i Introduction to Programming

Department of Computer Science and Information
Systems

Lecturers: Tingting Han and Steve Maybank
sjmaybank@dcs.bbk.ac.uk
Autumn 2019 and Spring 2020

Week 9: Functions

Birkbeck College, U. London 1

mailto:sjmaybank@dcs.bbk.ac.uk

i Exercise 2: Vowels

= Input a string, print out the characters in a
vertical line, then count the number of
lowercase vowels in the string.

Birkbeck College, U. London

Exercise 2: code

s = input("Enter a string:")
n=0

for letter in s :
print(letter)

if letter ==

n =n+l

or letter == or letter == or letter == or letter == "u

print("The number of vowels is", n)

Birkbeck College, U. London 3

Exercise 2: code

s = input("Enter a string:")
n=20

for letter in s :

print(letter)

If letter == "a" or letter == "e" :
n = n+l1

elif letter == "i" or letter == "0" or letter == "u" :
n =n+l1

print("The number of vowels is", n)

Birkbeck College, U. London

Exercise 2: code

s = input("Enter a string:")
n=0

for letter in s :
print(letter)
if letter in "aeiou" :

n=n+l

print("The number of vowels is", n)

Birkbeck College, U. London

‘L Exercise 3: number properties

= Write a program to input a non-empty list of strictly
positive integers from the keyboard.

= The end of the input is indicated by 0.

= The program then prints out the following numbers.
The average

The smallest of the values

The largest of the values

The range

Birkbeck College, U. London 6

Exercise 3: code(1)

number = int(input("Enter a strictly positive integer (0 to finish): "))

count =1 # number of inputs
total = number # total of the inputs
mXx = number # maximum value
mn = number # minimum value

while number > 0 :
number = int(input("Enter a strictly positive integer (0 to finish): "))
if number =0 :
count = count + 1
total = total + number
mx = max(mx, number)
mn = min(mn, number)

print("The average value is", total/count)
Birkbeck College, U. London

Exercise 3: code(2)

print("The average value is", total/count)
print("The smallest value is", mn)
print("The largest value is", mx)
print("The range is", mx-mn+1)

Birkbeck College, U. London

‘L Functions are Tools

Name What it does Input Output

To use a tool, we don't need to know how it is implemented.
To build a tool, we do need to know how it's implemented.

i Functions

= A function is a sequence of instructions with a name.
= When a function is called, the instructions are executed.

= When the execution of the instructions is complete, the
function may return a value to the calling program.

PFE Section 5.1

10

Example

price = round(6.8275, 2)

The function round is called with arguments 6.8275 and 2.
round returns the number 6.83, which becomes the value of price.

The computations within round are hidden from the calling program.

PFE Section 5.1 11

i Function Definition

def cubeVolume(sideLength) : # function header
volume = sideLength**3 # function body
return volume # function body

name of function: cubeVolume

Name of parameter variable: sideLength

def and return are reserved words

return exits the function and returns the result

PFE Section 5.2

12

Compile Time Error

print (cubeVolume (10)) #when function is used/called
def cubeVolume (sideLength) : #when function is created/defined
volume = sidelLength**3

return volume

The function cubeVolume is called before it is known to the program

PFE Section 5.2 13

Calling a Function from Within a Function

def main() : #main() is defined

result = cubeVolume (2)
print ("A cube with side length 2 has volume", result)

The definition of cubeVolume is not required when main is defined

def cubeVolume (sideLength) : #cubeVolume() is defined
volume = sideLength**3

return volume

main () #main() is called, cubeVolume() is called
The definition of cubeVolume is required when main is called

JFE Section 5.2 14

Compile Time Error

def main() : #fmain() 1is defined
result = cubeVolume (2)
print ("A cube with side length 2 has volume", result)

The definition of cubeVolume is not required when main is defined

main () #fmain() 1s called, cubeVolume () is called

The definition of cubeVolume is required when main is called

def cubeVolume (sideLength) : #cubeVolume () i1s defined
volume = sideLength**3

return volume

JFE Section 5.2 15

Function Comments

##
Computes the volume of a cube.
@param sidelength the length of a side of the cube
(@Qreturn the volume of the cube
#
def cubeVolume (sidelLength)
volume = sidelLength**3

return volume

Function comments explain the purpose of the function and
the meaning of the parameter variables and the return value.

PFE Section 5.2

i Parameter Passing

= When a function is called, variables are created for
receiving the function’s arguments.

= These variables are called parameter variables or
formal parameters.

= The values supplied to a function when it is called
are the arguments or the actual parameters.

PFE Section 5.3

17

Example

def cubeVolume (sidelLength)
volume = sideLength**3

return volume

result = cubeVolume (2)

The parameter variable sideLength is created when cubeVolume is called
sideLength is initialised with the value 2

The expression sideLength**3 is evaluated, giving 8.

The value 8 is assigned to the variable volume

The function returns. All of its variables are removed. The return value 8
is assigned to the variable result.

PFE Section 5.3 18

Multiple Function Calls

def cubeVolume (sideLength)
volume = sideLength**3

return volume

resultl = cubeVolume (2)
result?2 = cubeVolume (10)

The variables sidelLength and volume used in the
calculation of result1 are discarded.

#New variables are created for the calculation of result?2.

PFE Section 5.4

19

def £ (x)
return g(x) + sqgrt(h(x))

def g (x)

return

s # Evaluate f(2) and g(h(2))

def h (x)

return x * x + k(x) - 1

def k(x)

return 2 * (x + 1)

PFE R5.4 20

Cases

def cubeVolume (sidelLength)
if sidelength < 0 : # deal with the exceptional case
return 0O

else

return sidelLength**3 # then deal with the usual case

Alternative definition
def cubeVolume (sideLength)

if sidelLength < 0
return 0

return sidelength**3

PFE Section 5.4

21

Branches of a Function

A branch of a function consists of a sequence of instructions that
are carried out when the function is evaluated

This function has two branches, one for sideLength < 0 and
one for sideLength > 0.

def cubeVolume (sidelLength)
if sidelLength < 0
return O
else :

return sidelLength**3

PFE Section 5.4

22

i Branches and Return Values

If a function includes return, then every branch should return a value

def cubeVolume (sideLength)
if sidelLength = 0

return sidelLength**3

Error, no return value for sideLength < 0.
The compiler does not report the error.

v = cubeVolume (-1) # returns a special value None

PFE Section 5.4 23

Scope

= The scope of a variable is the part of the program in which it can be accessed.

= A local variable is a variable defined in a function. The scope extends from the
line in which it is defined to the end of the function.

def main ()
sum = 0
for 1 in range(11l)
square = 1 * 1
sum = sum + square

print (square, sum)
How many local variables are there? What is the scope of each?

PFE Section 5.8 24

Scope

= The scope of a variable is the part of the program in which it can be accessed.

= A local variable is a variable defined in a function. The scope extends from the
line in which it is defined to the end of the function.

def main ()

sum = 0 # first line in the scope of the local variable sum

for i in range(11) : # first line in the scope of the local variable i
square = 1 * i # first line in the scope of the local variable square
sum = sum + square

print (square, sum) # last line in the scope of sum, i, square

Note: main() has no return value

PFE Section 5.8 25

Stepwise Refinement

e +
i li*i*i |
e +
Y 1]
| 2 8
| 20| 8000|
e +

Divide the task of printing
this table into a sequence

of simpler tasks. (PFE, Ch.

5.7, self check 30)

PFE Section 5.7

26

+---—-+
|0
+---—-+
|1
| 2]
| 20]
+---—-+

Solution

printSeparator

printHeader

printSeparator

printBody

printSeparator

PFE Section 5.7

27

Solution

def printSeparator():
separator ='+' + '-'*5 + '+ + '“'"*11 + '+

_____ T print(separator) / /
i | j X% il def printHeader():

header ='|' + '%5s' % 'i' + '|' + '%11s' % 'i*i*i' + '’

_____ Fommmmmmt print(header)
1] 1| def printBody(): \ \
2| 8] for i in range(1,21):

string ="'+ '%5d' % i +'|' + '%11d' % i**3 +'|'
print(string)

20| 8000| def main():
________________ printSeparator()
T + printHeader()
printSeparator()
printBody()
printSeparator()

main() PFE Section 5.7 28

Example

Write a function

def repeat(string, n, delim)

that returns st ring repeated n times, separated by the
string de 1 im. For example

repeat ("ho", 3, ", ")

returns "ho, ho, ho"
(not "ho, ho, ho, " 1)

PFE P5.5

29

Solution

def repeat(string, n, delim) :
if n<=0:
return "n should be greater than 0" #error message
else:
s = string
for i in range(1,n):
S = s + delim + string
return s

def main():
strg = input("Please enter the string to be repeated:")
num = int(input("Please enter the number of times to be repeated:"))
deliminator = input("Please enter the deliminator to separate the strings:")
print(repeat(strg, num, deliminator))

main()

PFE P5.5

30

Alternative Solution

def repeat(string, n, delim) :

if n<=0:
return "n should be greater than 0" #error message
else:
s = string
s =s + (delim + string) * (n- 1)
Alternatively, we can write B
s += (delim + string) * (n - 1)
return s
def main():

strg = input("Please enter the string to be repeated:")

num = int(input("Please enter the number of times to be repeated:"))
deliminator = input("Please enter the deliminator to separate the strings:")
print(repeat(strg, num, deliminator))

main()
PFE P5.5

31

