
Introduction to Programming

Python Lab 9:

Functions

26 November 2019
or 13 March 2020

1
PythonLab9 lecture slides.ppt

Ping Brennan (p.brennan@bbk.ac.uk)

mailto:p.brennan@bbk.ac.uk

Getting Started

• Create a new folder in your disk space with the name PythonLab9

• Launch the Python Integrated Development Environment (IDLE) -
begin with the Start icon in the lower left corner of the screen.

• If you are in a DCSIS laboratory, search using the keyword Python
and click on IDLE (Python 3.6 64-bit)

A window with the title Python 3.6.2 Shell should appear. This
window is the Shell.

2

Getting Started (2)

• If you are in the ITS laboratory MAL 109, then right mouse click on
the Start icon in the lower left corner of the screen.

A list of menu options should appear and click on Search. Type
Python in the search text box at the bottom of the pop-up
window. A list of Apps should appear and select

Python 3.4 IDLE(PythonGUI)

A window with the title Python 3.4.3 Shell should appear. This
window is the Shell.

• In the Shell click on File. A drop down menu will appear.

Click on New File. A window with the `title` Untitled should
appear. This window is the Editor.

3

Getting Started (3)

• In the Editor, click on File, and then in the drop down menu click
on Save As… .

A window showing a list of folders should appear.

– To search any folder on the list, double click on the folder.

– Find the folder PythonLab9 and double click on it.

– In the box File name at the bottom of the window

1. Type CompoundInterest.py

2. Then click on the button Save in the lower right corner of the
window.

The title of the Editor should change to show the location of the file
CompoundInterest.py.

4

Objectives of the exercises set

• Create your own user-defined functions in your program.

When defining a function, you provide a name for the function
and a parameter variable for each argument.

For example, the definition of the function cubeVolume is

shown below.

def cubeVolume(sideLength) :

volume = sideLength ** 3

return volume

result = cubeVolume(2)

5

Name of function Name of parameter variable
Function header

Function body,
executed when the
function is called.
The statements in
the body should be
indented to the
same level.

return statement exits the

function and returns the result
(that is, the value of volume).

Put a colon here.

After the definition of cubeVolume,

call the function with an argument of
2 to calculate the volume, and then
store the returned value 8 in the
variable result.

Execution
flow of a

function call
to

cubeVolume

6

Objectives of the exercises set (2)

• Use a for statement to implement count-controlled loops

that iterate over a range of integer values.

For example,

for i in range(1, 5, 2):

print(i) #loop body

Working of the loop:

7

The third argument is the
step value.

The start value The ending value is
never included in the
sequence.

value of i Output using print(i)

1 1

3 3

Recall
 The range function generates a sequence of integers over which the

loop iterates.
 The variable i is set, at the beginning of each iteration, to the next

integer in the sequence generated by the range function.

Objectives of the exercises set (3)

• Use the string format operator % and sensible format specifiers
to specify how values should be formatted in the output.

For example,

print("Quantity: %d Cost: %6.2f" % (quantity, cost))

8

Format specifiers

Recall: The format string can
contain one or more format
specifiers and literal characters.
Use the letter d for an integer
value, and the letter f for a

floating-point value.

Recall: The values/variables to be
formatted are defined inside the
brackets. Each value replaces one of
the format specifiers in the resulting
string.

Program CompoundInterest.py:
function balance

• Question 2: Problem statement

Write a function with the name balance and with the
following three arguments: initialBalance, rate and
numberYears. The function balance returns the balance in

an account given the initial balance, the number of years that
have elapsed and the interest rate.

It is assumed that the interest is compounded. Recall that the
balance in the account is given by the formula

initialBalance*((1+rate/100)**numberYears)

Provide a comment to explain the purpose of the function balance.

Also include in your comment the types of the parameter values, the
type of the returned value, your name and the date.

Save the function balance in the file CompoundInterest.py.

9

Program CompoundInterest.py:
function balance (2)

• Problem solving - Convert the pseudocode below into a

sequence of Python statements in your program.

1. Define a function named balance as shown below:

def balance(initalBalance, rate, numberYears):

2. Create an assignment statement to calculate the final balance using
the formula below, and store the result in a variable named
finalBalance. Indent the statement.

initialBalance*((1+rate/100)**numberYears)

3. Add a return statement to return the result of the function,
namely finalBalance, in the function body. The return and

the assignment statement in step 2 have the same indentation.

4. Add a print statement to call the function balance, for example

print(balance(100, 6, 2))

Align the function header def and the print statement to the

same level of indentation. 10

Function

body,

executed

when function

is called.

The print

statement is

outside the

function

definition.

Program CompoundInterest.py:
function balance (3)

• Save the function balance in the file
CompoundInterest.py, and then run the program to test it.

11

Program CompoundInterest.py:
function balance (4)

12

Inputs to the
function balance

After creating the
definition of the
function balance, call
balance with the

following arguments:

balance(100, 6, 2)

Computation in the function
balance

Initializing function parameter
variables

initialBalance is

rate is

numberYears is

Function body:

finalBalance =

initialBalance*((1+rate/100)

**numberYears)

return finalBalance

Result returned
by the function

Modify the print

statement (in step
4, page 10) to
format the result to
2 decimal places
along with a
suitable format
string as shown in
the output below.

Final balance:

112.36

Note: You should define the function balance before you call it later in the

program.

100

6

2

Program CompoundInterest.py: function
table

• Question 3: Problem statement

Write a function table that requests an initial balance and a

number of years and then prints out the two requested inputs
together with some text to specify the meaning of the printout.
For example, the initial balance could be printed out in the form

The initial balance is 100 ukp

The function table then prints out the final balance for the

values -6%, -3%, 0%, 3%, 6% of the rate, given the requested
initial balance and the requested number of years. Each value
of the rate corresponds to a single line in the print out.

For example, if the rate is -6% and the calculated balance is
126.7894 ukp, then the corresponding line of the printout is

rate: -6%, balance: 126.79 ukp

13

Program CompoundInterest.py: function
table (2)

• Problem solving - Convert the pseudocode below into a

sequence of Python statements in your program.

1. Use def to define a function named table that has no parameter

variable, so the name should just be appended with a pair of
brackets ().

2. Read in an initial balance that should be converted to a floating-
point value, and store this value in a variable named
initialBalance.*

3. Read in a number of years and store this value in a variable named
numberYears.

4. Display the initial balance and the number of years together with
some text to specify the meaning of the printout.

An example is shown below for the variable initialBalance.

print("The initial balance is %.2f ukp" % initialBalance)

Hint *: Use the function input to firstly read in the balance, and then use
the function float to convert the input string to a floating-point value. 14

Two

inputs

required.

Program CompoundInterest.py: function
table (3)

• Problem solving (continued)

5. Write a for statement to iterate over a range of values: -6, -3, 0,

3, 6, for the rate. Below is an outline of the algorithm needed to solve
the given problem in the for loop body.

for rate in range(Hint: use -6 as the start value and 3 as

the step value. Work out the ending value yourself.):

Call the function balance below to calculate the

balance for each rate value and store the result in b.

b = complete the code to call the function balance

together with the arguments: initialBalance, rate

and numberYears

Add a print statement below to display a formatted

output of the rate and balance for each rate value.

print("define a format string that displays the rate

and balance using two suitable format specifiers " % (

specify the two variables, rate and b, here)) 15

The

statements

have the

same

indentation.

Align the print

statements

(step 4) and

the for

statement.

Program CompoundInterest.py:
function table (4)

• Note

– The statements defined for steps 2 to 5 have the same level of
indentation in the function body. Also the two statements in the for

loop body have the same indentation.

– The string format operator % is covered in “Week 5: Strings and
Output”.

• Provide a comment to explain the purpose of the function table.

Include in your comment your name and the date.

• Test the function table using suitable values for the initial

balance and the number of years. In order to test the function,
you need to add a statement that calls the function i.e.,

table()

The above statement must be defined outside of the function
definition for table, and it is aligned with the function header.

• Save the function table in the file CompoundInterest.py

and then run your program.
16

Supplementary Questions for Private
Study

• The laboratory worksheet contains supplementary questions in
section 4 for private study.

• You are encouraged to complete the supplementary questions at
home, or in the laboratory if you have time after completing
questions 2 to 3.

17

