Introduction to Programming

Revision
2019-2020

About the Exam

- Online, weighs 70\% (20\% In-lab test, 10% attendance)
- Date and Time: Tuesday $26^{\text {th }}$ May 2020, 02.00pm -06.00 pm (Moodle time)
- 30 min for downloading the questions
- 3 hours for completing the answers
- 30 min for uploading the answers
-4 hours in total (5 hours in total if you have an SSP*)
- The submission dropbox will close after the deadlines
* SSP: Study Support Plan

About the Exam

- Open book
- but no copying, no collusion
- 10 questions, 100 marks
- Memorize, Explain, Compare, Analyse, Work out, Program

About the Exam

- What's available at the start of the exam?
- An examination question paper in pdf format
- An answer sheet template in Word format

$\&$

W T123456_AFT_mock.docx

About the Exam

- What's to submit at the end of the exam?
- One PDF file ($\leq 100 \mathrm{MB}$) containing ALL the answers
- Moodle Assignment submission portal on the course's Moodle page

Mock Online Exam

About the Answer Sheet

- Word or other text editors would be sufficient
(e.g. Libre Office on Linux, Google Docs, TextEdit on Mac)
- No need to draw graphs or tables
- In the answer sheets
- Use blue colour (avoid using black colour)
- Become familiar with operations such as indentation, text formatting, and the insertion of images, diagrams or pictures (if needed), etc.
- No need to format your answers perfectly -> content over form
- No matter which text editor you use, save as one PDF file
- Pdf files are more reliable and less likely to be changed
- One file to prevent answers being overlooked or missing

All Hand-Written Notes

- Hand-written notes (only choose to do this if there are no other options)
- Option 1:
- Take pictures of your handwritten answers
- Open a Word document and insert your pictures
- Save as a PDF file and upload it to Moodle
- Option 2:
- (Download a free App on your smart phone: CamScanner)
- You may use other Apps or a scanner
- Scan all your answer sheets one by one into one document
- Save as PDF and email it to yourself and Upload it to Moodle

Name the Answer Sheet

- Naming your answer sheet
- Anonymous marking, as always
- Do NOT put any personal information in the title or in the file
- Use your candidate number, e.g., T123456 (can be found in student profile)
- candidateNumber_AFT.pdf or candidateNumber_APT.pdf or candidateNumber_BPT.pdf
- Example: T123456_AFT.pdf or T123456_APT.pdf or T123456_BPT.pdf
- A mock exam is available to practice the whole process

Hardware and Environment

- Hardware and network
- Adequate desktop or laptop
- A reliable broadband connection is required
- Consider a backup internet connection
- Mi-Fi device/dongle (aka, Pocket WiFi) or a tether to a mobile phone
- Choose a comfortable and quiet room
- Print out the questions if it helps

In Case Things Go Wrong

- The Department will inform you about alternative arrangements in case uploading to Moodle fails.
- For technical queries specifically relating to the following issues please contact ITS.
- Logging into Moodle
- Scanning handwritten work
- Submitting assessments
- Email: sd@its.bbk.ac.uk
- Phone: 02039263456
- Save a copy of the pdf examination file at your local disc. Do NOT change the file. This can be the evidence if things go wrong.

Prepare for the Exam

- Study the lecture slides
- Refer to the book PFE if needed
- Study the past papers
- Similar structure and marking scheme
- Available online at Birkbeck's electronic library
- http://www.bbk.ac.uk/library/exam-papers/computer-science
- Some summary answers available on the course website
- https://www.dcs.bbk.ac.uk/~sjmaybank/ITP/introduction\ to\ Programming.html

Week 1: First Program

- Basic knowledge on Python
- History, advantages, interpreter, portability
- Errors
- Compile time errors, run time exceptions/errors
- What are they? Examples?
- Function print
$-\operatorname{print}(a \operatorname{number}) \sqrt{ }$
$-\operatorname{print}($ a string $) \sqrt{ }$
$-\operatorname{print}($ string, number) $\sqrt{ }$
$-\operatorname{print}($ string + number $) \mathrm{X}$
print(5)
print("hello")
print("hello", 5)
print("hello" + 5) X

Week 2b: Variables

- Variables
- Creation and value assignment
- A variable can never be used if not created and initialised
- Identify a variable's name, trace a variable's value
- Variable naming rules
- begin with? the rest? reserved words?
- Creating variables for problem solving
- Number Literals
- int: $1,0,-2$, etc
- float: 2.0, 8E4, 3e-5, etc

Week 3: Arithmetic and Built-in Functions

- Operators
- + - * ** / // \% ()
- Precedence
- () higher than ** higher than *, /, //, \% higher than + , -
- Associativity
- **: right to left (e.g., p = 2 ** 2 ** 3)
- Other operators: left to right
- Built-in functions
- abs, min, max, round (round up/down at half point)
- Nested (built-in) functions, e.g., round(max(num_1,num_2))
- Dividing a problem into a sequence of simple steps

Week 4: More Arithmetic and Input (2)

- Evaluate expressions
- e.g., $\mathrm{a}=1, \mathrm{~b}=2, \mathrm{a}=\mathrm{b}-\mathrm{a} * \mathrm{~b}$, what is a ?
$-\mathrm{b}=\mathrm{b}-(\mathrm{a}+3) * 4$, what is b ?
- Math module
- common math functions, sqrt, exp, trunc, etc
- How to obtain a math function?
- from math import * (red indicates reserved words)
- A math function cannot be used if the import is not called (as above).

Week 4: More Arithmetic and Input (2)

- User input
- userInput = input("Please enter a number: ")
- userInput is a string
- How to turn the string into int or float?
- function int() and float()
- print((int("5.6")) error, but print(float("5")) works
- print(userInput)
- Round-off errors
- Why some numbers cannot be represented exactly in Python?
- E.g., $4.35 * 100!=435$
- Write programs to solve detailed problems

Week 5: Strings and Output (1)
 Birkbeck
 UNIVERSITY OF LONDON

- Strings
- length, indexing (positive/negative)
- concatenation (+), repetition $\left({ }^{*}\right)$
- string and print
- convert numbers to strings str(num)
- print(5) or print(5.0) ok
- print(len("hello") +5) 10
- print("hello"+ str(5)) ok
- print("hello"+ str(5.0)) ok
- escape sequences $\backslash^{\prime}, \backslash^{\prime}, \backslash n, \backslash \backslash$
- each with length 1

Week 5: Strings and Output (2)

- Strings
print('He
 said "Hello" today')
\# The double quotes " are characters in the string
Result: He\ said "Hello" today
print("He said 'Hello' today\n")
\# The single quotes ' are characters in the string
Result: He said 'Hello' today
[a new line]
print("He said \"Hello\" and 'Goodbye' today")
\# The single quotes ' are characters in the string
Result: He said "Hello" and 'Goodbye' today

What about the length of the above strings?

Week 5: Strings and Output (3)
 Birkbeck
 UNIVERSITY OF LONDON

- Format specifiers
- Be able to identify
- a format specifier, a format string and a string format operator
- "\%.f" \% 35.678
- format specifier: \%.f
- format string: "\%.f"
- string format operator: \%
- Be able to apply a format string to a value
- formatString \% value
- e.g., print("\%.f" \% 35.678)
- Understand how a format specifier works
- See next slide

Format Specifier Summary

formatString \% value
~ represents a space

formatString		value		
		(float) 35.678	(integer) -5	(string) "hello"
float (round)	"\%.f"	"36"	"-5"	error
	"\%.2f"	"35.68"	"-5.00"	
	"\%6.1f"	"~~35.7"	"~~-5.0"	
	"\%07.2f"	"0035.68"	"-005.00"	
integer (trunc)	"\%d"	"35"	"-5"	error
	"\%5d"	"~~~35"	"~~~-5"	
string	"\%s"	"35.678"	"-5"	"hello"
	"\%7s"	"~35.678"	"~~~~~-5"	"~~hello"
	"\%3s"	"35.678"	" \sim-5"	"hello"

e.g., print("\%.f" \% 35.678), print("\%d" \% -5), or print("\%s" \% "hello")

Format Specifier Practice Sheet

formatString \% value \sim represents a space

formatString		value		
		(float) 35.678	(integer) -5	(string)
float (round)	"\%.f"			
	"\%.2f"			
	"\%6.1f"			
	"\%07.2f"			
integer (trunc)	"\%d"			
	"\%5d"			
string	"\%s"			
	"\%7s"			
	"\%3s"			

e.g., print("\%.f" \% 35.678), print("\%d" \% -5), or print("\%s" \% "hello")

Week 6: Relational Operators and Boolean Variables

- Relational operators
- >, >=, <, <=, ==, !=
- Boolean variables
- Boolean values: True, False
- Boolean operators: and, or, not
- truth table (what it is, how to write a truth table)
- Evaluate a Boolean expression
$-73==9,73<=9$, etc

Week 6: Relational Operators and Boolean Variables (2)

- Define a Boolean expression
- E.g., an expression is true if and only if all the variables a, b, c are true
- a and band c
- E.g., an expression is true if and only if the variables b is false or a is true
- not b or a
- (not b) or a
- E.g., an expression is true if and only if the variables b is false
- not b

Week 6: Relational Operators and Boolean Variables (3)

- Lexicographic ordering of characters
- How is the order of characters defined in python?
- uppercase < lowercase
- numbers < letters
- space < printable
- empty string < non-empty characters
"" < " " < "O" < "1" < "9" < "A" > "B" > "Z" < "a" < "b" < "z"
- Lexicographic ordering of strings
- How are strings compared in Python?
- "cart" < "car" - True or False?

Week 7: if Statement

- Learn and apply the following statements:
- if
- if-else
- nested if-else
- if-elif-else
- Indentation plays an important role
- Input validation + error message
- Never forget the :

Week 8: Loops

- range() function and its use in for-loops
- range(100), range(2,9), range($2,9,2$)
- i in range(100)
- while-loop and for-loop
- When to use while-loop, when to use for-loop
- How to rewrite while-loop to for-loop and vice versa
- Use while-loops to control how many times it loops
- Use while-loops and for-loops to solve problems

For loop to while loop

```
sum = 0
for index in range(0, 101, 2):
    sum = sum + index
print(sum)
sum = 0
index = 0
while index <= 100 :
    sum = sum + index
    index = index + 2
print(sum)
```


Week 9: Functions

- Functions
- What are function name, parameter, argument, return?
- What is the header/body of a function?
- Why to define a function? The advantage of using functions
- Defining functions and calling functions
- Branches and returns
- Local variables and scope of a variable
- Write functions to solve problems

Week 11: Lists

- What is a list?
- Why need lists?
- How to create a list?
- List indices and lengths
- values[3]? values[4]? values[-3]? values[-4]?
- len(values)? len(names)?
- Finding/Dealing with elements in lists
- index - names.index("Ben") the index of $1^{\text {st }}$ occurrence
- append - values.append(89) or names.append("Dylan")
- insert - values.insert(1,2) or names.insert(2, "Finn")
- remove - values.pop(3) or names.pop()
- What is names[1][1]?

Last but not least...

- If you see "Justify your answer" or "Specify the reason", do provide some explanations, otherwise, mark(s) will be deducted.
- If you see "Write down the step-by-step results of all calculation", do provide all the intermediate results.
- Read questions carefully. Don't be in a rush.
- Think carefully.
- Write clearly and to the point.
- Please don't write essays! ©
- Good luck!

