
Introduction to Programming

Python Lab 5:

Strings and Output

29 October 2019 or
14 February 2020

1
PythonLab5 lecture slides.ppt

Ping Brennan (p.brennan@bbk.ac.uk)

mailto:p.brennan@bbk.ac.uk

Getting Started

• Create a new folder in your disk space with the name PythonLab5

• Launch the Python Integrated Development Environment (IDLE) -
begin with the Start icon in the lower left corner of the screen.

• If you are in a DCSIS laboratory, search using the keyword Python
and click on IDLE (Python 3.6 64-bit)

A window with the title Python 3.6.2 should appear. This window
is the Shell.

2

Getting Started (2)

• If you are in the ITS laboratory MAL 109, then right mouse click on
the Start icon in the lower left corner of the screen.

A list of menu options should appear and click on Search. Type
Python in the search text box at the bottom of the pop-up
window. A list of Apps should appear and select

Python 3.4 IDLE(PythonGUI)

A window with the title Python 3.4.3 Shell should appear. This
window is the Shell.

• In the Shell click on File. A drop down menu will appear.

Click on New File. A window with the `title` Untitled should
appear. This window is the Editor.

3

Getting Started (3)

• In the Editor, click on File, and then in the drop down menu click
on Save As… .

A window showing a list of folders should appear.

– To search any folder on the list, double click on the folder.

– Find the folder PythonLab5 and double click on it.

– In the box File name at the bottom of the window

1. Type Monogram.py

2. Then click on the button Save in the lower right corner of the
window.

The title of the Editor should change to show the location of the file
Monogram.py

4

Program Monogram.py prints out a

monogram

• Learning objective: Understand how to access an individual

character from a string. A string is a sequence of characters.

– The individual characters in a string can be extracted using an
index.

For example, "Hello"[0] is the string "H" that contains the
first letter of the string "Hello". The index is 0 in this case.

Similarly, "Hello"[1] is "e", etc.

Another example, if the variable name is defined as

name = "Jim"

last = name[2]

the character at position 2 is stored

as the string "m" in the variable last
5

H e l l o

0 1 2 3 4

string

index or position

J i m

0 1 2

name

last

m

0

Program Monogram.py prints out a

monogram (2)

• Question 2: Problem statement

Write a program that prompts a user to enter his or her first

name and then prompts the user a second time to enter his or
her family name.

The program then creates a string with two characters,
consisting of the first character in the first name followed by the
first character in the family name. This string is referred to as a
monogram.

Print out the monogram together with a short statement of the
fact that it is a monogram. See PFE R2.14

6

Program Monogram.py prints out a

monogram (3)

• Problem solving - Convert the following pseudo code into a

sequence of Python statements in your program.

1. Read in the user’s first name and store the input string in
the variable first *

2. Read in the user’s family name and store the string in the
variable surname *

3. Create a string with two characters, consisting of the first
character in the first name followed by the first character in
the family name. Hint: use the + operator to concatenate
strings, that is, first[?] + surname[?] replace the ?

with a suitable index for the first character of each string.

4. Print out the monogram (that is, the string created in step 3
above), together with a short statement of the fact that it is
a monogram.

Note *: Use the function input to read in the user’s first name and family
name, e.g. first = input("Enter your first name: ") 7

Program Monogram.py prints out a

monogram (4)

• Provide a comment at the beginning of the program to explain
the purpose of the program along with your name and the date.

• Save the program to the file Monogram.py and then run it.

8

Program LargeLetters.py: Writing

Large Letters

• Create a new Editor for a new file called LargeLetters.py

• Question 3: Problem statement

A large letter H can be produced like this.

The grid is included to ensure that the asterisks are in the right places
on this page. It is not necessary for the program to create or print out
a grid. Note that the print out of a string literal can be forced to a new
line using the escape character \n. For example,

print("* *\n* *")

prints out the first two rows of the grid in the form
* *

* * 9

* *

* *

* * * * *

* *

* *

Field width for five characters

Program LargeLetters.py: Writing

Large Letters (2)

• Problem statement (continued)

– In your program create a string literal LETTER_H such that

the instruction

print(LETTER_H)

produces a large letter H.

– Create large versions of the letters E, L, O and write the
message HELLO in large letters as follows,

H

E

L

L

O

See PFE, P2.18.

10

Program LargeLetters.py: Writing

Large Letters (3)

• Problem solving - Convert the following pseudo code into a

sequence of Python statements in your program.

1. Create a string literal LETTER_H as follows

LETTER_H = "* *\n* *\n*****\n* *\n* *"

2. Create a string literal LETTER_E in a similar way as step 1
above.

3. Create a string literal LETTER_L in a similar way as step 1.

4. Create a string literal LETTER_O in a similar way as step 1.

5. Print out each string literal, in the order shown below:

print(LETTER_H)

print(LETTER_E)

print(LETTER_L)

print(LETTER_L)

print(LETTER_O) 11

Program LargeLetters.py: Writing

Large Letters (4)

• Provide a comment at the beginning of the program to explain
the purpose of the program together with your name and the
date.

• Save the program to the file LargeLetters.py

• Run your program.

12

Program AlignedNumbers.py: Aligned

Numbers

• Create a new Editor for a new file called AlignedNumbers.py

• Learning objective: Understand how to format output using

the String format operator.

– Consider the following statements,

x = 78

print("A useful number: %5d" % x)

When they are executed the output in the Shell window is

A useful number:

– The format specifier %5d creates a field with five

characters. The number 78 is placed in the field and right
justified. The remaining entries in the field are spaces.

There is an additional space in the string "A useful number: ".
Thus there is a total of four spaces between the colon and the
number 78 in the print out. If a field of 6 characters is required
then the format specifier %6d is used, etc.

Note: use d with an integer. 13

7 8

Program AlignedNumbers.py: Aligned

Numbers (2)

• Recall that the % symbol is used to find the remainder of a floor

division. However, that is only the case when the values on the
left and right of the remainder operator are both numbers.

• If the value on the left of the % symbol is a string, in this case "A
useful number: %5d", then the % symbol becomes the

string format operator.

• The letter d at the end of the format specifier shows that we are

formatting an integer value.

14

Program AlignedNumbers.py: Aligned

Numbers (3)

• Question 4: Problem statement

Write a program that prompts the user for two non-negative
integers, calculates the sum s and the product p of the two
integers and then displays s and p right justified. For example,

if the sum is 22 and the product is 121, then the display is

Sum: 22

Product: 121

Choose the two format specifiers such that s and p are

aligned, provided the two integers which are input each have at
most three digits. See PFE P2.5.

15

Program AlignedNumbers.py: Aligned

Numbers (4)

• Problem solving - Convert the following pseudo code into a

sequence of Python statements in your program.

1. Read in the first non-negative integer, as follows

a = int(input("Enter a non-negative integer: "))

2. Read in the second non-negative integer in a similar way as
step 1, and store the user input in the variable b.

3. Calculate the sum s of the two integers and then print out
s right justified.

4. Calculate the product p of the two integers and then print
out p right justified.

16

Program AlignedNumbers.py: Aligned

Numbers (5)

• Think about: What happens if s or p is larger than expected?

• Provide a comment at the beginning of the program to explain
the purpose of the program together with your name and the
date.

• Save the program to the file AlignedNumbers.py

• Run your program.

17

Supplementary Questions for Private
Study

• The laboratory worksheet contains supplementary questions in
section 5 for private study.

• You are encouraged to complete the supplementary questions at
home, or in the laboratory if you have time after completing
questions 2 to 4.

18

