which are further away from the starting
point. The decay factor can also be viewed as taking into account the cost
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to the user of following an additional link [44]. A further improvement in the
shark search algorithm is to give priority to anchor text attached to links and
its broader textual context, in determining the relevance of documents that
may be followed by clicking on a link.

The spread of activation algorithm [56] simulates users’ “surfing” patterns
when they are foraging for relevant information at some web locality, i.e. a
collection of related web pages, in an attempt to understand how “surfers”
allocate their time in pursuit of information. The activation network is rep-
resented as a graph whose nodes are web pages and where each link has a
strength of association attached to it. The strength of association of a link
may indicate textual similarity between pages or, alternatively, usage statis-
tics, i.e. the number of users following the link. The activation level of pages is
represented by a vector which evolves over time and decays at each time step
to reduce the influence of pages according to their distance from an initial set
of activated pages. In [56] the algorithm is used to find textually similar pages
within a locality and the most frequently browsed pages in a web site of home
page visitors.

Related to the above work is that of information foraging by navigation,
i.e. “surfing” along links, and picking up proximal cues, such as snippets of
text, to assess distant content which is only revealed after following one or
more links. The scent of information is the perception of the value and cost
obtained from these proximal cues representing distant content. In [16] various
techniques have been developed to predict information scent based on usage
mining analysis, content and link topology. In particular a technique called
web user flow by information scent has been developed, that simulates agents
navigating through a web site, to better understand how users navigate and to
predict when their information need is met. In this technique the agents have
information needs described by a simple textual description such as “research
groups in the computer science department” and, as in the foraging model,
the scent at a given page is evaluated by comparing the user’s need with
the information scent associated with linked pages. The navigation decisions
based on the information scent are stochastic, so more agents follow higher
scent links. Agents stop “surfing” when they either find a target page or they
have expended a given amount of effort.

Web-Watcher [29] is an automated tour guide for the web. Web-Watcher
accompanies users as they are browsing and suggests to them relevant links to
follow based on its knowledge of users’ information needs. At the beginning of
the tour each user types in some keywords to describe their information need.
Whenever a user follows a link the description of this link, which is initially just
its anchor text, is augmented by the user’s keywords. Thus links accumulate
keywords and Web-Watcher can recommend to a user the the link description
that best matches his/her keywords describing the information need, where
similarity is measured using the vector-space model. A complimentary learning
method used by Web-Watcher is based on reinforcement learning with the
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objective of finding trails through the web site that maximise the amount of
relevant information encountered when traversing the path. More specifically,
the technique is based on Q-learning [65], which chooses a state such that the
discounted sum of future rewards is maximised; in this application the states
are web pages and the reward is the score returned for the web page the user
is browsing, with respect to keywords the user initially specified; again the
score is computed using the vector-space model.

An adaptive agents approach to satisfying a users’ information need, called
Info-Spiders search, was proposed in [47]. Info-Spiders search is an online dy-
namic approach, as is the shark search algorithm, the motivation being that
traditional search is limited by static indexes which are incomplete and often
out of date. In this approach a population of agents navigate across web pages
and make autonomous decisions about which links to follow next. Initially an
information need is specified as a set of keywords along with a set of starting
pages. Each agent is then positioned at one of the starting points and given an
amount of energy that can be consumed. Each agent situated at a page makes
a decision which link to follow based on the current document content, which
is used to estimate the relevance of neighbouring pages that can be reached by
link traversal. An agent performs its decision using a local feed-forward neu-
ral network, which has an input node for each initial keyword and one output
node for the relevance. When an agent moves to the next page by following
a link its energy level is updated and a reward, in the form of additional
energy, is given to the agent if the page reached turns out to be relevant;
the agent incurs a cost each time it accesses a document thereby reducing
its energy level. As in Web-Watcher, Info-Spiders adapts its behaviour using
Q-learning. After each reinforcement step an agent either replicates or dies
according to it energy level. Menczer and Belew [47] conducted several exper-
iments to test Info-Spiders and conclude that their algorithm performs better
than traditional search algorithms such as breadth-first-search and best-first-
search. Info-Spiders is seen to add value to search engines: the search engine
can provide “good” starting points and Info-Spiders can reach fresh pages in
the neighbourhood of the starting points, which may not have been indexed
by the search engine.

In [24] issues of navigation in web topologies are explored in terms of a
viewing graph which is a small subgraph of the hypertext structure in which
the user is currently navigating. Navigability is the property of being able to
find the shortest path to a target node from the node currently being browsed
by making decisions based solely on local information visible at the current
node. This implies that at each node in the viewing graph sufficient infor-
mation must be available to guide the user to the correct target node via
the shortest route. Moreover, the information available at each node must
be compact. Under this definition of navigability, navigation on the web is,
in general, not effective, due to the fact that local information at nodes is
limited. Ways of improving navigation on the web include: organisation of
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information into classification hierarchies and the ability to make local de-
cisions through similarity-based measures between nodes of close proximity.
Examples of classification hierarchies are Yahoo and the Open Directory and
an example of a similarity-based measure, mentioned above, is the similarity
of link text to a user query.

5 Navigation Tools

Here we concentrate on navigation aids that help “surfers” orient themselves
within the graph topology and find their way.

The browser is the component of a hypertext system that helps users
search for and inspect the information they are interested in by graphically
displaying the relevant parts of the topology and by providing contextual and
spatial cues with the use of orientation tools. We have taken a wider view of
the browser than currently implemented web browsers. In an interview (Wired
News, 14 February 2003) Marc Andreessen, one of the founders of Netscape,
said:

“If I had to do it over again, I’d probably show some sort of graphical
representation of a tree, so you could see what path you’re travelling
on and could backtrack. I’d also include thumbnail renderings on the
tree to show where you’d been.”

A simple orientation tool is the link marker which acts as a signpost to tell
the user what links can be immediately followed and what links have recently
been traversed. In the context of HTML, link text is highlighted and should
give accurate information about the page at the other side of the link; so link
text such as click here is meaningless as it does not convey any information
to the user. Another useful orientation tool is the bookmark, allowing readers
to mark a page to which they can return to on demand when feeling lost [7].
All web browsers provide a bookmark facility, which allows users to view the
titles of the web pages on the list, normally through a pull-down menu, and
load any one of these pages into the browser. Although bookmarks are useful,
it has been found that the rate of page addition is much higher than the
rate of page deletion, implying that users have problems in managing their
bookmarks [17]. Readers may, in principle, also mark pages which were already
visited in order to avoid repetition; such marks are called bread crumbs [7]. In
the context of web browsers there is a primitive notion of bread crumbs when
the colour of a link that has been clicked on is changed.

Maps (or overview diagrams) give readers a more global context by display-
ing to them links which are at a further distance than just one link from the
current position. For instance, current web sites often provide a site map to
give visitors an overview of the contents of the site. Maps can be displayed us-
ing a fisheye-view that selects information according to its degree-of-interest,
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which decreases as the page under consideration is further away from the
currently browsed page [67]. An ambitious kind of site map, based on the
fisheye concept, is provided by the hyperbolic browser [35], which allows the
user to dynamically focus on different parts of the web site by using a novel
visualisation technique based on hyperbolic geometry; see www.inxight.com.

A set of tools that aid the construction of maps by performing a struc-
tural analysis of the graph topology is described in [57]. One such tool is an
hierarchical structure that can be imposed on the web graph, where its root is
chosen to be a central node whose distance to other nodes is relatively small.
Another tool creates semantic clusters within the web graph by identifying
strongly connected components of the graph [13]. Landmark nodes are promi-
nent nodes within a web site, or more generally, nodes within the subspace
the user is browsing through. A simple formulae for discovering landmark
nodes in the web graph based on the number of pages that can be reached
from a page or that can reach the page when following at most two links was
proposed by [48]. Once the landmark nodes are known, the context of the
page that the user is currently browsing can be shown by its relationship to
nearby landmark nodes. A survey covering additional metrics based on web
page content and link analysis can be found in [21].

In [32] the activity of user navigation within a hypertext is compared to
the activity of wayfinding through a physical space, where wayfinding is de-
fined as the process used to orient and navigate oneself within a space, the
overall goal of wayfinding being to transport oneself from one place to another
within the space. Both activities, in a virtual space and a physical one, include
user tasks such as being aware of one’s current location, planning a route to
follow and executing the plan. Research into wayfinding in physical spaces is
based upon the assumption of the existence of cognitive maps encoding the
user’s knowledge about the space he/she is navigating through. Such spatial
knowledge can be classified into the representations of: place, route and sur-
vey knowledge, which concerns the spatial layout of the salient places. Various
hypertext tools which aim to help solve the disorientation problem have been
developed which are inspired by the spatial metaphor. These include: differen-
tiation of regions, maps, guided-tours, landmark nodes, fisheye-views, history
lists, history trees and summary boxes.

An orientation tool that has been developed within the hypertext commu-
nity is the guided-tour, which actively guides users through the space being
navigated by suggesting interesting trails that users can follow [68]. One such
system, called Walden’s paths [63], allows teachers to create annotated trails of
web pages for their students to follow and browse. There remains the question
of whether trail creation can be automated, at least partially, as is further in-
vestigated in Section 7. A dynamically created trail which highlights the path
the user has followed within a web site is the navigation bar advocated by
Nielsen [52]. For example,

SCSIS → Research → Activities → Database and Web Technologies Group

http://www.inxight.com�
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would indicate to the visitor the trail he/she has followed within the School’s
web site from the home page to the Database and Web Technologies group
(see Figure 2). By highlighting the navigation history within the web site
the visitor can easily backtrack his/her steps to a previously browsed page.
This idea can be refined by using a side-bar to highlight links which provide
navigation options to the visitor from the current page they are browsing.
One can take this a step further and provide dynamic personalised navigation
cues; see [43].

Two standard navigation tools provided by web browsers are the back
button and the history list. Another simple navigation aid is the home button
which allows users to jump to their home page at any time. The back button
is a stack-based mechanism allowing the user to retrace their trail one page at
a time, and the complimentary forward button returns to the page browsed
before the last invocation of the back button. The history list contains the
sequence of web pages that were browsed by the user and can be accessed
sequentially according to the time browsed or some other criteria such as the
most visited page. Current browsers also provide a search facility over the
history list. The history list is displayed linearly, although in practice web
pages act as branching points, for example users often start navigating from
a home page of a site and take different routes according to their information
need.

Two studies carried out in 1996 [66] and in 1999 [17] investigated how web
“surfers” use the navigation tools provided by Netscape Navigator. Tauscher
and Greenberg [66] found that, by far, the most used navigation tool was the
back button. Other mechanisms such as the forward button and history list
were used infrequently as a percentage of the total number of user actions.
They calculated the recurrence rate as

total number of URLs visited− different number of URLs visited
total number of URLs visited

and discovered that this rate was close to 60%. It was also found that there
is about 40% chance that the next page visited is within the last six pages
visited. Overall the back button is the dominant mechanism used to revisit
pages. It is simple and intuitive to use but inefficient in retrieving distant
pages. The authors also found that the history and bookmarks mechanisms
are used much less that the back button. In a followup study Cockburn and
McKenzie [17] found the recurrence rate to be much higher at about 80% and
that almost all users had one or two pages that they revisited far more often
than others; this could be for example, their home page or their favourite
search engine.

The stack-based behaviour of the back button is incompatible with the
navigation history of the user as the following example shows. Suppose the
user navigates as follows (see Figure 2):
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SCSIS → Staff → Back to SCSIS → Research → Back to SCSIS

where Back to SCSIS indicates the user of the back button. The stack-based
semantics means that Staff is inaccessible to the user through the back button,
since when the user clicked on the back button the first time all pages above
it in the stack were removed. Despite the semantics of the back button being
misunderstood by many users it is still heavily used. Cockburn et al. [18]
conducted a further study evaluating a history-based behaviour of the back
button as opposed to the standard stack-based behaviour; so in the previous
example, with history-based behaviour, a further click on the back button
would bring the user to the Staff page. They concluded that from the users
point of view there was no significant difference between the stack and history
behaviours. Moreover, the history-based behaviour is inefficient in returning
to parent pages from a deeply nested page but for distant navigation tasks it
was highly efficient.

An interesting navigation tool is the toolbar recently introduced by Google,
which can be installed within Microsoft’s Internet Explorer; see http://toolbar.google.com.
It provides the user with various options, allowing the user to access the search
engine directly from the browser, either searching the web as a whole or just
searching within the web site the user is currently at. As long as privacy and
security issues are dealt with, we believe in the potential of adding navigation
tools to the browser.

Web directories such as Yahoo and the Open Directory organise informa-
tion according to a categorisation, so for instance web usability can be found
by navigating the following path in the Open Directory,

Computers → Internet → Web Design and Development → Web Usability

where we find several sub-categories such as accessibility, several related cat-
egories such as human-computer interaction and many web pages which were
manually categorised. (In principle, it is possible to automate, or at least
semi-automate, the categorisation process but this problem is not within the
scope of this chapter; see [61].) Hearst [25] argues that search engines should
incorporate category information into their search results to aid navigation
within web sites. Moreover, to help cut down the number of possible trails
a visitor can follow, the user interface as well as the site’s structure should
reflect the tasks that the visitor is attempting to accomplish. Hearst points to
the potential use of category meta-data to help achieve a better integration
between the user’s information need and the site’s structure by dynamically
determining the appropriate categories for a given query.

6 The Navigation Potential of a Web Page

Although, as far as we know, web search engines weight home pages higher
than other pages, they do not have a general mechanism to take into consid-
eration the navigation potential of web pages. Our aim in this section is to

http://toolbar.google.com�
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propose a metric for finding “good” starting points for web navigation, which
is independent of the user query. Once we have available such a metric we
can weight this information into the user query so that the starting points
will be both relevant and have navigational utility. From now on we will refer
to the navigability measure of a web page as its potential gain. We note that
the application that initially led us to investigate the potential gain was to
provide starting points for the search and navigation algorithm described in
the next section, but we believe that this notion has wider applicability within
the general context of navigation tools.

In the following let the G represent the web graph, G having a set of pages
(or URLs identifying the pages) N and a set of links E. Starting URLs should
satisfy the following criteria:

(1) They should be relevant, i.e. their score with respect to the user’s goal
should be high.

(2) They should be central [13] in the sense that their distance to other pages
is minimal.

(3) They should be connected in the sense that they are able to reach a max-
imum number other pages. (If G is strongly connected, then this clause is
redundant.)

Now, let links(Ui) be a function that returns the collection of links out-
going from Ui. Algorithm 1, given below, computes the potential gain of all the
nodes in the node set, N , of a web graph G. It has two additional parameters:
(i) MAX defining the maximal depth in the breadth-first traversal of the
web graph, and (ii) δ(d) which is a monotonically decreasing function of the
depth d. Two reasonable such functions are the reciprocal function, 1/d, and
the discounting function γd−1, where 0 < γ < 1. The justification for these
functions is that the utility of a page diminishes with the distance of the
page from the starting point. This assumption is consistent with experiments
carried out on web data sets [28, 37].

The algorithm also involves a constant C between 0 and 1, which is the
lower bound potential gain of any pages in N ; we will conveniently take C
to be 1. The algorithms outputs an array, PG, where PG[Ui] is the potential
gain of the URL Ui in N computed to depth MAX ≥ 1.
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Algorithm 1 (Potential Gain(G,MAX, δ))
1. begin
2. for each URL Ui in N
3. PG[Ui] ← C;
4. prev count[Ui] ← 1;
5. end for
6. for d = 1 to MAX
7. for each URL Ui in N
8. cur count[Ui] =

∑
Ukin links(Ui)

prev count[Uk];
9. PG[Ui] ← PG[Ui] + δ(d) · cur count[Ui];
10. end for
11. for each URL Ui in N
12. prev count[Ui] ← cur count[Ui];
13. end for
14. end for
15. return PG;
16. end.

We note that in practice we will need to normalise the potential gain values
as, in principle, they may increase without bound. For the discounting function
we can guarantee convergence as MAX tend to infinity, if the product of γ and
the maximum out-degree of a web page is less than one. On the other hand, for
the reciprocal function no such convergence is guaranteed. The potential gain
of a starting web page can be seen to depend on the number of trails out-going
from the web page, where the value of the trails diminish with distance.We
further note that Algorithm 1 can be described much more concisely using
matrix-vector notation, as:

cur count = G · cur count
PG = PG +

(
δ(d) · cur count

)

where the above equations are iterated MAX times.

A complementary metric to the potential gain is the gain rank, which
measures the likelihood of navigating to a given web page. Its computation
can be obtained by replacing in Algorithm 1, links(Ui) by inlinks(Ui), where
inlinks(Ui) is a function that returns the collection of links going into Ui. It
would be interesting to compare the gain rank with Google’s PageRank metric
[55].

In Table 1 we show the unnormalised potential gain and gain rank values
computed to depth MAX = 100, of the example web graph shown in Figure 2,
using the reciprocal function in the calculation. It can be seen that the home
page of the web graph, i.e. SCSIS, has the highest potential gain within the
web graph, followed by the pages: Research, Students and Staff. On the other
hand, the gain rank of the pages Alex and Edgar have the highest gain rank
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within the web graph indicating that they are reachable through more trails
than other pages.

URL Title Out-degree In-degree Potential Gain Gain Rank

1 SCSIS 7 0 22.0414 1.0000
2 Booth 0 1 1.0000 2.0000
3 Senate House 0 1 1.0000 2.0000
4 Seminars 0 2 1.0000 3.5000
5 News 3 1 4.0000 2.0000
6 Open Days 0 1 1.0000 2.5000
7 Past Events 0 1 1.0000 2.5000
8 Courses 3 1 4.0000 2.0000
9 MSc 0 1 1.0000 2.5000
10 BSc 0 1 1.0000 2.5000
11 MPhil/PhD 0 2 1.0000 4.0000
12 Research 3 1 9.1874 2.0000
13 Activities 0 1 1.0000 2.5000
14 Students 3 1 8.1874 2.5000
15 Azy 0 1 1.0000 2.8333
16 Kevin 0 1 1.0000 2.8333
17 Edgar 1 2 6.1874 17.4999
18 Staff 3 1 8.1874 2.0000
19 Chris 0 1 1.0000 2.5000
20 George 0 1 1.0000 2.5000
21 Alex 1 2 6.1874 17.3117

Table 1. Potential gain and gain rank values for example

7 The Best Trail Algorithm

We present an algorithm for deriving relevant trails from the web graph given a
user query. The algorithm, called the Best Trail, semi-automates navigation by
probabilistically constructing a tree whose most relevant trails are presented
to the user. The algorithm is adaptive in the sense that it dynamically searches
for the preferred trails by mimicking a user navigation session and scoring the
trails as they are expanded according to the topology of the web site.

Prior to presenting the algorithm we discuss the issue of scoring the rele-
vance of trails as first-class objects. As before we let the G represent the web
graph, G having a set of pages (or URLs identifying the pages) N and a set of
links E. Every link connects two pages: its starting page is called the anchor
and its finishing page is called the destination.
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We interpret the score, µ(m) of a web page m in N , as a measure (or
utility) of how relevant m is to the user. In this sense we cater for person-
alisation, and we would expect µ to be different for distinct users. Another
interpretation of µ is that it is query specific and returns the relevance of a
page with respect to a given query, where the query is viewed as representing
the goal of the navigation session. In this interpretation µ can be viewed as
the scoring function of a search engine with respect to a given query. In both
interpretations of µ the user initiating a navigation session would like to max-
imise the relevance (or suitability) of the trail to the query. The relevance of
a trail

T = U1 → U2 → . . . → Un

is realised by its score, which is a function of the scores of the individual
web pages of the trail; we denote the scoring function of a trail by ρ. Five
reasonable scoring functions for a trail are:

1) The average score of the URLs in the trail, i.e.

ρ(T ) = avg(T ) =
µ(U1) + µ(U2) + . . . + µ(Un)

n
.

2) The average score of the distinct URLs in the trail, i.e. for the purpose of
obtaining the scoring of the trail, each URL in the trail is counted only
once. In this case ρ is denoted by avg dist.

3) The sum of the scores of the distinct URLs in the trail divided by the
number of pages in the trail; this scoring function penalises the trail when
a URL is visited more than once. In this case ρ is denoted by sum dist.

4) The sum of the discounted scores of the URLs in the trail, where the
discounted score of Ui, the URL in the ith position in the trail, is the
score of Ui with respect to the query multiplied by γi−1, where 0 < γ < 1
is the discount factor. The discounted score of T is given by

ρ(T ) = discount(T ) =
n∑

i=1

µ(Ui) γi−1.

5) The maximal score of all of the URLs in the trail. In this case ρ is denoted
my max.

We can also combine scoring functions (3) and (4) by discounting in (3)
each URL according to its previous number of occurrences within the trail
(This combination of scoring functions, in addition to sum dist, are the ones
we have used in the navigation system we are developing, which is discussed
towards the end of this section.) We observe that all the trail scoring functions
we have defined are bounded due to the definition of µ and the fact that N
is finite, and as a result an important property of the above trail scoring
functions is that they define convergent sequences.
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We now describe the algorithm assuming one URL as its starting point
although, in general, the algorithm will take as input several starting points
and compute the best trail for each one of them; see the pseudo-code of Algo-
rithm 2 below. Starting from the initial URL the algorithm follows links from
anchor to destination according to the topology of the web, that is, when
an out-link exists from the web page identified by its URL then it may be
traversed by the algorithm.

The algorithm builds a navigation tree whose root node is labelled by the
URL of the starting point. Each time a destination URL is chosen a new
node is added to the navigation tree and is labelled by the destination URL.
Nodes that may be added to the navigation tree as a result of traversing a link
that has not yet been followed from an existing node are called tip nodes (or
simply tips). We also consider the special case when a link has been traversed
to a destination URL and the page associated with this URL has no out-links.
Nodes in the navigation tree which are labelled by such URLs are called sinks,
and are also considered to be tip nodes.

At any given stage of the running of the algorithm each tip node in the
current state of the navigation tree is considered to be a destination of an
anchor of a link to be followed; in the case when the tip node is a sink we can
consider the destination to be the sink itself. The algorithm uses a random
device to choose a tip node to be added to the navigation tree; in the special
case when the tip node is a sink the navigation tree remains unchanged. The
weight that is attached to a tip node for the purpose of the probabilistic choice
is proportional to the score of the trail induced by the tip node, which is the
unique sequence of URLs labelling the nodes in the navigation tree forming a
path from the root node of the tree to the tip node under consideration. (The
exact formula for calculating the probability of a tip node is given below.) We
call the process of adding a tip node to the navigation tree node extension. The
Best Trail algorithm terminates after a prescribed number of node extensions,
each such extension being a single iteration within the algorithm.

The algorithm has two separate stages the first being the exploration stage
and the second being the convergence stage. Each stage comprises a preset
number of iterations. During the exploration stage a tip node is chosen with
probability purely proportional to the score of the trail that it induces. During
the convergence stage we apply a “cooling schedule”, where tip nodes which
induce trails having higher scores are given exponentially higher weights at
each iteration according to the rank of their trails, as determined by their trail
scores, and the number of iterations completed so far in the convergence stage.
A parameter called the discrimination factor, which is a real number strictly
between zero and one, determines the convergence rate. When the algorithm
terminates the best trail is returned, which is the highest ranking trail induced
by the tip nodes of the navigation tree. The convergence of the algorithm to
the absolute best trail is guaranteed provided the number of iterations in both
stages of the algorithm is large enough and the discrimination factor is not
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too low. The Best Trail algorithm can be modified so that the discrimination
factor decreases dynamically during the convergence stage.

We now define the terminology used for the Best Trail algorithm, given a
starting URL, say U , of the current navigation session.

1) The unfolding of G is a possibly infinite tree having root U , resulting
from traversing G starting from U in such a way that each time a URL is
revisited during the traversal of G a duplicate of this URL is added to the
node set of the unfolding of G. Thus duplicates of a URL resulting from
multiple visits result in distinct nodes in the unfolding of G although their
individual scores are identical. (Note that the unfolding of G is finite if
and only if G is acyclic.)

2) A navigation tree having root U is a finite subtree of the unfolding of G.
3) A frontier node of a navigation tree is either

a) a leaf node in the tree, or
b) a node, say m, in the tree associated, say with URL Ui, such that the

set of URLs associated with the successors of m in the navigation tree
is a proper subset of links(Ui), i.e. there is a link in E with anchor
Ui which has not yet been traversed during the current navigation
session.

4) A tip node in a navigation tree is either
a) a node which is associated with a sink in G, i.e. a node whose associ-

ated URL has no successors in G; we call such a tip node a sink node
(we note that in this case the tip node is also a frontier node which is
a leaf), or

b) a node, say m, associated with a successor in G of one of the URLs
associated with a frontier node, say m′, in the navigation tree, such
that m is the destination of a link that has not yet been traversed
from the URL associated with m′.

5) The score of a trail induced by a tip node, say t, is the score of the trail
which is the unique sequence of URLs labelling the nodes in the navigation
tree forming a path from the root node of the tree to t; we overload ρ and
denote this score by ρ(t).

6) The extension of a navigation tree with a one of its tip nodes, which we
call node extension, is done according to the following two cases:
a) if the tip node is a sink node then the navigation tree remains un-

changed, otherwise
b) add a new node and edge to the navigation tree such that the anchor

node of this edge is the parent frontier node of this tip node and
the destination node is the tip node itself. The new node becomes a
frontier node of the extended navigation tree.

Assuming that U1 is the starting URL of the Best Trail algorithm for the
web topology shown in Figure 1, a possible navigation tree after seven node
extensions is given in Figure 3. Each node in the navigation tree is annotated
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with a unique number and with its URL; the tip nodes of the navigation tree
have a shaded boundary. The root of the navigation tree is node 0, which
is labelled by the starting URL U1, and the nodes that were added to the
navigation tree as a result of the seven node extensions are numbered from 1
to 7.

0 : U1

1 : U2 2 : U3

3 : U4 4 : U5

5 : U1 6 : U6

8 : U2 9 : U3 10 : U1 7 : U3

11 : U4 12 : U5

Fig. 3. An example navigation tree

The frontier nodes of the navigation tree are 1, 5, 6 and 7. Node 1 is also
a tip node of the navigation tree since it is a sink. Node 5 is the parent of
two tip nodes, numbered 8 and 9. Node 6 is the parent of a single tip node,
numbered 10. Similarly, node 7 is the parent of two tip nodes, numbered 11
and 12. Table 2 shows the tips, their induced trails and the score of these trails
according to the five trail scoring functions we have defined in Section 2. As
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can be seen in this example, the trail to tip 11 is the highest scoring trail
irrespective of the scoring function used.

TIP INDUCED TRAIL avg avg dist sum dist discount (γ = 0.75) max

1 U1, U2 2.00 2.00 2.00 3.25 3.00
8 U1, U3, U4, U1, U2 2.40 2.75 2.20 6.68 5.00
9 U1, U3, U4, U1, U3 2.20 2.66 1.60 6.37 5.00
10 U1, U3, U5, U6, U1 2.60 3.00 2.40 7.03 6.00
11 U1, U3, U5, U6, U3, U4 3.17 3.40 2.83 8.53 6.00
12 U1, U3, U5, U6, U3, U5 2.83 3.00 2.00 8.06 6.00

Table 2. The trails induced by the tips and their scores

We now define several auxiliary functions and parameters used in the Best
Trail algorithm, given a navigation tree Di and a tip node t of Di.

1) The discrimination factor, denoted by df , is a parameter such that 0 <
df < 1.
Intuitively, df allows us to discriminate between “good” trails and “bad”
trails by reducing the influence of trails which perform badly. Thus during
the convergence stage “better” trails get assigned exponentially higher
probability, taking into account the fact that the longer the history
the more influence “better” trails have. This weighting guarantees that,
asymptotically, the ‘best” trail will eventually have probability one.

2) Iexplore ≥ 0 is the number of iterations during the exploration stage of
the algorithm.

3) Iconverge ≥ 1 is the number of iterations during the convergence stage of
the algorithm.

4) The rank of the trail induced by a tip node tk of Di, denoted by τ(tk), is
the position of ρ(tk) within the set of scores of the trails induced by the
tip nodes t1, t2, . . . , tn, when the scores are arranged in descending order
of magnitude and duplicate scores are removed.

5) The probability of a tip node, t of Di, where α is either 1 or df and j denotes
either an exploration or convergence step, is denoted by P (Di, t, α, j), and
given by

P (Di, t, α, j) =
ρ(t) · ατ(t)j

∑n
k=1 ρ(tk) · ατ(tk)j

,

where {t1, t2, . . . , tn} is the set of tip nodes of Di.
The interpretation of P (Di, t, α, j) is the probability of a tip node t in the
navigation tree Di. We note that when α = 1 then this probability of t is
purely proportional to the the score of the trail it induces.

6) extend(Di, t) returns a navigation tree resulting from the extension of Di

with tip node t.
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7) select(Di, α, j), where α is either 1 or df and j denotes either an explo-
ration or convergence step, returns a tip of Di chosen by a random device
operating according to the probability distribution function P (Di, t, α, j).

8) best(Di) returns the trail with the highest score from the set of trails
induced by the set of tip nodes of Di. (If there is more than one highest
scoring trail choose the shorter one, otherwise choose any one of them
uniformly at random.)

9) overall best({T1, T2, . . . , TM}), where {T1, T2, . . . , TM} is a set of M trails,
returns the highest scoring trail from this set; we call this trail the best
trail. (If there is more than one highest scoring trail choose the shorter
one, otherwise choose any one of them uniformly at random.)

The Best Trail algorithm, whose pseudo-code is given in Algorithm 2, takes
K ≥ 1 starting URLs, U1, U2, . . . , UK , and a parameter M ≥ 1, which specifies
the number of repetitions of the algorithm for each input URL. It outputs a
set of K trails {B1, B2, . . . , BK} one for each input URL.

The algorithm has a main outer for loop starting at line 2 and ending at
line 16, which computes the best trail for each one of the K input URLs. The
first inner for loop starting at line 3 and ending at line 14 recomputes the best
trail M times, given the starting URL Uk. The overall best trail over the M
iterations with the same starting URL is chosen at line 15 of the algorithm. We
note that due to the stochastic nature of the algorithm, we may get different
trails Ti at line 13 of the algorithm from two separate iterations of the for loop
starting at line 3 and ending at line 14. The algorithm has two further inner
for loops, the first one starting at line 5 and ending at line 8 comprises the
exploration stage of the algorithm, and the second one starting at line 9 and
ending at line 12 comprises the convergence stage of the algorithm. Finally,
the set of K best trails for the set of K input URLs is returned at line 17 of
the algorithm.
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Algorithm 2 (Best Trail({U1, U2, . . . , UK},M))
1. begin
2. for k = 1 to K do
3. for i = 1 to M do
4. Di ← {Uk};
5. for j = 1 to Iexplore do
6. t ← select(Di, 1, j);
7. Di ← extend(Di, t);
8. end for
9. for j = 1 to Iconverge do
10. t ← select(Di, df, j);
11. Di ← extend(Di, t);
12. end for
13. Ti ← best(Di);
14. end for
15. Bk ← overall best({T1, T2, . . . , TM});
16. end for
17. return {B1, B2, . . . , BK}:
18. end.

One important issue is removing redundancy from the output trails to
increase their relevance to users viewing them. We consider a trail to be re-
dundant if all the pages in the trail are contained in another more relevant
trail. Within a trail, we consider a pages to be redundant if either it is not
relevant to the user query or if the page is duplicated previously in the trail,
and removing the page leaves a valid trail with respect to the topology of the
web graph.

Optimisation of the algorithm and implementation issues are discussed in
[70]. Therein we also report experiments we have run test the behaviour of
the algorithm and discuss how to tune its various parameters. The application
of the Best Trail algorithm for keyword search with a relational database is
discussed in [71].

We now briefly describe a navigation system we have been developing,
which uses the Best Trail algorithm to construct trails that are relevant to a
user’s query. The trails are presented to the user in a tree-like structure which
he/she can interact with. This is in sharp contrast to a search engine which
merely outputs a list of pages which are relevant to the user query without
addressing the problem of which trail the user should follow.

The navigation system obtains the preferred trails for navigation, given a
user query, from the navigation engine and requests pages for display from the
web site via a proxy. The navigation engine consists of two main modules: (i)
the information retrieval module, and (ii) the best trail module. The informa-
tion retrieval module does conventional information retrieval over web pages
combined with using the potential gain metric to determine starting points
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for navigation. The best trail module implements the Best Trail algorithm to
compute the preferred trails for navigation given the input query; see [70] for
more details.

The main mechanism of the user interface is the navigation tree window,
which displays the preferred trails given the user query, organised in the form
of a tree structure with the trails being ranked from the most preferred, ac-
cording to their score. The user interacting with the navigation tree window
can select any web page on one of the preferred trails by clicking the cor-
responding link and thus causing the page to be displayed in the browser
window. Putting the cursor over a link in the navigation tree window will
cause a small window to pop-up displaying the summary of the destination
web page. The mechanisms of the user interface provide the user with guid-
ance and context throughout a navigation session. The user interface can be
embodied within a web site as a navigation mechanism complementing or re-
placing a web site search engine. A screen shot for the query “neural networks”
is shown in Figure 4; an alternative interface which displays trails in graphical
form is described in [72]. The trails clearly indicate that both the BSc and
MSc courses support neural network options and that Chris is involved in
teaching the subject and doing research in this area. (We note that the single
page trail, whose title is “Chris’s Home Page”, is in fact a web page about
neural network application projects, and is thus a case where the HTML title
was not used effectively. Similarly, the page on the two page trail with a link
to the pdf file nn prnt.pdf, whose title is also “Chris’s Home Page”, is in fact
a web page about understanding neuronal coding.)

We conclude this section by mentioning a usability study we carried out
to test whether our navigation system enhances users’ search experience [46].
Our results show the potential of navigational assistance in search tools, since
overall, users of the navigation system employed less clicks and took less time
in completing their tasks than those using a conventional search engine. One
reason for these positive results may be that users of the navigation system
did not have to click on the back button as much as users of a conventional
search engine but instead could use the navigation tree window.

8 Trail Records

Here we present a model for analysing the record of trails that emerge from
either an individual user or a group of users through navigation within the
web graph over a period a time. The model is within the area of web usage
mining [45], which is concerned with finding patterns in “surfers” navigation
behaviour.

We define a web view (or a record of trails) as a collection of trails which
are the result of user navigation sessions over a period of time. Thus a web
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Fig. 4. Navigation engine results for the query “neural networks”

view is a subgraph of the web graph induced by a collection of emergent trails.
We limit the trails in a web view by two threshold parameters, as follows:

1) support α ∈ [0, 1); accept into the web view only trails whose initial prob-
ability is greater than α.

2) confidence β ∈ [0, 1); accept into the web view only trails whose product
of transition probabilities is greater than β.

Alternatively, we accept into the web view only trails whose overall prob-
ability is above some cut-point λ ∈ [0, 1), with λ ≥ α · β.

Let M be an ergodic Markov chain modelling user’s navigation behaviour
within the web graph. Then a web view over M constrained by λ is the set
of all trails T in M such that the probability of T is greater than λ. (An
alternative formalisation of a web view separating the support and confidence
thresholds can also be given.)

We now describe a technique for constructing a web view, which is con-
cerned with finding frequent user behaviour patterns. In M the high proba-
bility trails, i.e. those having probability above the cut-point, correspond to
the user’s preferred trails. We assume that we have at our disposal web log
data; for example, collected from the user’s browser or from server logs, which
make it is possible to infer user navigation sessions. (The log data could be
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collected for a group of users rather than a single user if we are interested in
collaborative trails rather than personalised trails.) It is customary to define
a navigation session as a sequence of page visits (i.e. URL requests) by the
user where no two consecutive visits are separated by more than a prescribed
amount of time, which is normally not more than half an hour.

When sufficient such log data is available we pre-process this data into
a collection of trails, each trail being represented as a sequence of URLs.
Moreover, we assume that the start and end URLs of all trails correspond to
the user’s home page. We note that a trail may appear more than once in this
collection, since the user may follow the same trail on two or more different
occasions. We then build an ergodic Markov chain (or equivalently HPA), say
M, whose initial probabilities correspond to the frequency the user visited a
page present in any one of the input trails, and whose transition probabilities
correspond to the frequency that a link was followed in any one of the input
trails. We observe that the states of M are the pages the user visited and
the topology of M, i.e. its underlying graph, is induced by the links the user
followed. In constructing M we have implicitly assumed that when the user
chooses a link to follow he/she does not base his/her decision on the previous
pages visited during the navigation session. That is, we have assumed that M
is a first-order Markov chain. This assumption can be relaxed so that N (with
N ≥ 1) previous pages including the current one are taken into account; the
case with N = 1 is the first-order case when the user bases his/her decision
only on the page currently being browsed. The parameter N is called the
history depth.

Given a history depth N > 1, a higher-order Markov chain can be reduced
to a first-order Markov chain by aggregating states. The drawback of such a
higher-order Markov chain is the increase in the number of states, which is
expected to be n · b(N−1), where n is the number of states in the first-order
Markov chain and b is the average number of out-links embedded in a page.
Thus there is a trade-off between the history depth and the complexity of the
Markov chain measured by its number of states. The decision on whether the
gain in accuracy by adopting a higher-order Markov chain is significant can
be aided by statistical techniques [15]. (Another approach we are looking at,
which increases the history depth yet maintains a complexity as low as possi-
ble, is to use variable order Markov chains [58] or dynamic Markov modelling
[19]; see [41].)

Once the HPA M has been constructed from the collection of trails, which
have been pre-processed from the log data, we employ a Depth-First Search
(DFS) to find all the trails in M starting from the user’s home page and
having probability above the cut-point λ. We have run extensive experiments
with synthetic and real data to test the performance of the DFS algorithm
[8]. It transpires that for a given cut-point there is a strong linear correlation
between the size ofM, measured by its number of states, and the running time
of the algorithm, measured by the number of links it traverses. Moreover, for
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a given cut-point, the number of mined trails increases linearly with the size
of M. On the other hand, the number of mined trails increases exponentially
with the decrease in the cut-point.

The DFS algorithm has two main drawbacks. Firstly, since it is an exhaus-
tive search it will, in general, return too many trails. Secondly, if we increase
the cut-point to reduce the number of trails, then on average the returned
trails become short, and therefore may not be very interesting. These obser-
vations have led us to develop two heuristics for mining high quality trails. Our
first approach [9], which we call the fine-grained heuristic, limits the numbers
of trails returned via a stopping parameter, which is between zero and one,
that determines an upper bound on the sum of probabilities of the returned
trails. The method used to implement this heuristic is to explore trails, whose
probability is above the cut-point, one by one and in decreasing order of prob-
ability. When the stopping parameter is zero then the fine-grained heuristic
reduces to the DFS algorithm and as the parameter gets closer to one less trails
are returned. Our initial results show that for a given cut-point the number of
trails decreases almost linearly with the increase in the stopping parameter,
indicating that the stopping parameter provides good control over the number
of trails. Our second approach [10], which we call the inverse-fisheye heuristic,
is a method of obtaining longer trails while controlling their number. This is
obtained by having a dynamic cut-point which is high at the initial stage of
the exploration in order to limit the number of trails, and decreases in subse-
quent stages in order to allow further exploration of the selected trails. The
user specifies a maximum exploration depth, which limits the length of the
trails returned. Our initial results show that if the initial cut-point is not too
low and the decrease in the cut-point at each step is gradual then we can
reduce the number of trails while increasing their average length.

A different approach has been put forward by Schechter et al. [60] with
the aim of using web log data to predict the next URL to be requested from
a user. Their algorithm essentially constructs a suffix tree [3] generated from
user trails within a navigation session inferred from the log data. A suffix of a
trail is added to the tree only if the occurrence count of the predecessor node
of the suffix is greater than a predefined threshold. An algorithm is devised,
which finds the maximal prefix of a trail in the suffix tree that matches the
current user trail, and then uses the found trail to predict the next URL as
the next node in the tree that is on this trail. Using our example web graph
shown in Figure 2, a user trail might correspond to

SCSIS → Research → Students

matching the prefix of two trails in the suffix tree having Azy and Kevin
as their next node. The algorithm will predict either Azy or Kevin as the
next page the user will browse, depending on which one was traversed more
frequently by the user.
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We have extended our model to include physical spaces as well as virtual
web spaces [42]. We now distinguish between a trail, which may be through
a physical space such as a museum exhibit, and a trail record which is a
hypertextual trail providing an account of the user navigation session, be it
physical or virtual. Trail records thus provide us with a model of users’ actions,
which can be viewed as a spatial/temporal account of their activities. Such
records of a physical experience act as a memory aid which can be expanded by
further experiences and additional content. Moreover, using the data mining
techniques we have described above, user navigation patterns through the
space under consideration can be inferred.

We close this section with a brief discussion of a stochastic model of users
“surfing” the web [28, 37]. In this model each page a user visits has a value
and the user browsing a page has to decide if to continue “surfing” by clicking
on a link or to stop “surfing”. In Huberman et al. [28] the user will continue
“surfing” if the expected cost, to the user, of continuing is smaller than the ex-
pected gain obtained from future information in pages which will be browsed.
Analysis based on this model leads to a power-law distribution, where the
probability of “surfing” by following L links is proportional to L−3/2. Huber-
man et al.’s model does not take into account the topology of the web graph
being navigated. In Levene et al. [37] the user is assumed to be navigating
within a Markov chain reperenting the web graph, where longer trails are less
probable than shorter trails. Again a power-law distribution, which is propor-
tional to the length of the trail being navigated, is derived for the probability
of “surfing”.

9 Navigation in the Mobile Web

The ability to connect to the internet through mobile devices such as mobile
phones and handheld and portable computing devices means that we can be
connected “anytime” and “anywhere”. The limitations of mobile devices in
terms of screen size, computing power and lack of traditional input devices
such as keyboard and mouse, means that alternative input modalities such as
pen and voice will become prevalent, and innovative software solutions such
as voice recognition, hand-writing recognition and predictive text systems
will be necessary. Information needs that do not require complex and lengthy
navigation such as browsing news headlines, addresses and train schedules,
can readily be supported on mobile devices. Other information needs which
are more navigational such as information gathering on a particular topic are
poorly suited for mobile devices [62]. The issues relating to the user interface
design on mobile devices to support search are discussed elsewhere in this
book.

As location sensing technologies are already widely available [27], location-
aware services, which focus the application to the physical location of a user,
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can play an important role in narrowing down the information need a mobile
user has. For example, technologies such as GPS can assist users in physi-
cal navigation, such as helping them to find a local restaurant serving their
favourite cuisine. We note that we can also add the time dimension to mobile
services to further narrow down the information need; in the local restaurant
example, the time of day will obviously have an effect on the answer.

An interesting specialisation of a common navigation tool is that of dy-
namic bookmarks [22], where bookmarked pages may vary from location to
location. As opposed to storing the URL of the bookmarked page, a dynamic
bookmark is associated with a name and a set of attributes such as the type
of service required. One idea which has to be further investigated is the cre-
ation of dynamic authored trails, which provide the user with a specific set of
information needs. For example, the trail

News Headlines → Top Shares → Directions to Hotel → Nearest Restaurant

may be useful on a business trip, where each information need is only instan-
tiated at the instruction of the user within a time and location context.

We briefly mention at two recent attempts to improve navigation from
mobile devices. Anderson et al. [2] develop an adaptive algorithm to improve
web navigation for mobile devices by adding shortcut links to web pages thus
allowing the user to reach a destination page as quickly as possible. Their
algorithm for creating high-quality shortcuts is based on the user’s naviga-
tion history. Smyth and Cotter [64] investigate the navigation problem within
mobile portals, where personalisation techniques can reduce the click-distance
to relevant information. By collecting the user’s past clicks on menu items,
conditional probabilities can be computed and more probable paths suggested
to the user.

10 Navigation in Social Networks

Viewing the web as a social network has resulted in novel techniques to en-
hance web search and navigation [34]. In this context several researchers have
gathered evidence that the web is a power-law network in the sense that its in-
degree distribution (and to a lesser extend its out-degree distribution) follows
a power-law [12]. Moreover, the web obeys the small-world property of having
a short average distances between any two connected pages; this distance was
shown to be roughly sixteen clicks [12].

The fact that short paths exist between two pages does not imply that they
are computationally easy to find. Kleinberg [33] investigated this problem in
the context of a two-dimensional lattice structure, where nodes have short-
range links to their immediate neighbours in the lattice and long-range links to
more distant nodes according to a parameter that determines the probability
of a link between two nodes as a function of their lattice distance. He found
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that a decentralised algorithm, in which the only information known to the
searcher of a short path is purely local, exists if and only if the parameter’s
value is two, i.e. long-range links follow an inverse-square distribution. The
algorithm is “greedy” in the sense that it chooses a link that brings it as close
as possible to the target.

Adamic et al. [1] consider a more realistic scenario, where no global infor-
mation about the position of the target node is available to the searcher, and
where the topology is not restricted to a lattice. They show that random walks
in power-law networks naturally lead to nodes with a high in-degree but that
intentionally following nodes with a high in-degree performs even better. From
their analysis they conclude that local search strategies in power-law graphs
scale sub-linearly with the size of the graph. Similar results were shown in
[31] who formulated the problem in terms of finding short paths between two
nodes in the network.

Watts et al. [69] consider the property of searchability in social networks,
where searchability is defined as the property of being able to find a target
quickly. We recast their model in terms of locating pages in the web graph.
In this model web pages are the individuals in the social network and their
out-going links are their network neighbours. Each web page can have several
semantic categories attached to it; these are the set of identities of the page.
For example, the School’s home page may be categorised both in terms of
its subject area, i.e. Computer Science, and in terms of its location within
the University of London, implying that the page belongs to two groups of
web pages according to its dual identity. We assume it possible to measure
similarity between pairs of pages within an ontology, for example within a
category of the Open Directory structure. The similarity between two pages
within a category can be defined as the least number of levels needed to reach
a common ancestor category; other similarity measures, say involving textual
similarity are possible. The social distance between two pages, each having
several identities, is defined as the smallest distance over all common identities
that the two pages may have. So for example, the distance between the School
of Computer Science and a non-computing school within the University of
London may be one, while the distance between the School of Computer
Science and another school of Computing outside the University of London
may be greater than one due to different research area specialisations. Under
some distributional assumptions, which enable simulation of the model, Watts
et al. [69] show that using only local knowledge of the neighbours of a page
within the network, and knowledge of the set of identities of the target page,
the target can be found quickly. The algorithm to find the target is a “greedy”
one similar to Kleinberg’s algorithm [33], which chooses to follow the link to
a neighbour that is closest to the target in terms of social distance.

This approach seems to reconcile directory-based navigation and link-
based navigation on the web, where users navigate within the web topology
choosing links according to their semantic proximity to the goal. It also has
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some similarity with the Best Trail algorithm, presented above, where naviga-
tion is link-based but the choice of link is made according to the information
need of the user.

11 Open Problems

We close this chapter with a list of several open research problems that warrant
further investigation.

• One important issue that is not well understood is how to evaluate nav-
igation trails. In the Information Retrieval community there is a strong
tradition of evaluation in terms of precision and recall [4] but is is not
clear how these notions carry over to the realm of trails.

• It would be interesting to compare the potential gain and gain rank met-
rics to other web metrics such as PageRank and investigate whether it is
beneficial for them to be combined in some manner.

• Another issue that is still open is how to incorporate personalisation and
collaboration within the context of our model of trail records.

• The Best Trail is essentially a probabilistic best first algorithm. It would
be worth investigating whether it could be applied within the Artificial
Intelligence domain.

• Designing novel user interfaces for trail-based systems is another area
which is under developed yet highly important.
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