Introduction to Programming

Department of Computer Science and Information Systems

Lecturer: Steve Maybank <u>sjmaybank@dcs.bbk.ac.uk</u> Autumn 2019 and Spring 2020

Week 4: More Arithmetic and Input

Recall Operators and Expressions

- Example of an expression: (p+4)*5
 where 4, 5 are number literals and p is a variable
- If p is assigned a numerical value then the expression can be evaluated to yield a number

Recall Precedence of Operators

 In order of decreasing precedence exponentiation ** multiplication and division * / // % addition and subtraction + -

If in any doubt then use brackets,
 3-5-6 = (3-5)-6

Recall Built-in Functions

The following functions are always available

- abs(-5)
 - # returns 5
- round(3.4)
 - # returns 3
- round(3.452, 2)
 - # returns 3.45
- max(1, 5, 2, 9, 3)
 - # returns 9
- min(1, 5, 2, 9, 3)
 - # returns 1

Arithmetic Expression Examples

Mathematical	Python Expression	Comments
Expression		
$\frac{x+y}{x+y}$	(x+y)/2	Parentheses required. $x+y/2$ has the
2		value x+(y/2)
xy	x*y/2	Parentheses not required. Operators
2		with the same precedence are
		evaluated left to right
$\left(1+\frac{r}{100}\right)^n$	(1+r/100)**n	Parentheses are required
$\sqrt{a^2 + b^2}$	sqrt(a**2+b**2)	Import the sqrt function from the
		math module
π	pi	pi is a constant declared in the math
		module

Balanced Parentheses

The following formula

((a+b)*t/2*(1-t))

is not correct. The parentheses are not balanced.

 Check: count from left to right starting at 0, add 1 for a left bracket, subtract 1 for a right bracket. In this case,

012121

- What about (a+b))*(t/2*(1-t)?
 0 1 0 -1 0 1 0
- The parentheses are balanced if and only if
 - the count is always non-negative and
 - the final count is 0

Examples of Function Calls

- price = 124
 - rate = 0.173
 - tax1 = round(price*rate, 2) # price*rate = 21.452
 # round to 2 decimal places
 tax2 = round(price*rate)
 # round to the nearest integer
 # The value of tax1 is 21.45. The value of tax2 is 21.
- best = min(price1, price2, price3, price4)
 # The function min has an arbitrary number of arguments

Standard Library

- All Python systems have the standard library
- The standard library contains built in functions that can be used immediately in your programs, e.g. abs, float, int, input, min, max, print, round ...
- The standard library also contains a math module with functions such as sqrt, cos, sin, tan, exp, etc.
- See PFE Appendix D

Selected Functions in the Math Module

Function	Returns	
sqrt(x)	The square root of x ($x \ge 0$)	
trunc(x)	Truncates floating-point value x to an integer	
cos(x)	The cosine of x radians	
sin(x)	The sine of x radians	
tan(x)	The tangent of x radians	
exp(x)	<i>e^x</i>	
degrees(x)	Convert x radians to degrees (returns x $180/\pi$)	
radians(x)	Convert x degrees to radians (returns x $\pi/180$)	
log(x)	The natural logarithm of x (to base e) or the logarithm	
log(x, base)	of x to the given base	

Obtaining a math Module Function

- To use e.g. sqrt, put this statement at the top of the program from math import sqrt
- Multiple functions can be obtained using a single statement from math import sqrt, sin, cos
- To obtain everything use from math import *
- See PFE Appendix D, math Module

Exercise

Write the following mathematical expressions in Python

•
$$s = s_0 + v_0 t + \frac{1}{2}gt^2$$

•
$$G = 4\pi^2 \frac{a^3}{p^2(m_1 + m_2)}$$

• $FV = PV \left(1 + \frac{INT}{100}\right)^{YRS}$
• $c = \sqrt{a^2 + b^2 - 2a b \cos(\gamma)}$

Roundoff Errors

The number 4.35 cannot be represented exactly as a# binary floating point number

User Input

first = input("Enter your first name: ")

The input function displays the string argument (prompt) in# the console window and places the cursor on the same line,# immediately following the string.

Enter your first name: _

The program waits until the user types a string followed# by Enter. The string is stored as the value of first.

Numerical Input

userInput = input("Please enter the number of bottles: ")
bottles = int(userInput)

The input function reads in a string and returns the string to# the calling program. The function int converts the string to# an integer.

bottles = int(input("Please enter the number of bottles: "))

userInput2 = input("Enter price per bottle: ")

price = float(userInput2)

The function float converts the string to a floating point value.
price = float(input("Enter price per bottle: "))

The Function int

```
print(int("5"))
# print 5
print(int("test"))
# invalid literal for int
print(int(7.6))
# truncate to 7, not round to 8
print(int(-7.6))
# truncate to -7, not round to -8
print(int("5.6"))
# invalid literal for int, one-step transformation only
```

Description of int in Appendix D

The Python Standard Library Built-in Functions

int(x) This function converts a number or string to an integer. Parameter: x A string or numerical value Returns: The new integer object

The Function float

print(float("5"))
print 5.0

print(float("7.6"))
print 7.6

print(float(7.6))
print 7.6

print(float("test"))
ValueError: could not
convert string to float

print(float("3E2"))
print 300.0

print(float("3e2"))
print 300.0

Remark: print(int("5.6")) error, but print(float("5")) works

PFE Section 2.5.1

Vending Machine

Write a program that simulates a vending machine.

A customer selects an item for purchase and inserts a bill into the vending machine. The vending machine dispenses the purchased item and gives change.

Assumption 1: only one bill is inserted to purchase an item Assumption 2: only one item is purchased at a time Assumption 3: the bill is no less than the purchase price Assumption 4: all item prices are multiples of 25 cents Assumption 5: the machine gives all change in dollar coins (1 dollar) and quarters (25 cents).

Compute how many coins of each type to return

Preliminaries

Step 1: identify inputs and outputs.

Step 2: Work out an example by hand, e.g. the item costs \$2.25 and a \$5 bill is inserted.

Step 3: Write pseudo code for computing the answers.

Step 4: Declare the variables and constants that are needed.

Step 5: Turn the pseudo code into Python statements.

Step 6: Provide input and output.

Step 7: Write the program.