Introduction to Programming

Department of Computer Science and Information Systems

Lecturer: Steve Maybank
sjmaybank@dcs.bbk.ac.uk
Autumn 2019 and Spring 2020
Week 3: Arithmetic and Built in Functions

Overview

- Review of week 2:
- number types
- creating variables
- Arithmetical problems
- Arithmetic
- Built in functions
- See Python for Everyone, Ch. 2.2

Recall Number Types

- Type int: whole numbers, positive, zero and negative, e.g. 1, 0, -1.
- Type float: decimal fractions, e.g. 1.28, 3.0, -2.5, 0.0 .
- Warning: a number literal such as 1.3 cannot be represented exactly in a running program. Instead, the program uses a number of type float very near to 1.3.

Recall Creation and Initialisation of Variables

cansPerPack $=6$
\# create the variable cansPerPack and
\# initialise it with the value 6 of type int
cansPerPack $=8$
\# overwrite the previous value 6 with the new value 8
cansPerPack $=8.5$
\# The values of cansPerPack can be switched from type
\# int to type float and conversely

Square Root of 2

- Let x be a number such that x^{2} is near to 2
- Let δ be a small number such that $(x+\delta)^{2}=2$. Then

$$
2=(x+\delta)^{2}=x^{2}+2 x \delta+\delta^{2} \approx x^{2}+2 x \delta
$$

- Solve (approximately) for δ to obtain

$$
\delta \approx \frac{1}{x}-\frac{x}{2} \quad \text { and } \quad x+\delta \approx \frac{x}{2}+\frac{1}{x}
$$

Square Root of 2

>>> $\mathrm{x}=1.4$
>>> $\mathrm{x}^{* * 2}$
1.9599999999999997
>> $\mathrm{x}=\mathrm{x} / 2+1 / \mathrm{x}$
>> x
1.4142857142857141
>>> $\mathrm{x} * * 2$
2.0002040816326527
$\ggg x=x / 2+1 / x$
>>> X
1.4142135642135643
>>> $\mathrm{x} * * 2$
2.000000005205633
>>> $\mathrm{x}=\mathrm{x} / 2+1 / \mathrm{x}$
>> x
1.414213562373095
>>> $\mathrm{x} * * 2$
1.9999999999999996

- Let x be a number such that x^{2} is near to 2
- Let δ be a small number such that $(x+\delta)^{2}=2$. Then

$$
2=(x+\delta)^{2}=x^{2}+2 x \delta+\delta^{2} \approx x^{2}+2 x \delta
$$

- Solve (approximately) for δ to obtain

$$
\delta \approx \frac{1}{x}-\frac{x}{2} \quad \text { and } \quad x+\delta \approx \frac{x}{2}+\frac{1}{x}
$$

Find square root of 2 :

Begin with an approximation x to the square root of 2
Find a better approximation $x+\delta$
The process iterates, with $x+\delta$ in place of x

Problem Statement

- You have the choice of buying two cars.
- One is more fuel efficient than the other, but also more expensive.
- You know the price and fuel efficiency (in miles per gallon, mpg) of both cars.
- Assume a price of $£ 4$ per gallon of petrol and usage of 15,000 miles per year.
- You plan to keep the car for 10 years.
- You will pay cash for the car and not worry about financing costs.
- Which car is the better deal?

Problem Break Down

- $1^{\text {st }}$ stage

Find the total cost for each car
Choose the car that has the lowest total cost

- $2^{\text {nd }}$ stage: total cost of a car $(£)=$ purchase price $(£)+$ operating cost $(£)$
- $3^{\text {rd }}$ stage: operating cost ($£$)

$$
=\text { number of years to run } * \text { annual fuel cost }(£)
$$

- $4^{\text {th }}$ stage: annual fuel cost $(£)$
$=$ price per gallon ($£ / \mathrm{gal}) *$ annual fuel consumed (gal)
- $5^{\text {th }}$ stage: annual fuel consumed (gal)
= annual miles driven (miles) / fuel efficiency (miles/gal)

Description of Each Step

- The descriptions are in pseudocode. The steps are ordered such that each step can be carried out using the results of previous steps
- for each car, compute the total cost as follows annual fuel consumed = annual miles driven/fuel efficiency annual fuel cost $=$ price per gallon x annual fuel consumed operating cost $=\underline{\text { number of years to run }} \mathbf{x}$ annual fuel cost total cost $=$ purchase price + operating cost
*All the values of the cyan coloured variables are known/given.
- if total cost $1<$ total cost 2 choose car 1 else choose car 2

Example

- R1.15. You want to decide whether you should drive your car to work or take the train.
- You know the distance from your home to your place of work, and the fuel efficiency of your car (in miles per gallon). The cost of petrol is $£ 4$ per gallon and car maintenance is 20p per mile.
- You also know the price of a return train ticket.
- Write an algorithm to decide which commute is cheaper.

Example

- Compare drive to work and take the train
- Drive to work
driveToWork $=($ carMaintenanceCostPerMile + fuelCostPerMile $) *$ distanceHomeWork * 2
fuelCostPerMile $=\underline{\text { fuelCostPerGallon } / \underline{\text { fuelEfficiency(miles per gal) }}) ~}$
- Take the train priceReturnTicket

Operators, Variables and Literals

- Operators act on one or more numbers to produce a new number, e.g.

Addition +
Subtraction -
Multiplication *
Division /

- Variables
p, q, cansPerPack, ...
- Number literals

$$
4,5,-64.8,27.305, \ldots
$$

Expressions

- An expression is a combination of operators, variables, literals and parentheses
- Examples

$$
\begin{aligned}
& (3+4) / 2 \\
& p+p^{*} p \\
& (p+p) * p \\
& 3+4+5 \\
& 3-4-5
\end{aligned}
$$

Arithmetic Operators in Python

- Addition:

$$
\begin{array}{ll}
p=3+4 \quad \# \text { assign value of type int } \\
q=3.1+7 \quad \# \text { assign value of type float }
\end{array}
$$

- Subtraction:

$$
\begin{aligned}
& \mathrm{p}=3-4 \\
& \mathrm{q}=4.89-1.7
\end{aligned}
$$

- Multiplication

$$
\begin{aligned}
& p=4 * 5 \quad \# \text { other versions, e.g. } 4 \times 5,4 \cdot 5 \text { not permitted } \\
& q=4.0 * 5 \quad \# \text { assign value of type float }
\end{aligned}
$$

Power Operation

Power operation:

$$
\begin{array}{ll}
\mathrm{p}=5^{* *} 2 & \# \text { assign } 25=5^{*} 5 \\
\mathrm{q}=10^{* *} 2 * * 3 & \# \text { assign } 10 * *(2 * * 3)=10^{8}
\end{array}
$$

** is evaluated from right to left
** has a higher precedence over other operators
Write results for $10 * 2 * * 3,10 * * 2 * * 3 * * 2,10 * * 2 * * 3 * 4$ and $10 * * 4 * 3 * * 2$

- Exercise: write out the Python code for

$$
b \times\left(1+\frac{r}{100}\right)^{n}
$$

Division

$$
16 \div 3=5.333333333333333
$$

dividend divisor decimal quotient

$$
16 \div 3=5 \quad \mathrm{R} 1
$$

dividend divisor (int) quotient remainder
dividend $=$ quotient \times divisor + remainder

$$
16=5 \times 3+1
$$

Division

$$
16 \div 3=5.333333333333333
$$

dividend divisor decimal quotient

$$
16 \div 3=5 \quad \mathrm{R} 1
$$

dividend divisor (int) quotient remainder

$$
-16 \div 3=? \mathrm{R} \text { ? }
$$

Division

$$
16 \div 3=5.333333333333333
$$

dividend divisor decimal quotient

$$
16 \div 3=5 \quad \mathrm{R} 1
$$

dividend divisor (int) quotient remainder

$$
-16 \div 3=-6 \underset{\substack{\text { always of the same sign }}}{R}
$$

Division and Remainder Operators

- Division (/): the result is the decimal quotient
$p=6 / 4 \quad$ \# assign value 1.5 of type float
$\mathrm{q}=2.1 /-7$ \# assign value -0.3 of type float
- Floor division (//): the result is the quotient
\# always round down the decimal quotient

$\mathrm{p}=6 / / 4 \quad$ \# round down to 1			
$q=(-6) / / 4$	\# round down to -2	$\begin{array}{l}6 / /-4=? \\ (-6) / /(-4)=\text { ? }\end{array}$	-1.5 round down to -2
1.5 round down to 1			

\# avoid using // with arguments of type float

- Remainder (\%) : the result is the remainder
\# always has the same sign as divisor
$p=5 \% 4 \quad \#$ remainder 1 on dividing 5 by 4
$q=(-5) \% 4$ \# see next slide

Remainder Operator

- Remainder (\%) : the result is the remainder (always the same sign as divisor)

$$
\begin{aligned}
\mathrm{q}=(-5) / / 4 & \text { \#What is the value of } \mathrm{q} ? \\
& \text { \# What is the remainder of }(-5) \div 4 ?
\end{aligned}
$$

\# (-5) // $4=-2 \quad(-1.25$ round down to -2$)$ the quotient is -2

$$
\begin{array}{ll}
\# \text { dividend }=\text { divisor } \mathrm{x} \text { quotient }+ \text { remainder } \\
\#-5=4 \times(-2)+\text { remainder, so remainder }=3 & \begin{array}{l}
17 \% 5=? \\
(-17) \% 5=? \\
17 \%(-5)=? \\
(-17) \%(-5)=?
\end{array}
\end{array}
$$

Remainder Operator

- Remainder (\%) : the result is the remainder (always the same sign as divisor)

$$
\begin{aligned}
\mathrm{q}=(-5) / / 4 & \text { \#What is the value of } \mathrm{q} ? \\
& \text { \# What is the remainder of }(-5) \div 4 ?
\end{aligned}
$$

\# (-5) // $4=-2 \quad(-1.25$ round down to -2$)$ the quotient is -2
\# dividend $=$ divisor \mathbf{x} quotient + remainder
\#-5 $=4 \mathbf{x}(-2)+$ remainder, so remainder $=3$
\# $(-5) \div 4=(-2) R 3$, so $(-5) \% 4=3$
17\%5=3R2
(-17)\%5=(-4)R3
$17 \%(-5)=(-4) R(-3)$
$(-17) \%(-5)=3 R(-2)$

Table for Floor Division and Remainder

For $\mathrm{n}=1729$
Check the web for the significance of 1729

Expression Value Comments

$\mathrm{n} \% 10 \quad 9 \quad$ For any positive integer $\mathrm{n}, \mathrm{n} \% 10$ is the last digit of n
$\mathrm{n} / / 10 \quad 172 \quad$ This is n without the last digit
$\mathrm{n} \% 100 \quad 29$ The last two digits of n
n\%2
-n//10
$-173 \quad-173$ is the largest integer $<=-172.9$

Decimal Digits

- The operators // and \% can be used to extract the digits of a decimal integer
- Examples

$$
\begin{aligned}
& 385 \% 10=5 \\
& 385 / / 10=38 \\
& (385 / / 10) \% 10=8
\end{aligned}
$$

- To extract from an integer n the ith digit from the right, use
(n//(10**(i-1)))\%10
987654321 How to extract 6?
735502646188 How to extract the two 6?

More About Expressions

- Literals and names of variables are expressions
- If e, f are expressions then (e)+(f), (e)-(f), (e)*(f), (e)/(f), (e)//(f), (e)\%(f), (e)**(f) are expressions
- Examples: 4, 5, p are three expressions,
- therefore $(p)+(4)$ is an expression,
- therefore (5)*((p)+(4)) is an expression, and so on

Precedence

- The number of brackets needed in an expression is reduced by specifying a precedence for the operators
- Exponentiation $* *$ takes precedence over multiplication *, real division /, remainder \%, floor division //,
which in turn take precedence over addition + and subtraction -

Examples of Precedence

$p=4^{*} 3+1 \quad \#$ value ?
$\mathrm{p}=3 * 2 * * 3 \quad \#$ value ?
$p=3.0 * 5.5 / 6.0$ \# value ?
$p=1+3 * 2 \quad \#$ value ?

See PFE Appendix B. If in any doubt use brackets

Built in Function abs

- The function abs takes a number as an argument and returns the absolute value of that number, e.g.
distance1 = abs(-5)
\# the argument of abs is -5 , the value 5 is returned
distance2 = abs(5)
\# the argument of abs is 5 , the value 5 is returned

Additional Built in Functions

- round(x): return the value of x rounded to a whole number $p=\operatorname{round}(1.6) \quad \#$ assign the value 2
$\mathrm{q}=\operatorname{round}(\mathrm{n}+0.5)$
\# n is an even number, round $(\mathrm{n}+0.5)=\mathrm{n}$
$\# n$ is an odd number, round $(n+0.5)=n+1$

Always end up with an even number! \#round(3.5)=4, round(2.5)=2

- round (x, n) : return the value of x rounded to n decimal places $p=$ round $(1.572,2)$ \# assign the value 1.57
- $\max (x, y, z, \ldots)$: return the largest value of the arguments
- $\min (x, y, z, \ldots)$: return the smallest value of the arguments

Associativity

- All operators have left to right associativity except exponentiation which has right to left associativity

$$
\begin{aligned}
& p=3-4-7 \quad \text { \# value } \\
& p=1 / 2 / 4 \quad \text { \# value } \\
& p=2 * * 2 * * 3 \text { \# value } \\
& p=4+5+6 \quad \text { \# rule for associativity not required }
\end{aligned}
$$

See PFE Appendix B. If in any doubt use brackets. Never write anything as horrible as $1 / 2 / 4$

Question R2.5

- What are the values of the following expressions? In each line assume

$$
x=2.5 \quad y=-1.5 \quad m=18 \quad n=4
$$

1. $x^{*} y-(x+n) * y$
2. $m / / n+m \% n$
3. $5^{*} x-n / 5$
4. $1-(1-(1-(1-(1-n))))$
5. sqrt(sqrt(n)) \# sqrt is the square root function

Question R2.6

- What are the values of the following expressions, assuming that n is 17 and m is 18 ?

1. $n / / 10+n \% 10$
2. $n \% 2+m \% 2$
3. $(m+n) / / 2$
4. $(m+n) / 2.0$
