
Birkbeck College, U. London 1

Introduction to Programming

Department of Computer Science and Information
Systems

Lecturers: Tingting Han and Steve Maybank

sjmaybank@dcs.bbk.ac.uk

Autumn 2019 and Spring 2020

Week 11: Lists

mailto:sjmaybank@dcs.bbk.ac.uk

Mock In Lab Test: FizzBuzz

 In the main() function, there are 3 steps:
 1. Call getEndInteger to obtain an integer end.

 2. Call numFizzBuzz with argument end to get another integer numFB,

which is the number of "FizzBuzz".

 3. Call printFizzBuzz with argument numFB

end = getEndInteger()

numFB = numFizzBuzz(end)

printFizzBuzz(numFB)

Birkbeck College 2

Mock In Lab Test: getEndInteger

 Define the function getEndInteger()

 prints the prompt "Please enter the ending integer of the sequence (>=1):"

 If the integer is less than 1
 Print error message "Error: a number greater than or equal to 1 is required. Try Again."

 Repeat until a valid input is entered

 Return the valid integer

def getEndInteger() :

end = int(input("Please enter the ending integer of the sequence (>=1):"))

while end < 1:

print("Error: a number greater than or equal to 1 is required. Try Again.")

end = int(input("Please enter an integer greater than or equal to 1: "))

return end

Birkbeck College 3

Mock In Lab Test: numFizzBuzz

 Define the function numFizzBuzz(endNumber)

 It iterates through the integers from 1 to endNumber

 For multiples of 15, print "FizzBuzz"

 For multiples of 3 but not of 5, print "Fizz"

 For multiples of 5 but not of 3, print "Buzz"

 In all other cases, print the number itself

 Return the number of appearances of "FizzBuzz"

Birkbeck College 4

def numFizzBuzz(endNumber) :
numFB = 0
for i in range(1, endNumber+1):

if i % 15 == 0 :
print("FizzBuzz")
numFB = numFB + 1

elif i % 3 == 0 :
print("Fizz")

elif i % 5 == 0 :
print("Buzz")

else :
print(i)

return numFB

Mock In Lab Test: printFizzBuzz

 Define the function printFizzBuzz(num)

 The function prints out num times of "FizzBuzz"
 If num is 0, print out "No FizzBuzz found"

 Otherwise, print out a field width of at least 30 characters

def printFizzBuzz(num) :

if num == 0 :

print("No FizzBuzz found")

else:

string = "FizzBuzz" * num

print("%30s" % string)

Birkbeck College 5

Mock In Lab Test: main

 Define the function main()

def main():

#Step 1

end = getEndInteger()

#Step 2

numFB = numFizzBuzz(end)

#Step 3

printFizzBuzz(numFB)

 Make three calls of main()

main() #enter 14 – no FizzBuzz

main() #enter 20 – one FizzBuzz, leaving space

main() #enter 70 – Four FizzBuzz

Birkbeck College 6

Lists

 A mechanism for collecting together
multiple values.

 A way of allocating names to multiple
variables.

PFE Section 6.1 7

Creation of a List

points = [32, 54, 67, 5]

PFE Section 6.1 8

name of list
variable

initial data

Names of variables: points[0], points[1], points[2], points[3]
The numbers 0, 1, 2, 3 are indices

print(points[2])

prints 67
print(points)

prints entire list [32, 54, 67, 5]

points[0] points[1] points[2] points[3]

Indices and Length
points = [32, 54, 67, 5]

points[2] = 10

print(points[2]) #print 67 or 10?

prints 10

print(len(points)) #print 3 or 4?

there are 4 values, prints 4 as the list’s length
print(points[-1])

prints 5

Allowed negative indices are

-1 to -len(points),

i.e. -1, -2, -3, -4

PFE Section 6.2 9

Lists and for Loops

 Both these loops have the same effect

for i in range(len(points)) :

print(points[i])

for element in points :

print(element)

the variable name element can be changed, e.g.

for eachGame in points :

print(eachGames)

PFE Section 6.1.3 10

Bounds Error

points = [32, 54, 67, 5]

points[len(points)] = 3

bounds error

A bounds error causes a run time exception.

The error is not detected at compile time.

PFE Section 6.1.2 11

List References
scores = [10, 9, 7, 4, 5]

points = scores

scores[3] = 8

print(points[3])

prints 8!

A list variable such as points is a pointer to the place

in memory where the list is stored.

points and scores both reference the same list of

numbers in memory.

PFE Section 6.1.3 12

The List Variable as a Pointer

PFE Section 6.1.3 13

list stored in memoryscores points

10 9 7 4 5

The value of the variable scores is a pointer to the list.
The value of the variable points is a pointer to the same list.

scores = [10, 9, 7, 4, 5]

points = scores

Example

things = [1, 2, "text", range]

PFE Section 6.1 14

Correct but not recommended. Where possible,
list elements should have the same type.

Appending an Element

friends = [] # empty list

friends.append("Emily")

friends.append("Bob")

print(friends)

prints ["Emily", "Bob"]

PFE Section 6.2.1 15

Inserting an Element

friends = ["Harry", "Bob"]

friends.insert(1, "Cindy")

print(friends)

prints ["Harry", "Cindy", "Bob"]

friends.insert(i, "Emily")

i = 0, 1, 2: insert "Emily" before the element with index i

i = 3: insert "Emily" after "Bob" (same as append)

PFE Section 6.2.2 16

Finding an Element

if "Cindy" in friends :

print("She's a friend")

friends = ["Harry", "Emily", "Emily"]

n = friends.index("Emily")

index of first occurrence: 1

n = friends.index("Tom")

error, run time exception

PFE Section 6.2.3 17

Removing an Element
friends = ["Harry", "Cindy", "Emily", "Bob"]

name = friends.pop(1)

print(name)

prints "Cindy"

print(friends)

prints ["Harry", "Emily", "Bob"]

friends.pop() # remove the last element "Bob"

print(friends)

prints ["Harry", "Emily"]

PFE Section 6.2 18

Removing Matches

 Remove all strings of length < 4 from the list words

words = ['elephant', 'cat', 'ox', 'dolphin', 'bee']

i = 0

while i < len(words) : # len(words) is the length of the list words

word = words[i]

if len(word) < 4 : # len(word) is the length of the string word

words.pop(i)

else :

i = i+1

PFE 6.3.7 19

Removing Matches 2

 Remove all strings of length < 4 from the list words

words = ['elephant', 'cat', 'ox', 'dolphin', 'bee']

for i in range(len(words)):

word = words[i]

if len(word) < 4 :

words.pop(i)

This code fails but why?

PFE 6.3.7 20

Reading Input
points = []

print("Please enter points, Q to quit: ")

userInput = input("")

while userInput != "Q" :

points.append(float(userInput))

userInput = input("")

The Shell looks like this

Please enter points, Q to quit:

32

29

67.5

Q

PFE 6.3.9 21

Quiz Score

 A final quiz score is computed by adding all the scores
except for the lowest two.

 For example, if the scores are

8, 4, 7, 8.5, 9.5, 7, 5, 10

then the final score is 50.

 Write a program to compute the final score in this way.

PFE How To 6.1 22

Solution
def calScoreSum(scores):

if len(scores) < 3 : #check whether there are at least three scores

print("Too few scores. Please enter at least two scores.")

else:

scoreSum = 0 #sum of scores of ALL scores

low1 = 101 #the lowest score, initially exceeding 100 (the max quiz score)

low2 = 101 #the second lowest score

for i in range(0, len(scores)):

scoreSum = scoreSum + scores[i] #adding up all scores

if scores[i] < low1: #replacing the lowest and second lowest when needed

low2 = low1

low1 = scores[i]

elif scores[i] < low2:

low2 = scores[i]

scoreSum = scoreSum - low1 - low2

print("The sum of scores is", scoreSum)

PFE How To 6.1 23

Testing
scores = [8,4,7,8.5,9.5,7,5,10]

calScoreSum(scores)

scores = [8,4,4,4,4]

calScoreSum(scores)

scores = [8,4]

calScoreSum(scores)

scores = [9]

calScoreSum(scores)

scores = []

calScoreSum(scores)

PFE How To 6.1 24

Insert

 Suppose that points is a sorted list of integers.
Write a function to insert a new value into its
proper position.

PFE R 6.19 25

Solution
sortInsert inserts a new value into the proper position in a sorted list.

#@param sortedIntList: a list of integers. We assume this list of integers is sorted in
an ascending order.

#@param newInt: a new integer to be inserted

#@return: the list of integers with the new value inserted.

#Author: T. Han

#Date: 8.12.2017

def sortInsert(sortedIntList, newInt):

for i in range(len(sortedIntList)):

if newInt < sortedIntList[i]: # the newInt is smaller than the ith element

sortedIntList.insert(i,newInt)

return sortedIntList

sortedIntList.insert(len(sortedIntList),newInt) # the newInt is the largest

return sortedIntList

PFE How To 6.1 26

Testing
sortedIntList = [0,2,4,6]

print(sortInsert(sortedIntList,0))

print(sortInsert(sortedIntList,1))

print(sortInsert(sortedIntList,3))

print(sortInsert(sortedIntList,4))

print(sortInsert(sortedIntList,6))

print(sortInsert(sortedIntList,7))

print(sortInsert([0,2,4,6],0))

print(sortInsert([0,2,4,6],1))

print(sortInsert([0,2,4,6],3))

print(sortInsert([0,2,4,6],4))

print(sortInsert([0,2,4,6],6))

print(sortInsert([0,2,4,6],7))

PFE How To 6.1 27

