Introduction to Programming

Department of Computer Science and Information

 SystemsLecturer: Steve Maybank
sjmaybank@dcs.bbk.ac.uk

Spring 2020

Revision of the Summer 2017 Examination

Question 1a

Which of the following are names of variables
_3y6
$3 y _6$
Y3-6
\# adjacent underscores
p08

Rules for the Names of Variables

- The only characters allowed are numbers, letters and underscore
- A name cannot begin with a number

Question 1b

- What are the final values of a, b, c, d, e ?
- $p=3$
- $q=2$
- $a=p+q^{*} 4$
- $\mathrm{b}=10 * * \mathrm{p} * * \mathrm{q}$
- c = 5*p-q/5
- d = 5-(4-(3-(2-p)))
- $e=p \% 2+q \% 2$

Operators and Precedence

- Exponentiation: **
- Times: * Real Division: / Remainder: \%
- Plus: + Minus: -
- Apply the highest precedence operator first:
- $25 \% 2^{* *} 3$
- If the operators have the same precedence then evaluate left to right:
- 25\%3*8

Question 2b

- A swimming pool with volume poolVolume litres is initially empty. Water enters at inSpeed litres/min, but leaks away at outSpeed litres/min. Find the number mFill of minutes required to fill the pool.
- (inSpeed - outSpeed) *Mfill = poolVolume
- Note the camel case names

Volume of Water

- The volume entering the pool in one minute is (inSpeed-outSpeed)*1
- The volume entering the pool in mFill minutes is (inSpeed-outSpeed)*mFill
- The definition of mFill ensures that the last quantity is the pool volume.

Question 2c

- A train with an average speed of 100 km per hour travels from L to B in 3 hours, but it has to wait at B. As a result, the average speed is reduced to 90 km per hour. Find the waiting time.
- 90 = distance/totalTime
= distance/(journeyTime+waitingTime)
= 300/(3+waitingTime)
- waitingTime $=1 / 3$ hours

Question 3

- Find five errors in the code
import = $0 \quad$ \# import is a reserved word
if export > import : \# export not defined import $=3.0$
export $=3 \mathrm{E}-5$
print("import is"+3.0) \# string+number
else
\# missing colon
export = export//import \# division by zero

Question 4

- Write code to show "Please enter the price:" in the shell and to return a value entered at the keyboard. The returned value is converted to floating point and assigned to a variable price.
- price = float(input("Please enter the price:"))

Question 4, Second Part

- What is the value of price for each of these inputs in the shell

Please enter the price: 5
Please enter the price: " 5 "
Please enter the price: 6.2
Please enter the price: $5 * 6.2$

\# 5.0
\# error
\#6.2
\# error

Question 4, Part c (i)

- What is printed when the following code is run? print("He said\n\"Hello\" and 'Goodbye'\ntoday.")
"He ... today." \# The quotes contain a string said\n \# \n is new line
\"Hello\" \# \" is a character in a string
'Goodbye' \# ' is a character in a string
Intoday \# \n is new line

Question 4, Part c (ii) and (iii)

- What is printed when the following code is run?
houseNumber $=32$
streetName = "Hamilton Road"
print(houseNumber + streetName)
print(len("
"*3+"Harry"))
"
" \# string with the single character backslash
"
"*3 \# repeat the string three times
+ \# string concatenation

Question 4, Part c (iv) and (v)

- What is printed when the following code is run?

firstName = "Mickey"
lastName = "Mouse"
print(firstName[3], lastName[-3])

names = ["Amir", "Barry", "Chris", "Dylan"] print(names[-1][-1])

Question 5a

- What is printed? Use ~ to indicate a space
temperature $=39.8954$
print("A:", "\%d" \% temperature)
A:~39 \# \%d implies integers
print("B:", "\%.f" \% temperature)
B:~40 \# \%.f implies floating point, no fraction

Question 5a Continued 1

- What is printed? Use ~ to indicate a space
temperature $=39.8954$
print("C:", "\%s" \% temperature)
C:~39.8954 \# \%s implies string
print("D:", "\%06.2f" \% temperature)
D:~039.90 \# \%06.2f implies a field width \# of 6, 2 decimal places and 0 padding

Question 5a Continued 2

- What is printed? Use ~ to indicate a space
temperature $=39.8954$
print("E:", "\%-7d\%\%" \% temperature)
E:~39~~~~~\% \# \%-7d implies integer \# in a field of width 7 and left justified. \# \%\% implies a single character \%

Question 5b

- Write code to print the following using a multiple format specifier

Temperature:~39.9~C~~Feeling:~~~Great
st1 = "Temperature:~\%4.1f~C~~Feeling:~\%7s"
\# \%4.1f implies a field of width 4 and 1 decimal place
\# \%7s implies a string in a field of width 7
print(st1 \% (temperature, "Great"))

Question 6a

- Explain how the lexicographic ordering for characters is extended to give a lexicographic ordering for strings
- Let $\mathrm{a}, \mathrm{c} 1, \mathrm{c} 2$ be any strings. Let $\mathrm{b} 1, \mathrm{~b} 2$ be distinct characters, i.e. strings of length 1.

$$
\begin{aligned}
& \text { st1 }=a+b 1+c 1 \\
& \text { st2 }=a+b 2+c 2
\end{aligned}
$$

- If $\mathrm{b} 1<\mathrm{b} 2$ then st1 < st2. If b1 > b2 then st1 > st2

Question 6b

- space < numbers < uppercase < lowercase
- True or False:

```
"1" > "2"
"cart" < "carp"
"milestone" < "mile stone"
"Corn" < "2Corn"
"car" < "care"
```


Question 7a

wind speed	description
$\mathrm{s}<=1$	calm
$1<\mathrm{s}<=3$	light air
$3<\mathrm{s}<=7$	light breeze
$7<\mathrm{s}$	out of range

- Write nested if statements to print the correct descriptions given a non-negative value of s. Use if ... elif ... else.

Question 7a Continued

- if $s<=1$:
- print("calm")

wind speed	description
$\mathrm{s}<=1$	calm
$1<\mathrm{s}<=3$	light air
$3<\mathrm{s}<=7$	light breeze
$7<\mathrm{s}$	out of range

- elif $\mathrm{s}<=3$:
- print("light air")
- elif $\mathrm{s}<=7$:
- print("light breeze")
- else:
print("out of range")

Question 8a

- What is printed when the following code is run?

```
sumSquares \(=0\)
for \(x\) in range(3):
    sumSquares \(=\) sumSquares \(+x^{*} x\)
print(sumSquares)
```

\# x in range(3), so x takes the values $0,1,2$

Question 8b

- What is printed when the following code is run?
sumSquares $=0$
for x in range(3):
sumSquares $=$ sumSquares $+x^{*} x$ print(sumSquares)
\# x in range(3), so x takes the values $0,1,2$

Question 8c

large = float(input("Enter a number:"))

position = 1
for i in range(2,7):
x = float(input("Enter a number:"))
if $x>$ large:
large $=x$
position $=\mathrm{i}$
print("position of largest no:", position)

Question 9a

- Identify in the following code the name of a variable, the name of a function and the values of the arguments to a function
quantity $=5^{*} 8$
price $=$ round $(6.8275,2)$

Question 9c

def main(): result = cubeVolume(2) print("side length 2, volume", result)
describe the compile time error in the code.
main()
def cubeVolume(sideLength): if (sideLength <= 0) : return 0 return sideLength**3

Question 9d

- Identify the branches in the function cubeVolume
def cubeVolume(sideLength):
if (sideLength $<=0$) :
return 0
volume $=$ sideLength**3
return volume

Question 10b

- What is the length of the list scores? Which nonnegative integers can be indices to scores?

$$
\text { scores }=[17,5,3]
$$

Question 10c

- Which number is printed by the following code?
scores $=[17,5,3]$
values $=$ scores
scores[0] = 10
print(values[0])\# two names but only one list of numbers

