
Introduction to Programming

Revision

2019 - 2020



About the Exam

• Online, weighs 70% (20% In-lab test, 10% attendance)

• Date and Time: Tuesday 26th May 2020, 02.00pm – 06.00pm 

(Moodle time)

– 30 min for downloading the questions

– 3 hours for completing the answers 

– 30 min for uploading the answers

– 4 hours in total (5 hours in total if you have an SSP*)

– The submission dropbox will close after the deadlines

* SSP: Study Support Plan



About the Exam

• Open book 

– but no copying, no collusion

• 10 questions, 100 marks

• Memorize, Explain, Compare, Analyse, Work out, Program



About the Exam

• What's available at the start of the exam?

– An examination question paper in pdf format

– An answer sheet template in Word format



About the Exam

• What's to submit at the end of the exam?

- One PDF file ( ≤ 100MB)  containing ALL the answers

- Moodle Assignment submission portal on the course's Moodle page



About the Answer Sheet

• Word or other text editors would be sufficient

(e.g. Libre Office on Linux, Google Docs, TextEdit on Mac)

– No need to draw graphs or tables

• In the answer sheets

– Use blue colour (avoid using black colour)

– Become familiar with operations such as indentation, text formatting, 

and the insertion of images, diagrams or pictures (if needed), etc. 

– No need to format your answers perfectly -> content over form

• No matter which text editor you use, save as one PDF file

– Pdf files are more reliable and less likely to be changed

– One file to prevent answers being overlooked or missing



All Hand-Written Notes

• Hand-written notes (only choose to do this if there are no other options)

– Option 1:

• Take pictures of your handwritten answers

• Open a Word document and insert your pictures

• Save as a PDF file and upload it to Moodle

– Option 2: 

• (Download a free App on your smart phone: CamScanner)

– You may use other Apps or a scanner

• Scan all your answer sheets one by one into one document

• Save as PDF and email it to yourself and Upload it to Moodle



Name the Answer Sheet

• Naming your answer sheet

– Anonymous marking, as always

– Do NOT put any personal information in the title or in the file

– Use your candidate number, e.g., T123456 (can be found in student profile)

• candidateNumber_AFT.pdf or candidateNumber_APT.pdf or 

candidateNumber_BPT.pdf

• Example: T123456_AFT.pdf or T123456_APT.pdf or T123456_BPT.pdf 

• A mock exam is available to practice the whole process



Hardware and Environment

• Hardware and network

– Adequate desktop or laptop 

– A reliable broadband connection is required

– Consider a backup internet connection

• Mi-Fi device/dongle (aka, Pocket WiFi) or a tether to a mobile phone

• Choose a comfortable and quiet room

– Print out the questions if it helps 



In Case Things Go Wrong

• The Department will inform you about alternative arrangements in 

case uploading to Moodle fails.

• For technical queries specifically relating to the following issues 

please contact ITS.

– Logging into Moodle

– Scanning handwritten work

– Submitting assessments

– Email: sd@its.bbk.ac.uk

– Phone: 020 3926 3456

• Save a copy of the pdf examination file at your local disc. Do NOT 

change the file. This can be the evidence if things go wrong.

mailto:sd@its.bbk.ac.uk


Prepare for the Exam

• Study the lecture slides

– Refer to the book PFE if needed

• Study the past papers

– Similar structure and marking scheme

– Available online at Birkbeck's electronic library

• http://www.bbk.ac.uk/library/exam-papers/computer-science

– Some summary answers available on the course website

• https://www.dcs.bbk.ac.uk/~sjmaybank/ITP/introduction%20to%20Programming.html

http://www.bbk.ac.uk/library/exam-papers/computer-science
https://www.dcs.bbk.ac.uk/~sjmaybank/ITP/introduction%20to%20Programming.html


Week 1: First Program

• Basic knowledge on Python
– History, advantages, interpreter, portability

• Errors
– Compile time errors, run time exceptions/errors

• What are they? Examples?

• Function print
– print(a number)  √                               print(5)

– print(a string) √ print(“hello”)

– print(string, number) √ print(“hello”, 5)

– print(string + number)  X print(“hello” + 5)  X

12



Week 2b: Variables

• Variables

– Creation and value assignment 

• A variable can never be used if not created and initialised

– Identify a variable's name, trace a variable's value

– Variable naming rules

• begin with? the rest? reserved words?

– Creating variables for problem solving

• Number Literals

– int:  1, 0, -2, etc

– float: 2.0, 8E4, 3e-5, etc

13



Week 3: Arithmetic and Built-in Functions

• Operators

– +   – *   **   /   //   %   ( )

– Precedence

• ( ) higher than ** higher than *, /, //, % higher than +, –

– Associativity

• **: right to left (e.g., p = 2 ** 2 ** 3)

• Other operators: left to right

• Built-in functions

– abs, min, max, round (round up/down at half point)

– Nested (built-in) functions, e.g., round(max(num_1,num_2))

• Dividing a problem into a sequence of simple steps

14



• Evaluate expressions

– e.g., a = 1, b = 2, a = b – a * b, what is a? 

– b = b – (a + 3) * 4, what is b?

• Math module

– common math functions, sqrt, exp, trunc, etc

– How to obtain a math function? 

• from math import *    (red indicates reserved words)

• A math function cannot be used if the import is not called (as above).

15

Week 4: More Arithmetic and Input (2)



Week 4: More Arithmetic and Input (2)

• User input

– userInput =  input("Please enter a number: ")

– userInput is a string

– How to turn the string into int or float?

• function int() and float()

• print(int("5.6")) error, but print(float("5")) works

• print(userInput)

• Round-off errors

– Why some numbers cannot be represented exactly in Python? 

– E.g., 4.35 * 100 != 435

• Write programs to solve detailed problems

16



Week 5: Strings and Output (1)

• Strings

– length, indexing (positive/negative)

– concatenation (+), repetition (*)

– string and print

– convert numbers to strings str(num)

• print(5) or print(5.0) ok

• print(len(“hello”) + 5) 10

• print(“hello”+ str(5)) ok

• print(“hello”+ str(5.0)) ok

– escape sequences \", \', \n, \\

• each with length 1

17



Week 5: Strings and Output (2)

• Strings

print('He\\ said "Hello" today')

# The double quotes " are characters in the string

Result: He\ said "Hello" today

print("He said 'Hello' today\n")

# The single quotes ' are characters in the string

Result: He said 'Hello' today

[a new line]

print("He said \"Hello\" and 'Goodbye' today")

# The single quotes ' are characters in the string

Result: He said "Hello" and 'Goodbye' today

What about the length of the above strings?

18



Week 5: Strings and Output (3)

• Format specifiers

– Be able to identify 

• a format specifier, a format string and a string format operator

• "%.f" % 35.678

– format specifier: %.f

– format string: "%.f" 

– string format operator: %

– Be able to apply a format string to a value

• formatString % value

• e.g., print("%.f" % 35.678)

– Understand how a format specifier works

• See next slide

19



Format Specifier Summary

formatString
value

(float) 35.678 (integer)  -5
(string)  
“hello”

float
(round)

“%.f” “36” “-5”

error
“%.2f” “35.68” “-5.00”

“%6.1f” “~~35.7” “~~-5.0”

“%07.2f” “0035.68” “-005.00”

integer
(trunc)

“%d” “35” “-5”
error

“%5d” “~~~35” “~~~-5”

string
“%s” “35.678” “-5” “hello”

“%7s” “~35.678” “~~~~~-5” “~~hello”

“%3s” “35.678” “~-5” “hello”

20

formatString % value

e.g., print(“%.f” % 35.678),  print(“%d” % -5), or print(“%s” % “hello”) 

~ represents a space



Format Specifier Practice Sheet

formatString
value

(float) 35.678 (integer)  -5 (string)  
“hello”

float
(round)

“%.f”

“%.2f”

“%6.1f”

“%07.2f”

integer
(trunc)

“%d”

“%5d”

string
“%s”

“%7s”

“%3s”

21

formatString % value

e.g., print(“%.f” % 35.678),  print(“%d” % -5), or print(“%s” % “hello”) 

~ represents a space



Week 6: Relational Operators and 
Boolean Variables

• Relational operators

– >,  >=,  <,  <=,  ==,  !=

• Boolean variables

– Boolean values: True, False

– Boolean operators: and, or, not

• truth table (what it is, how to write a truth table)

• Evaluate a Boolean expression

– 73 == 9,  73 <= 9, etc

22



Week 6: Relational Operators 
and Boolean Variables (2)

• Define a Boolean expression

– E.g., an expression is true if and only if all the variables a, b, c are true

– a and b and c

– E.g., an expression is true if and only if the variables b is false or a is true

– not b or a

– (not b) or a

– E.g., an expression is true if and only if the variables b is false

– not b

23



Week 6: Relational Operators and 
Boolean Variables (3)

• Lexicographic ordering of characters

– How is the order of characters defined in python?

• uppercase < lowercase

• numbers < letters

• space < printable

• empty string < non-empty characters

• Lexicographic ordering of strings

– How are strings compared in Python?

– "cart" < "car"  - True or False?

24

" " < "A" < "B" < "Z" < "a" < "b" < "z""0" < "1" < "9" <"" < 



Week 7: if Statement

• Learn and apply the following statements:

– if

– if-else

– nested if-else

– if-elif-else

• Indentation plays an important role

• Input validation + error message

• Never forget the :

25



Week 8: Loops

• range() function and its use in for-loops

– range(100), range(2,9), range(2, 9, 2)

– i in range(100)

• while-loop and for-loop

– When to use while-loop, when to use for-loop

– How to rewrite while-loop to for-loop and vice versa

– Use while-loops to control how many times it loops

• Use while-loops and for-loops to solve problems

26



For loop to while loop

sum = 0

for index in range(0, 101, 2):

sum = sum + index

print(sum)

sum = 0

index = 0

while index <= 100 :

sum = sum + index

index = index + 2

print(sum)

27



Week 9: Functions

• Functions

– What are function name, parameter, argument, return?

– What is the header/body of a function?

– Why to define a function? The advantage of using functions

– Defining functions and calling functions

– Branches and returns

– Local variables and scope of a variable

– Write functions to solve problems

28



Week 11: Lists

• What is a list? 

• Why need lists?

• How to create a list?  

• List indices and lengths

- values[3]? values[4]? values[-3]? values[-4]?

- len(values)?  len(names)?

• Finding/Dealing with elements in lists

- index – names.index(“Ben”)    the index of 1st occurrence

- append – values.append(89) or names.append(“Dylan”) 

- insert – values.insert(1, 2) or names.insert(2, “Finn”) 

- remove – values.pop(3) or names.pop() 

- What is names[1][1]?

29

values = [32, 54, 67, 5]

names=[“Ann”, “Ben”, “Chris”]



Last but not least…

• If you see "Justify your answer" or "Specify the reason", do 

provide some explanations, otherwise, mark(s) will be 

deducted.

• If you see "Write down the step-by-step results of all 

calculation", do provide all the intermediate results.

• Read questions carefully. Don’t be in a rush.

• Think carefully.

• Write clearly and to the point. 

– Please don’t write essays! 

• Good luck!


