
Introduction to Programming

Python Lab 7:

if Statement

12 November 2019
or 28 February 2020

1
PythonLab7 lecture slides.ppt

Ping Brennan (p.brennan@bbk.ac.uk)

mailto:p.brennan@bbk.ac.uk

Getting Started

• Create a new folder in your disk space with the name PythonLab7

• Launch the Python Integrated Development Environment (IDLE) -
begin with the Start icon in the lower left corner of the screen.

• If you are in a DCSIS laboratory, search using the keyword Python
and click on IDLE (Python 3.6 64-bit)

A window with the title Python 3.6.2 should appear. This window
is the Shell.

2

Getting Started (2)

• If you are in the ITS laboratory MAL 109, then right mouse click on
the Start icon in the lower left corner of the screen.

A list of menu options should appear and click on Search. Type
Python in the search text box at the bottom of the pop-up
window. A list of Apps should appear and select

Python 3.4 IDLE(PythonGUI)

A window with the title Python 3.4.3 Shell should appear. This
window is the Shell.

• In the Shell click on File. A drop down menu will appear.

Click on New File. A window with the `title` Untitled should
appear. This window is the Editor.

3

Getting Started (3)

• In the Editor, click on File, and then in the drop down menu click
on Save As… .

A window showing a list of folders should appear.

– To search any folder on the list, double click on the folder.

– Find the folder PythonLab7 and double click on it.

– In the box File name at the bottom of the window

1. Type QuizGrading.py

2. Then click on the button Save in the lower right corner of the
window.

The title of the Editor should change to show the location of the file
QuizGrading.py.

4

Objectives of the exercises set

• Understand the use of multiple if statements to solve

problems that have several levels of decision making.

Python provides the special construct elif for creating if

statements containing multiple branches (selections).

When using multiple if statements, we usually test general

conditions after we test the more specific conditions first.

• Use relational operators in conditions that involve comparing two
values.

5

Python relational operators Description

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

== Equal

!= Not equal

Objectives of the exercises set (2)

• An if statement is used to implement a decision. When a
condition is satisfied (that is, True), one set of statements is

executed. Otherwise, another set of statements is executed.

• The syntax of an if statement with No else branch is shown

below. The colon indicates the header.

Note: Indent the block of statement(s) in the True branch. 6

Syntax Example Flow chart for if statement
with No else branch

if condition :

statement(s)

floor = int(input("Floor: "))

actualFloor = floor

if floor > 13 :

actualFloor = actualFloor – 1

True branch - execute the

statement above only if the

condition is True

floor

> 13?

actualFloor =

actualFloor - 1

True

Condition

False

No else
branch

Objectives of the exercises set (3)

• The syntax of an if statement with else branch is shown

below. The colon indicates a header.

Note: Align if and else

Indent the block of statement(s) in each branch.
7

Syntax Example Flow chart for if statement
with else branch

if condition :

statement(s)

else :

statement(s)

floor = int(input("Floor: "))

actualFloor = 0

if floor > 13 :

actualFloor = floor – 1

True branch - execute

only if the condition

is True

else :

actualFloor = floor

False branch - execute

only if the condition

is False

floor

> 13?

actualFloor

= floor - 1

actualFloor

= floor

True False

Condition

Syntax Example

if condition :

statement(s)

elif condition :

statement(s)

else :

statement(s)

scoreA = int(input("Enter a score for player A: "))

scoreB = int(input("Enter a score for player B: "))

if scoreA > scoreB :

print("A won")

elif scoreB > scoreA :

print("B won")

else :

print("Game tied")

Objectives of the exercises set (4)

• The syntax of an elif statement is as follows.

Note: Align if, elif and else

Indent the statements in each branch.

• Understand the use of the remainder operator % in an

arithmetic expression.
8

Program QuizGrading.py: Quiz grading

• Question 2: Problem statement

Write a program that inputs an integer from the keyboard. This

integer is the score. Use an appropriate prompt.

A letter grade is assigned to the score, according to the following
table.

Include in your program a statement to print the letter grade,
together with an appropriate description. See Python for Everyone,
R3.18.

9

Score Grade

90-100 A

80-89 B

70-79 C

60-69 D

<60 E

Program QuizGrading.py: Quiz grading (2)

• Problem solving – the flow chart below illustrates a possible
solution.

10

Read in a score

score

>=90?

Print the

letter grade A

True

score

>=80?

False

Print the

letter grade B

Print the

letter grade C
score

>=70?

score

>=60?

Print the

letter grade D

Print the

letter grade E

False

False

False

True

True

True

Program QuizGrading.py: Quiz grading (3)

• Problem solving - Convert the pseudo code below into a

sequence of Python statements in your program.

1. Read in an integer and store it in the variable score*.

2. Write the statements below to check if the score is greater than or
equal to 90, and then print the letter grade A in the True branch.

if score >= 90 :

print("Grade A") # True branch

3. Add the following statements to check if the score is greater than or
equal to 80, and then print the letter grade B.

elif score >= 80 :

print("Grade B") # True branch

4. Write elif and print statements similar to step 3 to check if the
score is greater than or equal to 70, and then print the letter grade C.

*Hint: First use the input function to read in a numeric value typed in at the
keyboard. Then use the function int to convert the input string to an integer
and store it in the variable score.

11

Input

Process
the input
and
display
the
correct
output
(steps 2
to 6).

Program QuizGrading.py: Quiz grading (4)

• Problem solving (continued)

5. Write elif and print statements similar to step 3 to check if the
score is greater than or equal to 60, and then print the letter grade D.

6. Lastly, add the statements below to print the letter grade E using the
else statement.

else :

print("Grade E")

• Provide a comment at the beginning of the program to explain
the purpose of the program together with your name and the
date.

• Save the program to the file QuizGrading.py and then run it.

Note: Align if, elif and else. You must add a colon at the

end of the statement. You must also indent the statement block in
each branch so that it is part of the if, elif or else statement.

12

Program LeapYear.py: Leap year

• Create a new Editor for a new file called LeapYear.py

• Question 3: Problem statement

A year with 366 days is called a leap year. Usually years that are
divisible by 4 are leap years, for example, 1996. However, years
that are divisible by 100 are not leap years, unless the year is also
divisible by 400.

Write a program that asks the user for a year and computes
whether the year is a leap year. Use an appropriate print
statement to display the result of the computation.

See Python for Everyone, P3.27.

13

Program LeapYear.py: Leap year (2)

• Problem solving - The following method can be used to

check:

o If a year is divisible by 4 but not by 100, it is a leap year.

o If a year is divisible by 4 and by 100, it is not a leap year
unless it is also divisible by 400.

• Three conditions to consider - we usually start with the tests for
the more specific conditions first before testing the general
conditions.

(year%400) == 0 # First condition tests if

year is divisible by 400

(year%100) == 0 # Second condition tests if

year is divisible by 100

(year%4) == 0 # Third condition tests if

year is divisible by 4

14

Program LeapYear.py: Leap year (3)

• Problem solving - Convert the pseudo code below into a

sequence of Python statements in your program.

1. Read in an integer and store it in the variable year

2. Write the statements below to check if the year is divisible by
400, and then print out the message, Leap year

if year%400 == 0 :

print("Leap year") # True branch

3. Add the statements below to check if the year is divisible by
100, and then print the message, Not a leap year, in the

True branch.

elif year%100 == 0 :

print("Not a leap year") # True branch

4. Write elif and print statements similar to step 3 to check if
the year is divisible by 4, and then print the message, Leap
year

15

Input

Process
the input
and
display
the
correct
output
(steps 2
to 5).

Program LeapYear.py: Leap year (4)

• Problem solving (continued)

5. Lastly, add the statements below to print the message, Not a
leap year

else :

print("Not a leap year")

• Provide a comment at the beginning of the program to explain
the purpose of the program together with your name and the
date.

• Save the program to the file LeapYear.py and then run it

16

Supplementary Questions for Private
Study

• The laboratory worksheet contains supplementary questions in
section 4 for private study.

• You are encouraged to complete the supplementary questions at
home, or in the laboratory if you have time after completing
questions 2 to 3.

17

Appendix A Testing different user
inputs for the leap year problem

• The following table shows some user inputs for the year and
the result of the computation.

18

User input
for the year

year%400

== 0

year%100

== 0

year%4 ==

0

result

2016 False False True Leap year

1600 True True True Leap year

1800 False True True Not a leap
year

