Introduction to Programming

Department of Computer Science and Information Systems

Lecturers: Tingting Han and Steve Maybank sjmaybank@dcs.bbk.ac.uk
Autumn 2019 and Spring 2020

Week 7: if Statement

Revision: Relational Operators

- $5>4$
\# True
- $5>=7$
\# False
- "9032" < "0AB"
\# False
- "ABC" <= "AB"
\# False
- $48==30+18$
\# True
- "AB" != "ABC"
\# True

Revision: Lexicographic Ordering

- Given strings s1, s2 such that neither string is a prefix of the other, find the least non-negative value of i such that

$$
s 1[i] \neq s 2[i]
$$

- The ordering of $s 1, s 2$ is the same as the ordering of $s 1[i], s 2[i]$
- Example, $\mathrm{i}=4$ and " h " < " n ", therefore "alight" < "aligned"

a	l	i	g	n	e	d
a	l	i	g	h	t	
0	1	2	3	4	5	6

What happens if one of the strings s1, s2 is a prefix of the other?

Revision: Boolean Operators

- The Boolean operators in Python are and, or and not
- and, or and not are used to make new Boolean expressions, e.g.

```
a or b and c
(a or b) and c a or (b and c)
```

- 5 == 0 and 6 == 0
\# False
- $5=0$ or $5>4$
\# True
- not(5 == 0)
\# True

Revision: Short Circuit Evaluation

- Boolean statements x and y, x or y are evaluated left to right.
- Evaluation stops as soon as the truth value of the statement is determined.
- Example
- False and $3 / 0$
- False
- True and $3 / 0$
- ZeroDivisionError: integer division or modulo by zero
- True or $3 / 0$
- True
- False or $3 / 0$
- ZeroDivisionError: integer division or modulo by zero

if Statement

- Motivation Example - there is no $13^{\text {th }}$ floor!
- How to get the actual floor number?
- For instance to calculate the distance between the floor and the ground

if Statement

- Example - there is no $13^{\text {th }}$ floor!

```
actualFloor = 0 # define variable
if floor > 13 :
    actualFloor = floor - 1
else :
    actualFloor = floor
```


Alternative if Statement

```
actualFloor = 0 # define variable
if floor > 13 :
    actualFloor = floor - 1
else :
    actualFloor = floor
```

Alternative way :

```
actualFloor = floor
if floor > 13 :
    actualFloor = actualFloor - 1
```


Flow Chart

Parts of an if Statement

```
if floor > 13 : # The condition floor > 13 is True or False
        actualFloor = floor-1 # execute only if the condition is True
else :
    actualFloor = floor # execute only if the condition is False
# Align if and else
# Indent the statements in each branch
```


Syntax of if Statements

- Version 1

```
if condition :
    statements
```

- Version 2

$$
\begin{aligned}
& \text { if condition : } \\
& \text { statements_1 } \\
& \text { else : } \\
& \text { statements_2 }
\end{aligned}
$$

\# The colon indicates the start of a compound statement

Compound Statement

- A compound statement contains a header followed by a statement block. Example:

```
if totalSales > 100.0 : # Colon indicates the header
    discount = totalSales * 0.05 # Block of statements
    totalSales = totalSales - discount
    print("You received a discount of", discount)
```

\# All the statements in the block have the same indentation

An if Statement Example

```
if floor > 13 :
    actualFloor = floor - 1
    print("Actual floor:", actualFloor)
else :
    actualFloor = floor
    print("Actual floor:", actualFloor)
```

- Where could the code be improved?

Avoid Duplication

- Avoid

```
if floor > 13 :
    actualFloor = floor - 1
    print("Actual floor:", actualFloor)
else :
    actualFloor = floor
    print("Actual floor:", actualFloor)
```

- and prefer

```
if floor > 13 :
    actualFloor = floor - 1
else :
    actualFloor = floor
print("Actual floor:", actualFloor)
```


What's the difference?

- Program 1

```
if floor > 13 :
    actualFloor = floor - 1
    else :
    actualFloor = floor
print("Actual floor:", actualFloor)
```

- Program 2

Indentation plays an important role!

```
if floor > 13 :
    actualFloor = floor - 1
    else :
        actualFloor = floor
        print("Actual floor:", actualFloor)
```


Example 1

- The university bookstore has a Kilobyte Day sale every October 24, giving an 8\% discount on all computer accessory purchases if the price is less than $\$ 128$, and a 16% discount if the price is at least $\$ 128$.
- Write a program that asks the cashier for the original price and then prints the discounted price.

Example 1 - Solution

Giving an 8\% discount on all computer accessory purchases if the price is less than $\$ 128$, and a 16% discount if the price is at least $\$ 128$.
originalPrice = float(input("Please input the original price:"))
if originalPrice < 128.0 :

$$
\text { discountedPrice }=\text { originalPrice } *(1-0.08)
$$

else :

$$
\text { discountedPrice }=\text { originalPrice } *(1-0.16)
$$

print("The discounted price is", discountedPrice)

Avoid "Hard-Wiring"

highPriceThreshold $=128.0$
lowDiscountRate $=0.08$
highDiscountRate $=0.16$
originalPrice = float(input("Please input the original price:"))
if originalPrice < highPriceThreshold : discountedPrice $=$ originalPrice $*(1-$ lowDiscountRate $)$
else :

$$
\text { discountedPrice }=\text { originalPrice } *(1-\text { highDiscountRate })
$$

print("The discounted price is", discountedPrice)

Shipping Costs Example

- Shipping costs are $\$ 5$ inside the USA except that to Hawaii and Alaska they are $\$ 10$. International shipping costs are $\$ 10$.
- First design: use a single if statement to distinguish between the $\$ 5$ cost and the $\$ 10$ cost
if(country!="USA" or (country=="USA" and (state == "AK" or state == "HI"))) :
ShippingCost $=10$
else :
ShippingCost $=5$

Second Design

- Shipping costs are $\$ 5$ inside the USA except that to Hawaii and Alaska they are $\$ 10$. International shipping costs are $\$ 10$.
- Separate the three branches:
- i) inside the USA and in Hawaii or Alaska;
- ii) inside the USA and not in Hawaii or Alaska;
- iii) outside the USA.
if country == "USA" :
if state == "AK" or state == "HI" :
shippingCost = 10
else :
shippingCost $=5$
else :

$$
\text { shippingCost = } 10
$$

Richter Scale

The Richter scale (or ML scale) rates earthquakes on an exponential scale, so that if an earthquake is rated 1, you can hardly feel it, but an earthquake rated 2 is ten times as strong as an earthquake rated 1 , and an earthquake rated 3 is ten times as strong as an earthquake rated 2.

Value Putential Hazard

10	Extraordinary
9	Outstanding
8	Far-reaching
7	High
6	Noteworthy
5	Intermediate
4	Moderate
3	Minor
2	Low
1	Insignificant

Richter Scale

Value	Effect
8	Most structures fall
7	Many buildings destroyed
6	Many buildings considerably damaged, some collapse
4.5	Damage to poorly constructed buildings

Write a program to print out the Richter scale using if/else statements.

The if-else Statement

if richter >= 8.0 :
print("Most structures fall")
else:
if richter >= 7.0 :
print("Many buildings destroyed")

Value	Effect
8	Most structures fall
7	Many buildings destroyed
6	Many buildings considerably damaged, some collapse
4.5	Damage to poorly constructed buildings

else:
if richter >=6.0: print("Many buildings considerably damaged")
else:
if richter $>=4.5$: print("Damage to poorly constructed buildings")
else : print("No destruction of buildings")

The elif Statement

if richter $>=8.0$: print("Most structures fall")
elif richter >= 7.0 :
print("Many buildings destroyed")
elif richter >=6.0:
print("Many buildings considerably damaged, some collapse")
elif richter >= 4.5 :
print("Damage to poorly constructed buildings")
else :
print("No destruction of buildings")

The elif Statement Flowchart

Questions

- What happens if the order of the tests is reversed? Is this correct?
if richter >= 4.5 :
print("Damage to poorly constructed buildings")
elif richter >= 6.0 :
print("Many buildings considerably damaged, some collapse")
elif richter >= 7.0 :
print("Many buildings destroyed")
elif richter >= 8.0 :
print("Most structures fall")
else :
print("No destruction of buildings")

Value	Effect
8	Most structures fall
7	Many buildings destroyed
6	Many buildings considerably damaged, some collapse
4.5	Damage to poorly constructed buildings

Questions

- Change the order, change the comparison
if richter < 4.5 :
print("No destruction of buildings")
elif richter < 6.0 :
print("Damage to poorly constructed buildings")
elif richter < 7.0 :
print("Many buildings considerably damaged, some collapse")
elif richter < 8.0 :
print("Many buildings destroyed")
else :
print("Most structures fall")

Value	Effect
8	Most structures fall
7	Many buildings destroyed
6	Many buildings considerably damaged, some collapse
4.5	Damage to poorly constructed buildings

Example

- In a game program, the scores of players A and B are stored in variables scoreA and scoreB.
- Assuming that the player with the larger score wins.
- Write an if/elif sequence that prints out "A won", "B won" or "Game tied".

Example

```
scoreA = int(input(Please enter player A's score))
scoreB = int(input(Please enter player B's score))
if scoreA > scoreB :
    print("A won")
elif scoreB > scoreA :
    print("B won")
else:
        print("Game tied")
```


Input Validation

- Check user supplied input to see if it has the correct form.
- Example: in the elevator simulation let maxFloor be the largest floor number. The following inputs are illegal.
i) 13
ii) 0 or a negative number (in the USA)
iii) any number > maxFloor
iv) Any input not a sequence of digits

Error Messages

floor = int(input("Floor: "))
\# if the input is non digital then there is a run time exception
\# and the program terminates.

```
if floor == 13 : print("Error: there is no 13th floor")
```

if floor <= 0 or floor > maxFloor : print("Error: the floor must be between 1 and", maxFloor)

Example Code

floor = int(input("Floor: "))
\leftarrow input
\leftarrow input validation
elif floor <= 0 or floor > maxFloor :
print("Error: the floor must be between 0 and", maxFloor)
else :

```
    actualFloor = floor
    if floor > 13 :
        actualFloor = actualFloor - 1
```


Exercise

print("Buy pasta")
if weather == "sunny":
print("Buy salad") print("Buy olives")
print("Buy wine")

What items will be bought if

1) it is cloudy?
2) it is sunny?
