Introduction to Programming

Department of Computer Science and Information Systems

Lecturer: Steve Maybank
sjmaybank@dcs.bbk.ac.uk
Autumn 2019 and Spring 2020
Week 4: More Arithmetic and Input

Recall Operators and Expressions

- Operators: +, -, *, /, \%, //, **
- Example of an expression:

$$
(p+4) * 5
$$

where 4, 5 are number literals and p is a variable

- If p is assigned a numerical value then the expression can be evaluated to yield a number

Recall Precedence of Operators

- In order of decreasing precedence exponentiation ** multiplication and division * / // \% addition and subtraction + -
- If in any doubt then use brackets,

$$
3-5-6=(3-5)-6
$$

Recall Built-in Functions

The following functions are always available

- abs(-5)
- \# returns 5
- round(3.4)
- \# returns 3
- round($3.452,2$)
- \# returns 3.45
- $\max (1,5,2,9,3)$
- \# returns 9
- $\min (1,5,2,9,3)$
- \# returns 1

Arithmetic Expression Examples

Mathematical Expression	Python Expression	Comments
$\frac{x+y}{2}$	$(\mathrm{x}+\mathrm{y}) / 2$	Parentheses required. $\mathrm{x}+\mathrm{y} / 2$ has the value $\mathrm{x}+(\mathrm{y} / 2)$
$\frac{x y}{2}$	$\mathrm{x}^{*} \mathrm{y} / 2$	Parentheses not required. Operators with the same precedence are evaluated left to right
$\left(1+\frac{r}{100}\right)^{n}$	$(1+\mathrm{r} / 100)^{* * \mathrm{n}}$	Parentheses are required
$\sqrt{a^{2}+b^{2}}$	$\mathrm{sqrt}\left(\mathrm{a}^{\left.* * 2+\mathrm{b}^{* *} 2\right)}\right.$	Import the sqrt function from the math module
π	pi	pi is a constant declared in the math module

Balanced Parentheses

- The following formula

$$
((a+b) * t / 2 *(1-t)
$$

is not correct. The parentheses are not balanced.

- Check: count from left to right starting at 0, add 1 for a left bracket, subtract 1 for a right bracket. In this case,

012121

- What about $(\mathrm{a}+\mathrm{b}))^{*}\left(\mathrm{t} / 2^{*}(1-\mathrm{t})\right.$?

010-1010

- The parentheses are balanced if and only if
- the count is always non-negative and
- the final count is 0

Examples of Function Calls

- price = 124
rate $=0.173$
tax1 $=$ round(price*rate, 2) $\quad \#$ price*rate $=21.452$ \# round to 2 decimal places
tax2 $=$ round(price*rate)
\# round to the nearest integer
\# The value of tax1 is 21.45 . The value of $\operatorname{tax} 2$ is 21 .
- best $=\min$ (price1, price2, price3, price4)
\# The function min has an arbitrary number of arguments

Standard Library

- All Python systems have the standard library
- The standard library contains built in functions that can be used immediately in your programs, e.g. abs, float, int, input, min, max, print, round ...
- The standard library also contains a math module with functions such as sqrt, cos, sin, tan, exp, etc.
- See PFE Appendix D

Selected Functions in the Math Module

Function	
$\operatorname{sqrt}(\mathrm{x})$	The square root of $\mathrm{x}(x \geq 0)$
$\operatorname{trunc}(\mathrm{x})$	Truncates floating-point value x to an integer
$\cos (\mathrm{x})$	The cosine of x radians
$\sin (\mathrm{x})$	The sine of x radians
$\tan (\mathrm{x})$	The tangent of x radians
$\exp (\mathrm{x})$	e^{x}
degrees (x)	Convert x radians to degrees (returns $\mathrm{x} 180 / \pi)$
radians (x)	Convert x degrees to radians (returns $\mathrm{x} \pi / 180)$
$\log (\mathrm{x})$ $\log (\mathrm{x}$, base $)$	The natural logarithm of x (to base e$)$ or the logarithm of x to the given base

Obtaining a math Module Function

- To use e.g. sqrt, put this statement at the top of the program from math import sqit
- Multiple functions can be obtained using a single statement from math import sqrt, sin, cos
- To obtain everything use from math import *
- See PFE Appendix D, math Module

Exercise

- Write the following mathematical expressions in Python
- $s=s_{0}+v_{0} t+\frac{1}{2} g t^{2}$
- $G=4 \pi^{2} \frac{a^{3}}{p^{2}\left(m_{1}+m_{2}\right)}$
- $F V=P V\left(1+\frac{I N T}{100}\right)^{Y R S}$
- $c=\sqrt{a^{2}+b^{2}-2 a b \cos (\gamma)}$

Roundoff Errors

price $=4.35$
quantity $=100$
total = price * quantity \# Should be 100 * $4.35=435$ print(total)
\# Prints 434.99999999999994
\# The number 4.35 cannot be represented exactly as a \# binary floating point number

User Input

first = input("Enter your first name: ")
\# The input function displays the string argument (prompt) in \# the console window and places the cursor on the same line, \# immediately following the string.

Enter your first name:
\# The program waits until the user types a string followed
\# by Enter. The string is stored as the value of first.

Numerical Input

userInput = input("Please enter the number of bottles: ")
bottles = int(userInput)
\# The input function reads in a string and returns the string to
\# the calling program. The function int converts the string to
\# an integer.
bottles = int(input("Please enter the number of bottles: "))
userInput2 = input("Enter price per bottle: ")
price $=$ float(userInput2)
\# The function float converts the string to a floating point value. price = float(input("Enter price per bottle: "))

The Function int

print(int("5"))
\# print 5
print(int("test"))
\# invalid literal for int
print(int(7.6))
\# truncate to 7 , not round to 8
print(int(-7.6))
\# truncate to -7 , not round to -8
print(int("5.6"))
\# invalid literal for int, one-step transformation only

Description of int in Appendix D

The Python Standard Library
Built-in Functions
int(x)
This function converts a number or string to an integer.
Parameter: x A string or numerical value
Returns:
The new integer object

The Function float

print(float("5"))
\# print 5.0
print(float("test"))
\# ValueError: could not \# convert string to float
print(float("7.6"))
\# print 7.6
print(float(7.6))
\# print 7.6
print(float("3E2")) \# print 300.0
print(float("3e2"))
\# print 300.0

Remark: print(int("5.6")) error, but print(float("5")) works

Vending Machine

Write a program that simulates a vending machine.
A customer selects an item for purchase and inserts a bill into the vending machine. The vending machine dispenses the purchased item and gives change.

Assumption 1: only one bill is inserted to purchase an item
Assumption 2: only one item is purchased at a time
Assumption 3: the bill is no less than the purchase price
Assumption 4: all item prices are multiples of 25 cents
Assumption 5: the machine gives all change in dollar coins (1 dollar) and quarters (25 cents).

Compute how many coins of each type to return

Preliminaries

Step 1: identify inputs and outputs.

Step 2: Work out an example by hand, e.g. the item costs $\$ 2.25$ and a $\$ 5$ bill is inserted.

Step 3: Write pseudo code for computing the answers.

Coding

Step 4: Declare the variables and constants that are needed.

Step 5: Turn the pseudo code into Python statements.

Step 6: Provide input and output.

Step 7: Write the program.

